1
|
Tadokoro M, Nishimura R, Kamebuchi H, Kobayashi F, Miyazaki J, Haga MA. Two-step insertion/release of electrolytic cations in redox-active hydrogen-bonding nanoporous coordination crystals. Phys Chem Chem Phys 2025. [PMID: 40391463 DOI: 10.1039/d5cp01130b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2025]
Abstract
Solid-state cyclic voltammetry (CV) of redox-active H-bonding {[RuIII(Hbim)3]}n (1) 1-D nanoporous crystals was performed using single crystals in MeCN solutions containing seven electrolyte cations with different effective ionic radii (EIRs). Two cations must be included to every nanochannel unit in {[RuIIRuII]2-} reductive states by a two-step and multi-electron transfer reaction through the {[RuIIIRuII]-} mixed-valency state. This study is the first to use solid-state CV to determine the EIR limitation of cations confinable in these crystals.
Collapse
Affiliation(s)
- Makoto Tadokoro
- Department of Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka 1-3, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Ryota Nishimura
- Department of Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka 1-3, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Hajime Kamebuchi
- Department of Chemistry, College of Humanities and Sciences, Nihon University, Sakurajyosui 3-25-40, Setagaya-ku, Tokyo 156-8550, Japan
| | - Fumiya Kobayashi
- Department of Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka 1-3, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Jun Miyazaki
- Department of Natural Sciences, School of Engineering, Tokyo Denki University, Senjuasahi-cho 5, Adachi-ku, Tokyo, 120-8551, Japan
| | - Masa-Aki Haga
- Department of Applied Chemistry, Faculty of Science and Technology, Chuo University, Korakuen, Chuo-ku, Tokyo 112-8551, Japan
| |
Collapse
|
2
|
Melath S, You X, Sang L. Noncovalent Interactions Promoted Kinetics in Perylene Diimide-Based Aqueous Zn-Ion Batteries: An Operando Attenuated Total Reflection Infrared Study. J Phys Chem Lett 2025; 16:3954-3962. [PMID: 40214412 DOI: 10.1021/acs.jpclett.5c00248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Perylene-based organic anodes, as an alternative to metallic Zn for aqueous Zn-ion batteries, store Zn2+ through a Zn enolate coordination mechanism, which potentially bypasses challenges such as dendrite and hydroxide formation associated with a Zn anode. However, organic anodes exhibit low electrical conductivity and show a low rate performance. Molecular aggregation of conjugated aromatics plays a key role in the electrical conductivity of this class of material, and it is important to understand their impact on the battery rate performance. In this work, we combined electrochemistry and in situ attenuated total reflection infrared characterization to demonstrate the dominating role of aggregates in perylene-based electrodes in the enhancement of the electrode kinetics. We demonstrated the use of noncovalent interaction to form a supermolecular network that exhibits more than 4 orders of magnitude increase in the electron transfer rate, and provides nearly doubled charge storage capacity. The aggregation of perylene units was driven by π-π stacking and hydrogen bonding between the active material and a mediator, ethylene diamine. We showed that, in practice, this additive-mediated aggregation can occur during solution process at a moderate temperature.
Collapse
Affiliation(s)
- Sneha Melath
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Xiang You
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Lingzi Sang
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
3
|
Liu Z, Xing C, Shan Y, Ma M, Wu S, Ge R, Xue Q, Tian J. Molecular engineering of 1D conjugated copper anilate coordination polymers for boosting electrocatalytic nitrate reduction to ammonia. Chem Sci 2025; 16:7010-7017. [PMID: 40134659 PMCID: PMC11932389 DOI: 10.1039/d4sc08508f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 03/17/2025] [Indexed: 03/27/2025] Open
Abstract
The electrochemical nitrate reduction reaction (NO3RR) offers a "two-birds-one-stone" solution by simultaneously addressing water pollution and enabling green ammonia production. However, its multiple reaction pathways and complex intermediates pose a challenge for designing high-efficiency electrocatalysts. The highly modular nature of metal coordination polymers (MCPs), combined with molecular engineering strategies, provides a pathway for systematically exploring the structure-performance relationships of catalysts. As a proof of concept, we here synthesized a series of π-d conjugated copper anilate coordination polymers incorporating different halogen atoms (F, Cl and Br). The combined experimental and theoretical investigations reveal that introducing halogen atoms with electron-withdrawing properties can create an electron-deficient Cu center through the interchain Cu⋯halogen supramolecular interactions, which can effectively lower the energy barrier for deoxygenation of the *NO intermediate. As a result, the Cu-FA (FA = fluoranilate, C6O4F2 2-) achieves a superior NO3RR performance with the faradaic efficiency (FE) of 98.17% and yielding rate of 14.308 mg h-1 mg-1 at -0.9 V, nearly 7.7 times that of the pristine Cu-DABQ (DABQ = 2,5-dihydroxy-1,4-benzoquinone, C6O4H2 2-). This study may provide new insights into the design of high-performance NO3RR electrocatalysts.
Collapse
Affiliation(s)
- Zhanning Liu
- School of Materials Science and Engineering, Shandong University of Science and Technology Qingdao Shandong 266590 P. R. China
| | - Chengyong Xing
- School of Materials Science and Engineering, Shandong University of Science and Technology Qingdao Shandong 266590 P. R. China
| | - Yufei Shan
- School of Materials Science and Engineering, Shandong University of Science and Technology Qingdao Shandong 266590 P. R. China
| | - Min Ma
- School of Materials Science and Engineering, Shandong University of Science and Technology Qingdao Shandong 266590 P. R. China
| | - Shaowen Wu
- School of Materials Science and Engineering, Shandong University of Science and Technology Qingdao Shandong 266590 P. R. China
| | - Ruixiang Ge
- College of Chemical and Biological Engineering, Shandong University of Science and Technology Qingdao Shandong 266590 P. R. China
| | - Qingzhong Xue
- School of Materials Science and Engineering, Shandong University of Science and Technology Qingdao Shandong 266590 P. R. China
| | - Jian Tian
- School of Materials Science and Engineering, Shandong University of Science and Technology Qingdao Shandong 266590 P. R. China
| |
Collapse
|
4
|
Chu J, Liu Z, Yu J, Wang HG, Cui F, Zhu G. Electronic band structure engineering of π-d conjugated metal-organic framework for sodium organic batteries. Nat Commun 2025; 16:3549. [PMID: 40229281 PMCID: PMC11997045 DOI: 10.1038/s41467-025-58759-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 03/28/2025] [Indexed: 04/16/2025] Open
Abstract
Two-dimensional conjugated metal organic frameworks (2D c-MOFs) hold significant promise as electrode materials for alkali metal ion batteries while their electrochemical properties still lack reasonable and effective regulation. Here, two representative 2D c-MOFs (M-HHTQ/M-HHTP, M=Cu or Ni) as positive electrodes are used as models to explore the basic/microscopic principles of their complex storage mechanism in sodium ion batteries (SIBs). It is demonstrated that the energy storage mechanism of 2D c-MOFs is determined by the interaction between coordination covalent bonds and organic linkers. Theoretical calculations and experiment results have jointly demonstrated that the redox potential and theoretical capacity can be regulated based on the valence of M-O bond and the utilization of anions and cations, respectively. As a result, Cu-HHTQ achieves a high discharge voltage at 2.55 V (vs. Na+/Na), a higher stable specific capacity of 208 mAh g-1 at 0.05 A g-1, and long cyclability with the capacity retention rate of 100% at 1 A g-1 after 2000 cycles.
