1
|
Apostolo D, Ferreira LL, D'Onghia D, Vincenzi F, Vercellino N, Perazzi M, Pirisi M, Cantello R, Minisini R, Mazzini L, Bellan M, De Marchi F. Lower Circulating Gas6 Levels Are Associated with Bulbar Phenotype and Faster Disease Progression in Amyotrophic Lateral Sclerosis Patients. Mol Neurobiol 2025; 62:6273-6282. [PMID: 39762711 DOI: 10.1007/s12035-024-04671-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 12/16/2024] [Indexed: 03/29/2025]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder that primarily affects the motor neurons in the brain and spinal cord. While the exact cause of ALS is not fully understood, a combination of genetic and environmental factors is believed to contribute to its development. Growth arrest-specific 6 (Gas6), a vitamin K-dependent protein, has been recognized to enhance oligodendrocytes and neurons' survival and is associated with different kinds of (neuro)inflammatory conditions. Therefore, we aimed to determine a possible implication of Gas6 in ALS phenotype and progression by evaluating the value of circulating Gas6 and its soluble receptors (sAxl, sMer, sTyro-3) in ALS patients. We conducted a prospective observational study including 65 ALS patients and measured the circulating serum levels of Gas6, sAxl, sMer, soluble Tyro-3 (sTyro-3), and neurofilaments (NfLs). In our ALS cohort, lower serum levels of Gas6 and concomitantly higher levels of NfLs were associated with a more aggressive disease, expressed with bulbar phenotype (p-value for Gas6 = 0.03) and faster progression (p-value for Gas6 = 0.03). Also, serum Gas6 was able to distinguish (area under the curve, cut-off 13.70 ng/mL, sensitivity 69.57%, specificity 72.72%) between fast and slow progressors. Due to its neuroprotective properties, our data suggest that Gas6 could be an intriguing biomarker in ALS patients.
Collapse
Affiliation(s)
- Daria Apostolo
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Luciana L Ferreira
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Davide D'Onghia
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Federica Vincenzi
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Nicole Vercellino
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Mattia Perazzi
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
- AOU Maggiore Della Carità, Novara, Italy
| | - Mario Pirisi
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
- AOU Maggiore Della Carità, Novara, Italy
| | - Roberto Cantello
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
- AOU Maggiore Della Carità, Novara, Italy
| | - Rosalba Minisini
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Letizia Mazzini
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
- AOU Maggiore Della Carità, Novara, Italy
| | - Mattia Bellan
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy.
- AOU Maggiore Della Carità, Novara, Italy.
| | - Fabiola De Marchi
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
- AOU Maggiore Della Carità, Novara, Italy
| |
Collapse
|
2
|
Goes FS, Collado-Torres L, Zandi PP, Huuki-Myers L, Tao R, Jaffe AE, Pertea G, Shin JH, Weinberger DR, Kleinman JE, Hyde TM. Large-scale transcriptomic analyses of major depressive disorder reveal convergent dysregulation of synaptic pathways in excitatory neurons. Nat Commun 2025; 16:3981. [PMID: 40295477 PMCID: PMC12037741 DOI: 10.1038/s41467-025-59115-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 04/10/2025] [Indexed: 04/30/2025] Open
Abstract
Major Depressive Disorder (MDD) is a common, complex disorder that is a leading cause of disability worldwide and a significant risk factor for suicide. In this study, we have performed the largest molecular analysis of MDD in postmortem human brains (846 samples across 458 individuals) in the subgenual Anterior Cingulate Cortex (sACC) and the Amygdala, two regions central to mood regulation and the pathophysiology of MDD. We found extensive expression differences, particularly at the level of specific transcripts, with prominent enrichment for genes associated with the vesicular functioning, the postsynaptic density, GTPase signaling, and gene splicing. We find associated transcriptional features in 107 of 243 genome-wide significant loci for MDD and, through integrative analyses, highlight convergence of genetic risk, gene expression, and network-based analyses on dysregulated glutamatergic signaling and synaptic vesicular functioning. Together, these results provide an initial mechanistic understanding of MDD and highlight potential targets for novel drug discovery.
Collapse
Affiliation(s)
- Fernando S Goes
- Department of Psychiatry and Behavioral Sciences, Stanley and Elizabeth Star Precision Medicine Center of Excellence in Mood Disorders, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Leonardo Collado-Torres
- The Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Peter P Zandi
- Department of Psychiatry and Behavioral Sciences, Stanley and Elizabeth Star Precision Medicine Center of Excellence in Mood Disorders, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | | - Ran Tao
- The Lieber Institute for Brain Development, Baltimore, MD, USA
| | - Andrew E Jaffe
- The Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Psychiatry, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Geo Pertea
- The Lieber Institute for Brain Development, Baltimore, MD, USA
| | - Joo Heon Shin
- The Lieber Institute for Brain Development, Baltimore, MD, USA
| | - Daniel R Weinberger
- The Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Psychiatry, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Joel E Kleinman
- Department of Psychiatry and Behavioral Sciences, Stanley and Elizabeth Star Precision Medicine Center of Excellence in Mood Disorders, Johns Hopkins School of Medicine, Baltimore, MD, USA
- The Lieber Institute for Brain Development, Baltimore, MD, USA
| | - Thomas M Hyde
- The Lieber Institute for Brain Development, Baltimore, MD, USA.
