1
|
Dastider SG, Haldar KK, Mondal K. Deciphering the impact of Zn-incorporation on M-NC (M = Fe, Co, Ni, Cu) type catalysts for enhanced HER and OER performance. Phys Chem Chem Phys 2025; 27:7240-7249. [PMID: 40116329 DOI: 10.1039/d5cp00751h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
The catalytic activity is mainly controlled by the local environment of the active site, where the chemical reaction occurs. Through selective inter-mixing of different elements, it is possible to fine-tune the electronic and geometric properties of the active site with precision leading to significant enhancement of both catalytic activity and selectivity. This research work focuses on modeling efficient catalysts for electrocatalytic oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) based on bimetallic MNC type materials. Introducing zinc into single-atom catalysts like Fe-N-C, Co-N-C, Ni-N-C, and Cu-N-C allows us to develop dual-atom MNC catalysts. The HER and OER activities of M-Zn-N-C type catalysts show that zinc significantly improves catalytic performance. A comprehensive orbital interaction analysis of Zn-containing and Zn-free MNC catalysts reveals that the incorporation of zinc has a profound impact on the electronic structure of the transition metals at the active site. Specifically, zinc activates the low-lying dx2-y2 and dz2 orbitals of the transition metals, positioning them near the valence band maximum (VBM) enhances their interaction with the pz orbitals of oxygen in adsorbed species, leading to a significant reduction in overpotential values for the oxygen evolution reaction (OER). In the case of the hydrogen evolution reaction (HER), zinc incorporation modifies the interaction between the dz2 orbital of the transition metals and the s-orbital of hydrogen. This modification reduces the in-phase overlap, optimizing the interaction and resulting in a lower reaction barrier. This detailed analysis provides insight into the mechanisms by which zinc incorporation enhances the catalytic activity of MNC catalysts for both OER and HER. Therefore, our findings explain the intrinsic reaction mechanism of MNC catalysts and provide insights into designing dual-atom catalysts for electrochemical applications.
Collapse
Affiliation(s)
- Saptarshi Ghosh Dastider
- Department of Chemistry, Central University of Punjab, Bathinda, 151401, India
- Department of Physics and Astrophysics, University of Delhi, New Delhi, 110007, India.
| | | | - Krishnakanta Mondal
- Department of Physics and Astrophysics, University of Delhi, New Delhi, 110007, India.
| |
Collapse
|
2
|
Xu C, Zhang Q, Yusupu Y. Radical Strategy Towards N-glycosides: Current Advances and Future Prospects. Chembiochem 2025; 26:e202400864. [PMID: 39887831 DOI: 10.1002/cbic.202400864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 01/23/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
N-glycosides exhibit diverse biological and pharmacological activities, making their efficient synthesis crucial for both biological research and drug development. Traditional acid-promoted N-glycosylation methods, which rely on the formation of oxocarbenium intermediates, often face significant challenges. These methods are water-sensitive and typically require neighboring group participation to achieve high selectivity. Furthermore, they depend on acid activation, rendering them incompatible with alkyl amine. Additionally, low-nucleophilicity amides often need to be converted into their TMS-derivatives to enhance reactivity, limiting the direct use of such substrates. In contrast, radical-based strategies have emerged as a promising alternative, addressing many of these limitations and leading to notable advances in N-glycosylation. This review explores the unique properties of N-glycosides, the inherent challenges of traditional N-glycosylation techniques, and the transformative advantages offered by radical-based approaches. Specifically, it highlights recent advancements in radical-mediated N-glycosylation, including photoredox radical strategies, radical/ionic hybrid approaches, and metallaphotoredox catalysis, accompanied by a detailed discussion of the underlying mechanisms. Finally, the ongoing challenges and potential future directions of N-glycoside synthesis using radical strategies are presented.