Collapse
Affiliation(s)
- Juan Chu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education and Faculty of Chemistry, Northeast Normal University, 130024, Changchun, P. R. China
| | - Zhaoli Liu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education and Faculty of Chemistry, Northeast Normal University, 130024, Changchun, P. R. China
| | - Jie Yu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education and Faculty of Chemistry, Northeast Normal University, 130024, Changchun, P. R. China
| | - Heng-Guo Wang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education and Faculty of Chemistry, Northeast Normal University, 130024, Changchun, P. R. China.
| | - Fengchao Cui
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education and Faculty of Chemistry, Northeast Normal University, 130024, Changchun, P. R. China
| | - Guangshan Zhu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education and Faculty of Chemistry, Northeast Normal University, 130024, Changchun, P. R. China.
| |
Collapse
|
5
|
Chai RL, Han SB, Wang LW, Li SH, Pan H, Zhang HB, Tu XY, Wang ZY, Wang X, Li GY, Zhao J, Zhang L, Li X, Zhao Q. Electronic Structure Tunable Metallosupramolecular Polymers as Bifunctional Electrocatalysts for Rechargeable Zn-Air Battery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2500616. [PMID: 40018885 DOI: 10.1002/smll.202500616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Indexed: 03/01/2025]
Abstract
Metallosupramolecular polymers (MSPs) have shown great potential in the area of oxygen electrocatalysis due to their tunable electronic structure, and predictable coordination environment. Further exploration of structure-performance relationships of oxygen electrocatalysts is crucial for designing highly efficient catalysts. Herein, a strategy is proposed to prepare MSP-based bifunctional oxygen electrocatalysts with different oxygen electrocatalytic preferences (Co-AQ and Co-AN) by adjusting the electronic structure of organic linkers. The electronic effects of organic linkers significantly influence the adsorbate evolution mechanism. Co-AQ, with an electron-withdrawing linker, demonstrated superior OER activity among the two with an overpotential of 280 mV at 10 mA cm-2 and 340 mV at 50 mA cm-2. In contrast, Co-AN, with an electron-donating linker, exhibited outstanding ORR activity with a large limiting current density of 6.14 mA cm-2. Furthermore, the Co-AQ-based Zn-air battery showed a high power density (135 mW cm-2) and excellent cycling stability of 100 h. This work presents a novel approach for adjusting bifunctional oxygen electrocatalysis performance and further reveals the structure-performance relationships of oxygen electrocatalysts.
Collapse
Affiliation(s)
- Rui-Lin Chai
- College of Sciences, College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
- College of Sciences, Institute of Molecular Plus, Tianjin University, Tianjin, 300072, P. R. China
| | - Shi-Bo Han
- College of Sciences, College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
| | - Li-Wei Wang
- College of Sciences, College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
| | - Sheng-Hua Li
- College of Sciences, College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
| | - Hui Pan
- College of Sciences, College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
| | - Hao-Bo Zhang
- College of Sciences, College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
| | - Xian-Yi Tu
- College of Sciences, College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
| | - Zi-Ying Wang
- College of Sciences, Institute of Molecular Plus, Tianjin University, Tianjin, 300072, P. R. China
| | - Xiaocong Wang
- College of Sciences, College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
| | - Guang-Yue Li
- College of Chemical Engineering, North China University of Science and Technology, Tangshan, 063210, P. R. China
| | - Jin Zhao
- College of Sciences, College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
| | - Lifeng Zhang
- College of Sciences, Institute of Molecular Plus, Tianjin University, Tianjin, 300072, P. R. China
| | - Xin Li
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, P. R. China
| | - Qian Zhao
- College of Sciences, College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
| |
Collapse
|
6
|
Noh HJ, Cline E, Pennington DL, Lin HYG, Hendon CH, Mirica KA. Tuning the Structure-Property Relationships of Metallophthalocyanine-Based Two-Dimensional Conductive Metal-Organic Frameworks with Different Metal Linkages. J Am Chem Soc 2025. [PMID: 40013980 DOI: 10.1021/jacs.4c15272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Metallophthalocyanine (MPc)-linked conductive two-dimensional (2D) metal-organic frameworks (MOFs) hold tremendous promise as modular 2D materials in sensing, catalysis, and energy-related applications due to their combinatory bimetallic system from the MPc core and bridging metal nodes, endowing them with high electrical conductivity and multifunctionality. Despite significant advances, there is a gap in fundamental understanding regarding the periodic effects of metal nodes on the structural properties of MPc-linked 2D MOFs. Herein, we report a series of highly crystalline MOFs wherein copper phthalocyanine (CuPc) is linked with Ni, Cu, and Zn nodes (CuPc-O-M, M: Ni, Cu, Zn). The prepared CuPc-O-M MOFs exhibit p-type semiconducting properties with an exceptionally high range of electrical conductivity. Notably, the differences in the 3d orbital configurations of the Ni, Cu, and Zn nodes in CuPc-O-M MOFs lead to perturbations of the interlayer stacking patterns of the 2D framework materials, which ultimately affect material properties, such as semiconducting band gaps and charge transport within the framework. The Cu2+ (3d9) metal node within the eclipsed interlayer stacking of CuPc-O-Cu MOF demonstrates excellent charge transport, which results in the smallest band gap of 1.14 eV and the highest electrical conductivity of 9.3 S m-1, while the Zn2+ (3d10) metal node within CuPc-O-Zn results in a slightly inclined interlayer stacking, leading to the largest band gap of 1.27 eV and the lowest electrical conductivity of 2.9 S m-1. These findings form an important foundation in the strategic molecular design of this class of materials for multifaceted functionality that builds upon the electronic properties of these materials.
Collapse
Affiliation(s)
- Hyuk-Jun Noh
- Department of Chemistry, Burke Laboratory, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Evan Cline
- Department of Chemistry, Burke Laboratory, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Doran L Pennington
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Hao-Yu Greg Lin
- Center for Nanoscale Systems, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Christopher H Hendon
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Katherine A Mirica
- Department of Chemistry, Burke Laboratory, Dartmouth College, Hanover, New Hampshire 03755, United States
| |
Collapse
|
7
|
Park M, Ju H, Oh J, Park K, Lim H, Yoon SM, Song I. Proton-electron coupling and mixed conductivity in a hydrogen-bonded coordination polymer. Nat Commun 2025; 16:1316. [PMID: 39900570 PMCID: PMC11791098 DOI: 10.1038/s41467-025-56541-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 01/22/2025] [Indexed: 02/05/2025] Open
Abstract
The fundamental understanding of coupled proton-electron transport in mixed protonic-electronic conductors (MPECs) remains unexplored in materials science, despite its potential significance within the broader context of mixed ionic-electronic conductors (MIECs) and the possibility of controlled diffusion of protons using hydrogen-bond networks. To address these limitations, we present a hydrogen-bonded coordination polymer Ni-BAND ({[Ni(bpy)(H2O)2(DMF)2](NO3)2·2DMF}n), which demonstrates high mixed protonic-electronic conductivity at room temperature. Through detailed analysis, we unravel the coupled transport mechanism, offering insights for the rational design of high-performance MPECs. We demonstrate the practical implications of this mechanism by examining the humidity-dependent synaptic plasticity of Ni-BAND, showcasing how MPECs can expand into traditional MIEC applications while leveraging their unique proton-mediated advantages.
Collapse
Affiliation(s)
- Minju Park
- Department of Chemical and Biological Engineering, Andong National University (ANU), 1375 Gyeongdong-ro, Andong, Gyeongbuk, 36729, Republic of Korea
| | - Huiyeong Ju
- Research Center for Materials Analysis, Korea Basic Science Institute, Daejeon, 34133, Republic of Korea
| | - Joohee Oh
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
- Center for Quantum Conversion Research (QCR), Institute of Basic Science (IBS), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Kwangmin Park
- Department of Chemical and Biological Engineering, Andong National University (ANU), 1375 Gyeongdong-ro, Andong, Gyeongbuk, 36729, Republic of Korea
| | - Hyunseob Lim
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea.
- Center for Quantum Conversion Research (QCR), Institute of Basic Science (IBS), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea.
| | - Seok Min Yoon
- Department of Chemistry, Gyeongsang National University, 501 Jinjudae-ro, Jinju, Gyeongnam, 52828, Republic of Korea.
- Research Institute of Advanced Chemistry, Gyeongsang National University, 501 Jinjudae-ro, Jinju, Gyeongnam, 52828, Republic of Korea.
| | - Intek Song
- Department of Chemical and Biological Engineering, Andong National University (ANU), 1375 Gyeongdong-ro, Andong, Gyeongbuk, 36729, Republic of Korea.
| |
Collapse
|
8
|
Kim S, Kwon O, Kim S, Jang S, Yu S, Lee CH, Choi YY, Cho SY, Kim KC, Yu C, Kim DW, Cho JH. Modulating synaptic plasticity with metal-organic framework for information-filterable artificial retina. Nat Commun 2025; 16:162. [PMID: 39746970 PMCID: PMC11696553 DOI: 10.1038/s41467-024-55173-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 12/02/2024] [Indexed: 01/04/2025] Open
Abstract
Neuroprosthetics equipped with artificial synapses hold promise to address some most intricate medical problems, such as human sensory disorders. Yet, it is necessitated and of paramount importance for neuroprosthetics to be able to differentiate significant and insignificant signals. Here, we present an information-filterable artificial retina system that integrates artificial synapses with a signal-integration device for signal perception and processing with attention. The synaptic weight modulation is rendered through metal-organic framework (MOF) layers, where distinct short-term and long-term properties are predominantly determined by MOF's pore diameter and functionality. Specifically, four types of isoreticular Zr-based MOFs that share Zr6O4(OH)4 secondary building units have been systematically examined. It is demonstrated that small pore diameters enhance short-term properties, while large pores, which are characterized by increased ion affinity, sustain long-term properties. Moreover, we demonstrated a 6 × 6 pixel artificial retina by incorporating both short-term and long-term artificial synapses with a signal-integration device. Signal summation by the signal-integration device enables attention-based information processing. The information-filterable artificial retina system developed here emulates human perception processes and holds promise in the fields of neuroprosthetics and advanced artificial intelligence.
Collapse
Affiliation(s)
- Seongchan Kim
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Ohchan Kwon
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Republic of Korea
- Department of Chemistry, University of California, Berkeley, CA, USA
| | - Seonkwon Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Republic of Korea
| | - Seonmin Jang
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania, PA, USA
| | - Seungho Yu
- Department of Chemical Engineering, Konkuk University, Seoul, Republic of Korea
| | - Choong Hoo Lee
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Republic of Korea
| | - Yoon Young Choi
- Department of Mechanical Science and Engineering, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| | - Soo Young Cho
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Republic of Korea
| | - Ki Chul Kim
- Department of Chemical Engineering, Konkuk University, Seoul, Republic of Korea
- Division of Chemical Engineering, Konkuk University, Seoul, Republic of Korea
| | - Cunjiang Yu
- Department of Mechanical Science and Engineering, University of Illinois, Urbana-Champaign, Urbana, IL, USA.
- Department of Electrical and Computer Engineering, University of Illinois, Urbana-Champaign, Urbana, IL, USA.
- Department of Materials Science and Engineering, University of Illinois, Urbana-Champaign, Urbana, IL, USA.
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Urbana, IL, USA.
- Materials Research Laboratory, University of Illinois, Urbana-Champaign, Urbana, IL, USA.
- Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana-Champaign, Urbana, IL, USA.
- Nick Holonyak Micro and Nanotechnology Laboratory, University of Illinois, Urbana-Champaign, Urbana, IL, USA.
| | - Dae Woo Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Republic of Korea.
| | - Jeong Ho Cho
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
9
|
Shen Y, Cui M, Li G, Stefanczyk O, Funakoshi N, Otake T, Takaishi S, Yamashita M, Ohkoshi SI. Diamagnetic Carrier-Doping-Induced Continuous Electronic and Magnetic Crossover in One-Dimensional Coordination Polymers. J Am Chem Soc 2024; 146:35367-35376. [PMID: 39668390 DOI: 10.1021/jacs.4c14013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
The potential to introduce tunable electrical conductivity and molecular magnetism through carrier doping in metal-organic coordination polymers is particularly promising for nanoelectronics applications. Precise control of the doping level is essential for determining the electronic and magnetic properties. In this study, we present a series of one-dimensional coordination polymers, {(HNEt3)0.5[CuxCo(1-x)(L)]}n (HNEt3 = triethylammonium, L = 1,2,4,5-tetrakis(methanesulfonamido)benzene), doped with diamagnetic Cu1+ carriers. Through comprehensive characterization of the structural, optical, and magnetic properties, we observed continuous electronic and magnetic crossover as the doping level was gradually increased. When x < 0.5, the doped compounds exhibit ferromagnetic insulating behavior with very high energy barriers (Ueff up to 560 K) and excellent slow relaxation of magnetization. At x = 0.5, {(HNEt3)0.5[Cu0.5Co0.5(L)]}n functions as a paramagnetic semiconductor at high temperatures and a single-molecule magnet at low temperatures. When x > 0.5, the doped compounds act as diluted antiferromagnetic semiconductors with narrow band gaps (Ea = 0.2 eV). The emergence of such rich electronic and magnetic crossovers is ascribed to the cooperation of the strong electron-donating ability of the ligand and the pronounced crystal-field effects. Our findings indicate that one-dimensional (1D) coordination polymers are promising for the design of novel low-dimensional magnetic semiconductors.
Collapse
Affiliation(s)
- Yongbing Shen
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-Ku, Sendai 980-8578, Japan
| | - Mengxing Cui
- School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, P. R. China
| | - Guanping Li
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Department of Chemistry, The University of Manchester, Manchester M13 9PL, U.K
| | - Olaf Stefanczyk
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Nobuto Funakoshi
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-Ku, Sendai 980-8578, Japan
| | - Tomu Otake
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shinya Takaishi
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-Ku, Sendai 980-8578, Japan
| | - Masahiro Yamashita
- School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, P. R. China
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-Ku, Sendai 980-8578, Japan
| | - Shin-Ichi Ohkoshi
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- DYNACOM (Dynamical Control of Materials)-IRL2015, CNRS, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
10
|
Su N, Zhang T, Zhong W, Miao G, Guo J, Wang Z, Wang W. Atomic-scale investigation on the electronic states in a one-dimensional π-d conjugated metal-organic framework. Chem Commun (Camb) 2024; 60:12373-12376. [PMID: 39370905 DOI: 10.1039/d4cc03758h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Enhanced electronic coupling gives rise to many intriguing properties in π-d conjugated metal-organic frameworks (CMOFs). By low-temperature scanning tunneling microscopy and density functional theory calculation, we investigate the electronic coupling in one-dimensional (1D) π-d conjugated FeQDI polymers. Our experiments have resolved the bulk and end states stemming from Fe atoms in different coordination environments and their spatial extension due to π-d conjugation. By fitting the band structure by Wannier functions in an energy range of -0.5 eV to 0 eV, the Fe-Fe, QDI-QDI and Fe-QDI hopping integrals are determined to be 15 meV, 121 meV and 24 meV, respectively. Our work provides experimental and theoretical insights into the electronic coupling in 1D CMOFs.