Collapse
Affiliation(s)
- Chunfa Xu
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry, Fuzhou, University, Fuzhou, 350108, China
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Qinshuo Zhang
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry, Fuzhou, University, Fuzhou, 350108, China
| | - Yimuran Yusupu
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry, Fuzhou, University, Fuzhou, 350108, China
| |
Collapse
|
3
|
Gao YL, Yang Y, Wu C, Xie MS, Guo HM. Chemoselectivity Switch between Enantioselective [2,3]-Wittig Rearrangement and Conia-Ene-Type Reactions of Propargyloxyoxindoles. Chemistry 2024; 30:e202402556. [PMID: 39051982 DOI: 10.1002/chem.202402556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Despite the existence of three competing reactions for propargyloxyoxindoles, we report a chemoselectivity switch between enantioselective propargyl [2,3]-Wittig rearrangement and Conia-ene-type reactions, with suppression of the [1,2]-Wittig-type rearrangement. Using C1-symmetric imidazolidine-pyrroloimidazolone pyridine as the ligand and Ni(acac)2 as the Lewis acid, diverse 3-hydroxy 3-substituted oxindoles containing allenyl groups were obtained in up to 98 % yield and 99 % ee via asymmetric propargyl [2,3]-Wittig rearrangement. In the presence of AgOTf-Duanphos, chiral spiro dihydrofuran oxindoles were given in up to 98 % yield and 91 % ee through a Conia-ene-type reaction.
Collapse
Affiliation(s)
- Yu-Lin Gao
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Yang Yang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Chen Wu
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Ming-Sheng Xie
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Hai-Ming Guo
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Normal University, Xinxiang, Henan, 453007, China
| |
Collapse
|
4
|
Ding W, Chen X, Sun Z, Luo J, Wang S, Lu Q, Ma J, Zhao C, Chen FE, Xu C. A Radical Activation Strategy for Versatile and Stereoselective N-Glycosylation. Angew Chem Int Ed Engl 2024; 63:e202409004. [PMID: 38837495 DOI: 10.1002/anie.202409004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/07/2024]
Abstract
Previous N-glycosylation approaches have predominately involved acidic conditions, facing challenges of low stereoselectivity and limited scope. Herein, we introduce a radical activation strategy that enables versatile and stereoselective N-glycosylation using readily accessible glycosyl sulfinate donors under basic conditions and exhibits exceptional tolerance towards various N-aglycones containing alkyl, aryl, heteroaryl and nucleobase functionalities. Preliminary mechanistic studies indicate a pivotal role of iodide, which orchestrates the formation of a glycosyl radical from the glycosyl sulfinate and subsequent generation of the key intermediate, a configurationally well-defined glycosyl iodide, which is subsequently attacked by an N-aglycone in a stereospecific SN2 manner to give the desired N-glycosides. An alternative route involving the coupling of a glycosyl radical and a nitrogen-centered radical is also proposed, affording the exclusive 1,2-trans product. This novel approach promises to broaden the synthetic landscape of N-glycosides, offering a powerful tool for the construction of complex glycosidic structures under mild conditions.
Collapse
Affiliation(s)
- Wenyan Ding
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
- Qingyuan Innovation Laboratory, Quanzhou, 362801, China
| | - Xinyu Chen
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Zuyao Sun
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Jiaxin Luo
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Shiping Wang
- National Engineering Research Center of Chemical Fertilizer Catalyst, College of Chemical Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Qingqing Lu
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Jialu Ma
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Chongxin Zhao
- Jiangsu Jiyi New Material CO., LTD, Xuzhou, 221700, China
| | - Fen-Er Chen
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai, 200433, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Fudan University, Shanghai, 200433, China
| | - Chunfa Xu
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
5
|
Zhang GT, Li G, Wan L, Pu X, Chang J, Tang P, Chen FE. Asymmetric Total Synthesis of Anti-HBV Drug Entecavir: Catalytic Strategies for the Stereospecific Construction of Densely Substituted Cyclopentene Cores. Org Lett 2024. [PMID: 38809781 DOI: 10.1021/acs.orglett.4c01669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
We have successfully accomplished a catalytic asymmetric total synthesis of entecavir, a first-line antihepatitis B virus medication. The pivotal aspect of our strategy lies in the utilization of a Pd-catalyzed enyne borylative cyclization reaction, enabling the construction of a highly substituted cyclopentene scaffold with exceptional stereoselectivity. Additionally, we efficiently accessed the crucial 1,3-diol enyne system early in our synthetic route through a diarylprolinol organocatalyzed enantioselective cross-aldol reaction and Re-catalyzed allylic alcohol relocation. By strategically integrating these three catalytic protocols, we established a practical pathway for acquiring valuable densely heteroatom-substituted cyclopentene cores.