Collapse
Affiliation(s)
- Nuoyu Su
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Tingfeng Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Weiliang Zhong
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
| | - Guangyao Miao
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
| | - Jiandong Guo
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Zhengfei Wang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui, 230088, China
| | - Weihua Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
11
|
Yu SY, Hu J, Li Z, Xu YT, Yuan C, Jiang D, Zhao WW. Metal-Organic Framework Nanofluidic Synapse. J Am Chem Soc 2024; 146:27022-27029. [PMID: 39292646 DOI: 10.1021/jacs.4c08833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Chemical synapse completes the signaling through neurotransmitter-mediated ion flux, the emulation of which has been a long-standing obstacle in neuromorphic exploration. Here, we report metal-organic framework (MOF) nanofluidic synapses in which conjugated MOFs with abundant ionic storage sites underlie the ionic hysteresis and simultaneously serve as catalase mimetics that sensitively respond to neurotransmitter glutamate (Glu). Various neurosynaptic patterns with adaptable weights are realized via Glu-mediated chemical/ionic coupling. In particular, nonlinear Hebbian and anti-Hebbian learning in millisecond time ranges are achieved, akin to those of chemical synapses. Reversible biochemical in-memory encoding via enzymatic Glu clearance is also accomplished. Such results are prerequisites for highly bionic electrolytic computers.
Collapse
Affiliation(s)
- Si-Yuan Yu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jin Hu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zheng Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yi-Tong Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Cheng Yuan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
12
|
Tai H, Ding W, Zhang X, Liang K, Rong Y, Liu Z. Upgrading Structural Conjugation in Three-Dimensional Ni-Based Metal-Organic Frameworks for Promoting Electrical Conductivity and Specific Capacitance. Inorg Chem 2024; 63:18083-18091. [PMID: 39295589 DOI: 10.1021/acs.inorgchem.4c02829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Metal-organic frameworks (MOFs) have emerged as promising candidates for electrochemical energy storage and conversion due to their high specific surface areas, abundant active sites, and excellent chemical and structural tunability. However, the direct utilization of MOFs as electrochemical materials is a challenge because of the poor electroconductivity induced by the insulating nature of most organic linkers. Herein, a conjugated three-dimensional Ni-MOF {Ni(HBTC)(BPE)}n (Ni-BPE) with a 2-fold interpenetrating structure was developed via the coordination polymerization of Ni2+, a H3BTC ligand (1,3,5-benzenetricarboxylic acid), and a vinyl-functionalized bipyridine linker (1,2-di(4-pyridyl)ethylene, BPE). Ni-BPE displayed an enhanced conjugation system compared to analogous and insulated Ni-BPY that is constructed by the Ni-BTC layer and ordinary bipyridine linker (4,4'-bipyridine, BPY). Notably, upgrading structural conjugation promoted a dramatical ∼204 times increase in the electroconductivity of Ni-BPE compared to Ni-BPY. More importantly, Ni-BPE displayed a higher specific capacitance of 633.2 F g-1 (316.6 C g-1) at 1 A g-1, which exhibited a significant ∼1.5-fold enhancement than Ni-BPY. Furthermore, the asymmetric supercapacitor can reach a good energy density of 25.2 Wh kg-1 with a reasonable cycle stability of 71.0% over 5000 cycles. This work provides an effective method for optimizing the structure of insulating MOFs to enhance the electroconductivity and specific capacitance.
Collapse
Affiliation(s)
- Hongbo Tai
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P.R. China
| | - Wenyu Ding
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P.R. China
| | - Xuan Zhang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P.R. China
| | - Kaicheng Liang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P.R. China
| | - Yang Rong
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P.R. China
| | - Zhiliang Liu
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P.R. China
| |
Collapse
|
13
|
Yu C, Zhu X, Li K, Wang GE, Xu G. 1D p-type molecular-based coordination polymer semiconductor with ultrahigh mobility. Sci Bull (Beijing) 2024; 69:2705-2711. [PMID: 39009487 DOI: 10.1016/j.scib.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/10/2024] [Accepted: 06/25/2024] [Indexed: 07/17/2024]
Abstract
One-dimensional (1D) semiconductor nanostructures exhibit exceptional performance in mitigating short-channel effects and ensuring low power consumption. However, the scarcity of high-mobility p-type 1D materials impedes further advancement. Molecular-based materials offer high designability in structure and properties, making them a promising candidate for 1D p-type semiconductor materials. A molecular-based 1D p-type material was developed under the guidance of coordination chemistry. Cu-HT (HT is the abbreviation of p-hydroxy thiophenol) combines the merits of highly orbital overlap between Cu and S, fully covered surface modification with phenol functional groups, and unique cuprophilic (Cu-Cu) interactions. As such, Cu-HT has a remarkable hole mobility of 27.2 cm2 V-1 s-1, which is one of the highest reported values for 1D molecular-based materials to date and even surpass those of commonly used amorphous silicon as well as the majority of 1D inorganic materials. This achievement underscores the significant potential of coordination polymers in optimizing carrier transport and represents a major advancement in the synthesis of high-performance, 1D p-type semiconductor materials.
Collapse
Affiliation(s)
- Chenhui Yu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinxu Zhu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kefeng Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Guan-E Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Gang Xu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
14
|
Sun QJ, Guo WT, Liu SZ, Tang XG, Roy VA, Zhao XH. Rise of Metal-Organic Frameworks: From Synthesis to E-Skin and Artificial Intelligence. ACS APPLIED MATERIALS & INTERFACES 2024; 16:45830-45860. [PMID: 39178336 DOI: 10.1021/acsami.4c07732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
Abstract
Metal-organic frameworks (MOFs) have attained broad research attention in the areas of sensors, resistive memories, and optoelectronic synapses on the merits of their intriguing physical and chemical properties. In this review, recent progress on the synthesis of MOFs and their electronic applications is introduced and discussed. Initially, the crystal structures and properties of MOFs encompassing optical, electrical, and chemical properties are discussed in brief. Subsequently, advanced synthesis methods for MOFs are introduced, categorized into hydrothermal approach, microwave synthesis, mechanochemical synthesis, and electrochemical deposition. After that, the various roles of MOFs in widespread applications, including sensing, information storage, optoelectronic synapses, machine learning, and artificial intelligence, are discussed, highlighting their versatility and the innovative solutions they provide to long-standing challenges. Finally, an outlook on remaining challenges and a future perspective for MOFs are proposed.
Collapse
Affiliation(s)
- Qi-Jun Sun
- School of Physics and Optoelectric Engineering & Guangdong Provincial Key Laboratory of Sensing Physics and System Integration Applications, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Wen-Tao Guo
- School of Physics and Optoelectric Engineering & Guangdong Provincial Key Laboratory of Sensing Physics and System Integration Applications, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Shu-Zheng Liu
- School of Physics and Optoelectric Engineering & Guangdong Provincial Key Laboratory of Sensing Physics and System Integration Applications, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Xin-Gui Tang
- School of Physics and Optoelectric Engineering & Guangdong Provincial Key Laboratory of Sensing Physics and System Integration Applications, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Vellaisamy Al Roy
- School of Science and Technology, Hong Kong Metropolitan University, Hong Kong 999077, P. R. China
| | - Xin-Hua Zhao
- School of Intelligent Manufacturing and Electrical Engineering, Guangzhou Institute of Science and Technology, Guangzhou 510540, P. R. China
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| |
Collapse
|
15
|
Li W, Liang F, Sun X, Zheng K, Liu R, Yuan H, Cheng S, Wang J, Cheng Y, Huang K, Wang K, Yang Y, Yang F, Tu C, Mao X, Yin W, Cai A, Wang X, Qi Y, Liu Z. Graphene-skinned alumina fiber fabricated through metalloid-catalytic graphene CVD growth on nonmetallic substrate and its mass production. Nat Commun 2024; 15:6825. [PMID: 39122739 PMCID: PMC11316083 DOI: 10.1038/s41467-024-51118-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Graphene growth on widely used dielectrics/insulators via chemical vapor deposition (CVD) is a strategy toward transfer-free applications of CVD graphene for the realization of advanced composite materials. Here, we develop graphene-skinned alumina fibers/fabrics (GAFs/GAFFs) through graphene CVD growth on commercial alumina fibers/fabrics (AFs/AFFs). We reveal a vapor-surface-solid growth model on a non-metallic substrate, which is distinct from the well-established vapor-solid model on conventional non-catalytic non-metallic substrates, but bears a closer resemblance to that observed on catalytic metallic substrates. The metalloid-catalytic growth of graphene on AFs/AFFs resulted in reduced growth temperature (~200 °C lower) and accelerated growth rate (~3.4 times faster) compared to that obtained on a representative non-metallic counterpart, quartz fiber. The fabricated GAFF features a wide-range tunable electrical conductivity (1-15000 Ω sq-1), high tensile strength (>1.5 GPa), lightweight, flexibility, and a hierarchical macrostructure. These attributes are inherited from both graphene and AFF, making GAFF promising for various applications including electrical heating and electromagnetic interference shielding. Beyond laboratory level preparation, the stable mass production of large-scale GAFF has been achieved through a home-made roll-to-roll system with capacity of 468-93600 m2/year depending on product specifications, providing foundations for the subsequent industrialization of this material, enabling its widespread adoption in various industries.
Collapse
Affiliation(s)
- Wenjuan Li
- Centre for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Beijing Graphene Institute (BGI), Beijing, China
| | - Fushun Liang
- Centre for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Beijing Graphene Institute (BGI), Beijing, China
| | - Xiucai Sun
- Beijing Graphene Institute (BGI), Beijing, China
| | - Kangyi Zheng
- Beijing Graphene Institute (BGI), Beijing, China
- College of Energy, Soochow Institute for Energy and Materials Innovations (SIEMIS), Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou, China
| | - Ruojuan Liu
- Centre for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Beijing Graphene Institute (BGI), Beijing, China
| | - Hao Yuan
- Centre for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Beijing Graphene Institute (BGI), Beijing, China
| | - Shuting Cheng
- Beijing Graphene Institute (BGI), Beijing, China
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing, China
| | - Jingnan Wang
- Beijing Graphene Institute (BGI), Beijing, China
| | - Yi Cheng
- Centre for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Kewen Huang
- Centre for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Kun Wang
- Centre for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Yuyao Yang
- Centre for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Beijing Graphene Institute (BGI), Beijing, China
| | - Fan Yang
- Centre for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Beijing Graphene Institute (BGI), Beijing, China
| | - Ce Tu
- Beijing Graphene Institute (BGI), Beijing, China
| | - Xinyu Mao
- Beijing Graphene Institute (BGI), Beijing, China
| | - Wanjian Yin
- Beijing Graphene Institute (BGI), Beijing, China
- College of Energy, Soochow Institute for Energy and Materials Innovations (SIEMIS), Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou, China
| | - Ali Cai
- Beijing Graphene Institute (BGI), Beijing, China
| | - Xiaobai Wang
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, China
| | - Yue Qi
- Beijing Graphene Institute (BGI), Beijing, China.
| | - Zhongfan Liu
- Centre for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
- Beijing Graphene Institute (BGI), Beijing, China.
| |
Collapse
|
16
|
Lin L, Zhang C, Liang C, Zhang H, Wang Z, Wang P, Zheng Z, Cheng H, Xing D, Dai Y, Huang B, Liu Y. Hydrogen Bonds Induced Ultralong Stability of Conductive π-d Conjugated FeCo 3(DDA) 2 with High OER Activity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402388. [PMID: 38648263 DOI: 10.1002/adma.202402388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/11/2024] [Indexed: 04/25/2024]
Abstract
Conductive π-d conjugated metal-organic frameworks (MOFs) have attracted wide concerns in electrocatalysis due to their intrinsic high conductivity. However, the poor electrocatalytic stability is still a major problem that hinders the practical application of MOFs. Herein, a novel approach to enhancing the stability of MOF-based electrocatalyst, namely, the introduction of hydrogen bonds (H-bonds), is reported. Impressively, the π-d conjugated MOF FeCo3(DDA)2 (DDA = 1,5-diamino-4,8-dihydroxy-9,10-anthraceneedione) exhibits ultrahigh oxygen evolution reaction (OER) stability (up to 2000 h). The experimental studies demonstrate that the presence of H-bonds in FeCo3(DDA)2 is responsible for its ultrahigh OER stability. Besides that, FeCo3(DDA)2 also displays a prominent OER activity (an overpotential of 260 mV vs reversible hydrogen electrode (RHE) at a current density of 10 mA cm-2 and a Tafel slope of 46.86 mV dec-1). Density functional theory (DFT) calculations further indicate that the synergistic effect of the Fe and Co sites in FeCo3(DDA)2 contributes to its prominent OER performance. This work provides a new avenue of boosting the electrocatalytic stability of conductive π-d conjugated MOFs.
Collapse
Affiliation(s)
- Lingtong Lin
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Caiyun Zhang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Congcong Liang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Honggang Zhang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Zeyan Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Peng Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Zhaoke Zheng
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Hefeng Cheng
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Danning Xing
- Shandong Institute of Advanced Technology, Shandong, 250100, P. R. China
| | - Ying Dai
- School of Physics, Shandong University, Shandong, 250100, P. R. China
| | - Baibiao Huang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Yuanyuan Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| |
Collapse
|
17
|
Cheng L, Qi M, Yu J, Zhang X, Wang HG, Cui F, Wang Y. Conjugation and Topology Engineering of 2D π-d Conjugated Metal-Organic Frameworks for Robust Potassium Organic Batteries. Angew Chem Int Ed Engl 2024; 63:e202405239. [PMID: 38634305 DOI: 10.1002/anie.202405239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/19/2024]
Abstract
The evolution of two-dimensional conjugated metal-organic frameworks (2D c-MOFs) provides a significant prospect for researching the next generation of green and advanced energy storage systems (ESSs). Especially, conjugation and topology engineering serve as an irreplaceable character in adjusting the electrochemical properties of ESSs. Herein, we proposed a novel strategy using conjugation and topology engineering to demonstrate the application of 2D c-MOFs in robust potassium-ion batteries (PIBs) for the first time. By comparing 2D c-MOFs with the rhombus/kagome structure as well as three/four-arm core, the rhombus structure (sql-Cu-TBA-MOF) cathode for PIBs can display the impressive electrochemical performance, including a high specific discharge capacity of 178.4 mAh g-1 (at 0.2 A g-1) and a well long-term cycle stability of more than 9,000 (at 10.0 A g-1). Moreover, full PIBs (FPIBs) are constructed by pairing sql-Cu-TBA-MOF cathode with dipotassium terephthalate (KTP) anode, which delivers a high reversible discharge specific capacity of 146.6 mAh g-1 (at 0.1 A g-1) and great practical application prospect. These findings provide reasonable implications for the design of 2D c-MOFs from the perspective of conjugation and topology engineering for advanced energy storage systems.