Collapse
Affiliation(s)
- Guo-Tai Zhang
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Gen Li
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Linxi Wan
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xinxin Pu
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Junhai Chang
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Pei Tang
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Fen-Er Chen
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| |
Collapse
|
6
|
Tang X, Zhou Y, Wang Y, Lin Y, Pan S, Che Q, Sang J, Gao Z, Zhang W, Wang Y, Li G, Gao L, Wang Z, Yang X, Liu A, Wang S, Yu B, Xu P, Wang Z, Zhang Z, Yang P, Xie W, Sun H, Li W. Direct Synthesis of α- and β-2'-Deoxynucleosides with Stereodirecting Phosphine Oxide via Remote Participation. J Am Chem Soc 2024; 146:8768-8779. [PMID: 38483318 DOI: 10.1021/jacs.4c01780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
2'-Deoxynucleosides and analogues play a vital role in drug development, but their preparation remains a significant challenge. Previous studies have focused on β-2'-deoxynucleosides with the natural β-configuration. In fact, their isomeric α-2'-deoxynucleosides also exhibit diverse bioactivities and even better metabolic stability. Herein, we report that both α- and β-2'-deoxynucleosides can be prepared with high yields and stereoselectivity using a remote directing diphenylphosphinoyl (DPP) group. It is particularly efficient to prepare α-2'-deoxynucleosides with an easily accessible 3,5-di-ODPP donor. Instead of acting as a H-bond acceptor on a 2-(diphenylphosphinoyl)acetyl (DPPA) group in our previous studies for syn-facial O-glycosylation, the phosphine oxide moiety here acts as a remote participating group to enable highly antifacial N-glycosylation. This proposed remote participation mechanism is supported by our first characterization of an important 1,5-briged P-heterobicyclic intermediate via variable-temperature NMR spectroscopy. Interestingly, antiproliferative assays led to a α-2'-deoxynucleoside with IC50 values in the low micromole range against central nervous system tumor cell lines SH-SY5Y and LN229, whereas its β-anomer exhibited no inhibition at 100 μM. Furthermore, the DPP group significantly enhanced the antitumor activities by 10 times.
Collapse
Affiliation(s)
- Xintong Tang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Yueer Zhou
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Yingjie Wang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yetong Lin
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Shuheng Pan
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Qianwei Che
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Jinpeng Sang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Ziming Gao
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Weiting Zhang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Yuanyuan Wang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Guolong Li
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Longwei Gao
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Zhimei Wang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Xudong Yang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Ao Liu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Suyu Wang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Biao Yu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Peng Xu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhe Wang
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Zhaolun Zhang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Peng Yang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Weijia Xie
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Haopeng Sun
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Wei Li
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| |
Collapse
|
7
|
Desai SP, Yatzoglou G, Turner JA, Taylor MS. Boronic Acid-Catalyzed Regio- and Stereoselective N-Glycosylations of Purines and Other Azole Heterocycles: Access to Nucleoside Analogues. J Am Chem Soc 2024; 146:4973-4984. [PMID: 38330907 DOI: 10.1021/jacs.3c14434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
In the presence of an arylboronic acid catalyst, azole-type heterocycles, including purines, tetrazoles, triazoles, indazoles, and benzo-fused congeners, undergo regio- and stereoselective N-glycosylations with furanosyl and pyranosyl trichloroacetimidate donors. The protocol, which does not require stoichiometric activators, specialized leaving groups, or drying agents, provides access to nucleoside analogues and enables late-stage N-glycosylation of azole-containing pharmaceutical agents. A mechanism involving simultaneous activation of the glycosyl donor and acceptor by the organoboron catalyst has been proposed, supported by kinetic analysis and computational modeling.
Collapse
Affiliation(s)
- Shrey P Desai
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Giorgos Yatzoglou
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Julia A Turner
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Mark S Taylor
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|