Collapse
Affiliation(s)
- Linqi Cheng
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Meiling Qi
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Jie Yu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Xupeng Zhang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Heng-Guo Wang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Fengchao Cui
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Yinghui Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| |
Collapse
|
18
|
Zhang Q, Zhu Z, Liu L, Huang H, Chen X, Bian Y, Shao M, Wei X, Wang C, Wang D, Dong J, Guo Y, Zhu Y, Liu Y. The Transfer Dehydrogenation Method Enables a Family of High Crystalline Benzimidazole-linked Cu (II)-phthalocyanine-based Covalent Organic Frameworks Films. Angew Chem Int Ed Engl 2024; 63:e202319027. [PMID: 38488819 DOI: 10.1002/anie.202319027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Indexed: 04/09/2024]
Abstract
Heterocycle-linked phthalocyanine-based COFs with close-packed π-π conjugated structures are a kind of material with intrinsic electrical conductivity, and they are considered to be candidates for photoelectrical devices. Previous studies have revealed their applications for energy storage, gas sensors, and field-effect transistors. However, their potential application in photodetector is still not fully studied. The main difficulty is preparing high-quality films. In our study, we found that our newly designed benzimidazole-linked Cu (II)-phthalocyanine-based COFs (BICuPc-COFs) film can hardly formed with a regular aerobic oxidation method. Therefore, we developed a transfer dehydrogenation method with N-benzylideneaniline (BA) as a mild reagent. With this in hand, we successfully prepared a family of high crystalline BICuPc-COFs powders and films. Furthermore, both of these new BICuPc-COFs films showed high electrical conductivity (0.022-0.218 S/m), higher than most of the reported COFs materials. Due to the broad absorption and high conductivity of BICuPc-COFs, synaptic devices with small source-drain voltage (VDS=1 V) were fabricated with response light from visible to near-infrared. Based on these findings, we expect this study will provide a new perspective for the application of conducting heterocycle-linked COFs in synaptic devices.
Collapse
Affiliation(s)
- Qingsong Zhang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhiheng Zhu
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Liping Liu
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Department of Chemistry, Tsinghua University, Beijing, Beijing, 100084, P. R. China
| | - Haojie Huang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xianjie Chen
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, P. R. China
| | - Yangshuang Bian
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Mingchao Shao
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiaofang Wei
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chengyu Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Dong Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jichen Dong
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yunlong Guo
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yongfa Zhu
- Department of Chemistry, Tsinghua University, Beijing, Beijing, 100084, P. R. China
| | - Yunqi Liu
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
19
|
Li J, Kumar A, Ott S. Diffusional Electron Transport Coupled to Thermodynamically Driven Electron Transfers in Redox-Conductive Multivariate Metal-Organic Frameworks. J Am Chem Soc 2024; 146:12000-12010. [PMID: 38639553 PMCID: PMC11066865 DOI: 10.1021/jacs.4c01401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/20/2024]
Abstract
The development of redox-conductive metal-organic frameworks (MOFs) and the fundamental understanding of charge propagation through these materials are central to their applications in energy storage, electronics, and catalysis. To answer some unresolved questions about diffusional electron hopping transport and redox conductivity, mixed-linker MOFs were constructed from two statistically distributed redox-active linkers, pyromellitic diimide bis-pyrazolate (PMDI) and naphthalene diimide bis-pyrazolate (NDI), and grown as crystalline thin films on conductive fluorine-doped tin oxide (FTO). Owing to the distinct redox properties of the linkers, four well-separated and reversible redox events are resolved by cyclic voltammetry, and the mixed-linker MOFs can exist in five discrete redox states. Each state is characterized by a unique spectroscopic signature, and the interconversions between the states can be followed spectroscopically under operando conditions. With the help of pulsed step-potential spectrochronoamperometry, two modes of electron propagation through the mixed-linker MOF are identified: diffusional electron hopping transport between linkers of the same type and a second channel that arises from thermodynamically driven electron transfers between linkers of different types. Corresponding to the four redox events of the mixed-linker MOFs, four distinct bell-shaped redox conductivity profiles are observed at a steady state. The magnitude of the maximum redox conductivity is evidenced to be dependent on the distance between redox hopping sites, analogous to the situation for apparent electron diffusion coefficients, Deapp, that are obtained in transient experiments. The design of mixed-linker redox-conductive MOFs and detailed studies of their charge transport properties present new opportunities for future applications of MOFs, in particular, within electrocatalysis.
Collapse
Affiliation(s)
- Jingguo Li
- Department
of Chemistry—Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
- Wallenberg
Initiative Materials Science for Sustainability, Department of Chemistry—Ångström
Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Amol Kumar
- Department
of Chemistry—Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Sascha Ott
- Department
of Chemistry—Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
- Wallenberg
Initiative Materials Science for Sustainability, Department of Chemistry—Ångström
Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| |
Collapse
|
20
|
Shan Z, Xiao JZ, Wu M, Wang J, Su J, Yao MS, Lu M, Wang R, Zhang G. Topologically Tunable Conjugated Metal-Organic Frameworks for Modulating Conductivity and Chemiresistive Properties for NH 3 Sensing. Angew Chem Int Ed Engl 2024; 63:e202401679. [PMID: 38389160 DOI: 10.1002/anie.202401679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 02/24/2024]
Abstract
Electrically conductive metal-organic frameworks (cMOFs) have garnered significant attention in materials science due to their potential applications in modern electrical devices. However, achieving effective modulation of their conductivity has proven to be a major challenge. In this study, we have successfully prepared cMOFs with high conductivity by incorporating electron-donating fused thiophen rings in the frameworks and extending their π-conjugated systems through ring-closing reactions. The conductivity of cMOFs can be precisely modulated ranging from 10-3 to 102 S m-1 by regulating their dimensions and topologies. Furthermore, leveraging the inherent tunable electrical properties based on topology, we successfully demonstrated the potential of these materials as chemiresistive gas sensors with an outstanding response toward 100 ppm NH3 at room temperature. This work not only provides valuable insights into the design of functional cMOFs with different topologies but also enriches the cMOF family with exceptional conductivity properties.
Collapse
Affiliation(s)
- Zhen Shan
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Jian-Ze Xiao
- State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Zhongguancun Beiertiao No. 1, Haidian, Beijing, 100190, China
| | - Miaomiao Wu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Jinjian Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Jian Su
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Ming-Shui Yao
- State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Zhongguancun Beiertiao No. 1, Haidian, Beijing, 100190, China
| | - Ming Lu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Rui Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Gen Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
21
|
Jin K, Park N, Ahn Y, Seo D, Moon D, Sung J, Park J. Solvent-induced structural transformation in a one-dimensional coordination polymer. NANOSCALE 2024; 16:4571-4577. [PMID: 38334421 DOI: 10.1039/d4nr00265b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
We have rationally designed a one-dimensional coordination polymer (1D CP), termed 1D-DGIST-18, that exhibits intrinsic structural flexibility. This 1D CP enables its expansion into a three-dimensional network through supramolecular interactions involving coordinated solvents and/or ligands. The strategic selection of solvents for solvent exchange, prior to drying, significantly influences the structures of 1D-DGIST-18 by removing certain coordinating solvents and modulating π-π stacking. Consequently, a hierarchical porosity emerges, ranging from micro- to meso- to macroporous structures, which is attributed to its inherent structural dynamics. Additionally, the formation of excimers endows 1D-DGIST-18, when immersed in acetone, with 'turn-on' fluorescence, as evidenced by fluorescence decay profiles. These structural transitions within 1D-DGIST-18 are further elucidated using single-crystal X-ray diffractometry. The insights from this study provide a foundation for the design of materials with structural dynamics and tunable properties.
Collapse
Affiliation(s)
- Kangwoo Jin
- Department of Physics and Chemistry, Daegu-Gyeongbuk Institute of Science and Technology, Daegu 42988, the Republic of Korea.
| | - Nohyoon Park
- Department of Physics and Chemistry, Daegu-Gyeongbuk Institute of Science and Technology, Daegu 42988, the Republic of Korea.
| | - Yongdeok Ahn
- Department of Physics and Chemistry, Daegu-Gyeongbuk Institute of Science and Technology, Daegu 42988, the Republic of Korea.
| | - Daeha Seo
- Department of Physics and Chemistry, Daegu-Gyeongbuk Institute of Science and Technology, Daegu 42988, the Republic of Korea.
| | - Dohyun Moon
- Beamline Department, Pohang Accelerator Laboratory, Pohang 37673, the Republic of Korea.
| | - Jooyoung Sung
- Department of Physics and Chemistry, Daegu-Gyeongbuk Institute of Science and Technology, Daegu 42988, the Republic of Korea.
| | - Jinhee Park
- Department of Physics and Chemistry, Daegu-Gyeongbuk Institute of Science and Technology, Daegu 42988, the Republic of Korea.
| |
Collapse
|
22
|
Hong J, Liu M, Liu Y, Shang S, Wang X, Du C, Gao W, Hua C, Xu H, You Z, Liu Y, Chen J. Solid-Liquid Interfacial Engineered Large-Area Two-Dimensional Covalent Organic Framework Films. Angew Chem Int Ed Engl 2024; 63:e202317876. [PMID: 38193266 DOI: 10.1002/anie.202317876] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/25/2023] [Accepted: 01/08/2024] [Indexed: 01/10/2024]
Abstract
Constructing uniform covalent organic framework (COF) film on substrates for electronic devices is highly desirable. Here, a simple and mild strategy is developed to prepare them by polymerization on a solid-liquid interface. The universality of the method is confirmed by the successful preparation of five COF films with different microstructures. These films have large lateral size, controllable thickness, and high crystalline quality. And COF patterns can also be directly achieved on substrates via hydrophilic and hydrophobic interface engineering, which is in favor of preparing device array. For application studies, the PyTTA-TPA (PyTTA: 4,4',4'',4'''-(1,3,6,8-Tetrakis(4-aminophenyl)pyrene and TPA: terephthalaldehyde) COF film has a high photoresponsivity of 59.79 μA W-1 at 420 nm for photoelectrochemical (PEC) detection. When employed as an active material for optoelectronic synaptic devices for the first attempt, it shows excellent light-stimulated synaptic plasticity properties such as short-term plasticity (STP), long-term plasticity (LTP), and the conversion of STP to LTP, which can be used to simulate biological synaptic functions.
Collapse
Affiliation(s)
- Jiaxin Hong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Minghui Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Youxing Liu
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R.China
| | - Shengcong Shang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xinyu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Changsheng Du
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wenqiang Gao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chunyu Hua
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Helin Xu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zewen You
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yunqi Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jianyi Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
23
|
Li XG, Chen J, Wang X, Rao L, Zhou R, Yu F, Ma J. Perspective into ion storage of pristine metal-organic frameworks in capacitive deionization. Adv Colloid Interface Sci 2024; 324:103092. [PMID: 38325008 DOI: 10.1016/j.cis.2024.103092] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/05/2024] [Accepted: 01/21/2024] [Indexed: 02/09/2024]
Abstract
Metal-organic frameworks (MOFs), featuring tunable conductivity, tailored pore/structure and high surface area, have emerged as promising electrode nanomaterials for ion storage in capacitive deionization (CDI) and garnered tremendous attention in recent years. Despite the many advantages, the perspective from which MOFs should be designed and prepared for use as CDI electrode materials still faces various challenges that hinder their practical application. This summary proposes design principles for the pore size, pore environment, structure and dimensions of MOFs to precisely tailor the surface area, selectivity, conductivity, and Faradaic activity of electrode materials based on the ion storage mechanism in the CDI process. The account provides a new perspective to deepen the understanding of the fundamental issues of MOFs electrode materials to further meet the practical applications of CDI.
Collapse
Affiliation(s)
- Xin-Gui Li
- Research Center for Environmental Functional Materials, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Jinfeng Chen
- Research Center for Environmental Functional Materials, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Xinyu Wang
- Research Center for Environmental Functional Materials, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Liangmei Rao
- Research Center for Environmental Functional Materials, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Runhong Zhou
- Research Center for Environmental Functional Materials, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Fei Yu
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, PR China
| | - Jie Ma
- Research Center for Environmental Functional Materials, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China; School of Civil Engineering, Kashi University, Kashi 844008, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
24
|
Zhang QY, Zhang LJ, Zhu JQ, Gong LL, Huang ZC, Gao F, Wang JQ, Xie XQ, Luo F. Ultra-selective uranium separation by in-situ formation of π-f conjugated 2D uranium-organic framework. Nat Commun 2024; 15:453. [PMID: 38212316 PMCID: PMC10784586 DOI: 10.1038/s41467-023-44663-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/19/2023] [Indexed: 01/13/2024] Open
Abstract
With the rapid development of nuclear energy, problems with uranium supply chain and nuclear waste accumulation have motivated researchers to improve uranium separation methods. Here we show a paradigm for such goal based on the in-situ formation of π-f conjugated two-dimensional uranium-organic framework. After screening five π-conjugated organic ligands, we find that 1,3,5-triformylphloroglucinol would be the best one to construct uranium-organic framework, thus resulting in 100% uranium removal from both high and low concentration with the residual concentration far below the WHO drinking water standard (15 ppb), and 97% uranium capture from natural seawater (3.3 ppb) with a record uptake efficiency of 0.64 mg·g-1·d-1. We also find that 1,3,5-triformylphloroglucinol can overcome the ion-interference issue such as the presence of massive interference ions or a 21-ions mixed solution. Our finds confirm the superiority of our separation approach over established ones, and will provide a fundamental molecule design for separation upon metal-organic framework chemistry.
Collapse
Affiliation(s)
- Qing Yun Zhang
- School of Chemistry and Materials Science, East China University of Technology, Nanchang, 330013, China
| | - Lin Juan Zhang
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Jian Qiu Zhu
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Le Le Gong
- State Key Laboratory of NBC Protection for Civilian, Beijing, 100191, China
| | - Zhe Cheng Huang
- School of Chemistry and Materials Science, East China University of Technology, Nanchang, 330013, China
| | - Feng Gao
- School of Chemistry and Materials Science, East China University of Technology, Nanchang, 330013, China
| | - Jian Qiang Wang
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Xian Qing Xie
- National Engineering Research Center for Carbonhydrate Synthesis, Jiangxi Normal University, Nanchang, 330027, China
| | - Feng Luo
- School of Chemistry and Materials Science, East China University of Technology, Nanchang, 330013, China.
| |
Collapse
|
25
|
Abbas Z, Hussain N, Kumar S, Mobin SM. In situ growth of a redox-active metal-organic framework on electrospun carbon nanofibers as a free-standing electrode for flexible energy storage devices. NANOSCALE 2024; 16:868-878. [PMID: 38099850 DOI: 10.1039/d3nr04984a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The rational construction of free-standing and flexible electrodes for application in electrochemical energy storage devices and next-generation supercapacitors is an emerging research focus. Herein, we prepared a redox-active ferrocene dicarboxylic acid (Fc)-based nickel metal-organic framework (MOF) on electrospun carbon nanofibers (NiFc-MOF@CNFs) via an in situ approach. This in situ approach avoided the aggregation of the MOF. The NiFc-MOF@CNF flexible electrode showed a high redox-active behavior owing to the presence of ferrocene and flexible carbon nanofibers, which led to unique properties, including high flexibility and lightweight. Furthermore, the prepared electrode was utilized in a supercapacitors (SC) without the use of any binder, which achieved a specific capacity of 460 C g-1 at 1 A g-1 with an excellent cyclic retention of 82.2% after 25 000 cycles and a good rate capability. A flexible asymmetric supercapacitor device was assembled, which delivered a high energy density of 56.25 W h kg-1 and a long-lasting cycling performance. Also, the prepared electrode could be used as a freestanding electrode in flexible devices at different bending angles. The obtained cyclic voltammetry curves showed negligible changes, indicating the high stability and good flexibility of the electrode. Thus, the use of the in situ strategy can lead to the uniform growth of redox-active MOFs or other porous materials on CNFs.
Collapse
Affiliation(s)
- Zahir Abbas
- Department of Chemistry, Indian Institute of Technology (IIT) Indore, Simrol, Khandwa Road, Indore 453552, India.
| | - Nissar Hussain
- Department of Chemistry, Indian Institute of Technology (IIT) Indore, Simrol, Khandwa Road, Indore 453552, India.
| | - Surender Kumar
- CSIR-Advanced Materials and Processes Research Institute (CSIR-AMPRI), Hoshangabad Road, Near Habibganj Naka, Bhopal - 462026, India
| | - Shaikh M Mobin
- Department of Chemistry, Indian Institute of Technology (IIT) Indore, Simrol, Khandwa Road, Indore 453552, India.
- Centre for Advanced Electronics (CAE), Indian Institute of Technology (IIT) Indore, Simrol, Khandwa Road, Indore 453552, India
| |
Collapse
|
26
|
Ding G, Zhao J, Zhou K, Zheng Q, Han ST, Peng X, Zhou Y. Porous crystalline materials for memories and neuromorphic computing systems. Chem Soc Rev 2023; 52:7071-7136. [PMID: 37755573 DOI: 10.1039/d3cs00259d] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Porous crystalline materials usually include metal-organic frameworks (MOFs), covalent organic frameworks (COFs), hydrogen-bonded organic frameworks (HOFs) and zeolites, which exhibit exceptional porosity and structural/composition designability, promoting the increasing attention in memory and neuromorphic computing systems in the last decade. From both the perspective of materials and devices, it is crucial to provide a comprehensive and timely summary of the applications of porous crystalline materials in memory and neuromorphic computing systems to guide future research endeavors. Moreover, the utilization of porous crystalline materials in electronics necessitates a shift from powder synthesis to high-quality film preparation to ensure high device performance. This review highlights the strategies for preparing porous crystalline materials films and discusses their advancements in memory and neuromorphic electronics. It also provides a detailed comparative analysis and presents the existing challenges and future research directions, which can attract the experts from various fields (e.g., materials scientists, chemists, and engineers) with the aim of promoting the applications of porous crystalline materials in memory and neuromorphic computing systems.
Collapse
Affiliation(s)
- Guanglong Ding
- Institute for Advanced Study, Shenzhen University, Shenzhen, China.
| | - JiYu Zhao
- Institute for Advanced Study, Shenzhen University, Shenzhen, China.
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
- State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Kui Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen, China.
| | - Qi Zheng
- Institute for Advanced Study, Shenzhen University, Shenzhen, China.
| | - Su-Ting Han
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
- State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ye Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen, China.
| |
Collapse
|
27
|
Wei H, Xu Z, Ni Y, Yang L, Sun L, Gong J, Zhang S, Qu S, Xu W. Mixed-Dimensional Nanoparticle-Nanowire Channels for Flexible Optoelectronic Artificial Synapse with Enhanced Photoelectric Response and Asymmetric Bidirectional Plasticity. NANO LETTERS 2023; 23:8743-8752. [PMID: 37698378 DOI: 10.1021/acs.nanolett.3c02836] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
A mixed-dimensional dual-channel synaptic transistor composed of inorganic nanoparticles and organic nanowires was fabricated to expand the photoelectric gain range. The device can actualize the sensitization features of the nociceptor and shows improved responsiveness to visible light. Under electrical pulses with different polarities, the apparatus exhibits reconfigurable asymmetric bidirectional plasticity. Moreover, the devices demonstrate good operational tolerance and mechanical stability, retaining more than 60% of their maximum responsiveness after 100 consecutive/bidirectional and 1000 flex/flat operations. The improved photoelectric response of the device endows a high image recognition accuracy of greater than 80%. Asymmetric bidirectional plasticity is used as punishment/reward in a psychological experiment to emulate the improvement of learning motivation and enables real-time forward and backward deflection (+7 and -25°) of artificial muscle. The mixed-dimensional optoelectronic artificial synapses with switchable behavior and electron/hole transport type have important prospects for neuromorphic processing and artificial somatosensory nerves.
Collapse
Affiliation(s)
- Huanhuan Wei
- Institute of Photoelectronic Thin Film Devices and Technology of Nankai University, Key Laboratory of Optoelectronic Thin Film Devices and Technology of Tianjin, Engineering Research Center of Thin Film Optoelectronics Technology, College of Electronic Information and Optical Engineering of Nankai University, National Institute for Advanced Materials, Nankai University, Ministry of Education, Tianjin 300350, People's Republic of China
- Institutes of Physical Science and Information Technology, School of Materials Science and Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Hefei 230601, People's Republic of China
| | - Zhipeng Xu
- Institute of Photoelectronic Thin Film Devices and Technology of Nankai University, Key Laboratory of Optoelectronic Thin Film Devices and Technology of Tianjin, Engineering Research Center of Thin Film Optoelectronics Technology, College of Electronic Information and Optical Engineering of Nankai University, National Institute for Advanced Materials, Nankai University, Ministry of Education, Tianjin 300350, People's Republic of China
| | - Yao Ni
- Institute of Photoelectronic Thin Film Devices and Technology of Nankai University, Key Laboratory of Optoelectronic Thin Film Devices and Technology of Tianjin, Engineering Research Center of Thin Film Optoelectronics Technology, College of Electronic Information and Optical Engineering of Nankai University, National Institute for Advanced Materials, Nankai University, Ministry of Education, Tianjin 300350, People's Republic of China
| | - Lu Yang
- Institute of Photoelectronic Thin Film Devices and Technology of Nankai University, Key Laboratory of Optoelectronic Thin Film Devices and Technology of Tianjin, Engineering Research Center of Thin Film Optoelectronics Technology, College of Electronic Information and Optical Engineering of Nankai University, National Institute for Advanced Materials, Nankai University, Ministry of Education, Tianjin 300350, People's Republic of China
| | - Lin Sun
- Institute of Photoelectronic Thin Film Devices and Technology of Nankai University, Key Laboratory of Optoelectronic Thin Film Devices and Technology of Tianjin, Engineering Research Center of Thin Film Optoelectronics Technology, College of Electronic Information and Optical Engineering of Nankai University, National Institute for Advanced Materials, Nankai University, Ministry of Education, Tianjin 300350, People's Republic of China
| | - Jiangdong Gong
- Institute of Photoelectronic Thin Film Devices and Technology of Nankai University, Key Laboratory of Optoelectronic Thin Film Devices and Technology of Tianjin, Engineering Research Center of Thin Film Optoelectronics Technology, College of Electronic Information and Optical Engineering of Nankai University, National Institute for Advanced Materials, Nankai University, Ministry of Education, Tianjin 300350, People's Republic of China
| | - Song Zhang
- Institute of Photoelectronic Thin Film Devices and Technology of Nankai University, Key Laboratory of Optoelectronic Thin Film Devices and Technology of Tianjin, Engineering Research Center of Thin Film Optoelectronics Technology, College of Electronic Information and Optical Engineering of Nankai University, National Institute for Advanced Materials, Nankai University, Ministry of Education, Tianjin 300350, People's Republic of China
| | - Shangda Qu
- Institute of Photoelectronic Thin Film Devices and Technology of Nankai University, Key Laboratory of Optoelectronic Thin Film Devices and Technology of Tianjin, Engineering Research Center of Thin Film Optoelectronics Technology, College of Electronic Information and Optical Engineering of Nankai University, National Institute for Advanced Materials, Nankai University, Ministry of Education, Tianjin 300350, People's Republic of China
| | - Wentao Xu
- Institute of Photoelectronic Thin Film Devices and Technology of Nankai University, Key Laboratory of Optoelectronic Thin Film Devices and Technology of Tianjin, Engineering Research Center of Thin Film Optoelectronics Technology, College of Electronic Information and Optical Engineering of Nankai University, National Institute for Advanced Materials, Nankai University, Ministry of Education, Tianjin 300350, People's Republic of China
| |
Collapse
|