- Department of Psychiatry, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
3
|
Maity D, Kaundal RK. Exploring dysregulated miRNAs in ALS: implications for disease pathogenesis and early diagnosis. Neurol Sci 2025; 46:1661-1686. [PMID: 39570437 DOI: 10.1007/s10072-024-07840-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/20/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease marked by motor neuron degeneration, leading to muscle weakness and paralysis, with no effective treatments available. Early diagnosis could slow disease progression and optimize treatment. MicroRNAs (miRNAs) are being investigated as potential biomarkers due to their regulatory roles in cellular processes and stability in biofluids. However, variability across studies complicates their diagnostic utility in ALS. This study aims to identify significantly dysregulated miRNAs in ALS through meta-analysis to elucidate disease mechanisms and improve diagnostic strategies. METHODS We systematically searched PubMed, Google Scholar, and the Cochrane Library, following predefined inclusion and exclusion criteria. The primary effect measure was the standardized mean difference (SMD) with a 95% confidence interval, analyzed using a random-effects model. Additionally, we used network pharmacology to examine the targets of dysregulated miRNAs and their roles in ALS pathology. RESULTS Analysing 34 studies, we found significant upregulation of hsa-miR-206, hsa-miR-133b, hsa-miR-23a, and hsa-miR-338-3p, and significant downregulation of hsa-miR-218, hsa-miR-21-5p, and hsa-let-7b-5p in ALS patients. These miRNAs are involved in ALS pathophysiology, including stress granule formation, nuclear pore complex, SMCR8 and Sig1R dysfunction, histone methyltransferase complex alterations, and MAPK signaling perturbation, highlighting their critical role in ALS progression. CONCLUSION This study identifies several dysregulated miRNAs in ALS patients, offering insights into their role in the disease and potential as diagnostic biomarkers. These findings enhance our understanding of ALS mechanisms and may inform future diagnostic strategies. Validating these results and exploring miRNA-based interventions are crucial for improving ALS diagnosis and treatment outcomes.
Collapse
Affiliation(s)
- Dipan Maity
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP, 226002, India
| | - Ravinder K Kaundal
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP, 226002, India.
| |
Collapse
|
4
|
Grassano M, Chiò A. microRNA in ALS: finally ready for prime time? Neurol Sci 2025; 46:1463-1464. [PMID: 39937422 DOI: 10.1007/s10072-025-08044-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Affiliation(s)
- Maurizio Grassano
- 'Rita Levi Montalcini', Department of Neuroscience, University of Turin, Turin, Italy
| | - Adriano Chiò
- 'Rita Levi Montalcini', Department of Neuroscience, University of Turin, Turin, Italy.
| |
Collapse
|
5
|
Megat S, Marques C, Hernán-Godoy M, Sellier C, Stuart-Lopez G, Dirrig-Grosch S, Gorin C, Brunet A, Fischer M, Keime C, Kessler P, Mendoza-Parra MA, Zwamborn RAJ, Veldink JH, Scholz SW, Ferrucci L, Ludolph A, Traynor B, Chio A, Dupuis L, Rouaux C. CREB3 gain of function variants protect against ALS. Nat Commun 2025; 16:2942. [PMID: 40140376 PMCID: PMC11947196 DOI: 10.1038/s41467-025-58098-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 03/12/2025] [Indexed: 03/28/2025] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal and rapidly evolving neurodegenerative disease arising from the loss of glutamatergic corticospinal neurons (CSN) and cholinergic motoneurons (MN). Here, we performed comparative cross-species transcriptomics of CSN using published snRNA-seq data from the motor cortex of ALS and control postmortem tissues, and performed longitudinal RNA-seq on CSN purified from male Sod1G86R mice. We report that CSN undergo ER stress and altered mRNA translation, and identify the transcription factor CREB3 and its regulatory network as a resilience marker of ALS, not only amongst vulnerable neuronal populations, but across all neuronal populations as well as other cell types. Using genetic and epidemiologic analyses we further identify the rare variant CREB3R119G (rs11538707) as a positive disease modifier in ALS. Through gain of function, CREB3R119G decreases the risk of developing ALS and the motor progression rate of ALS patients.
Collapse
Affiliation(s)
- Salim Megat
- Université de Strasbourg, Inserm, Strasbourg Translational Neuroscience and Psychiatry, Inserm UMR-S 1329, Centre de Recherche en Biomédecine de Strasbourg, Strasbourg, France.
| | - Christine Marques
- Université de Strasbourg, Inserm, Strasbourg Translational Neuroscience and Psychiatry, Inserm UMR-S 1329, Centre de Recherche en Biomédecine de Strasbourg, Strasbourg, France
| | - Marina Hernán-Godoy
- Université de Strasbourg, Inserm, Strasbourg Translational Neuroscience and Psychiatry, Inserm UMR-S 1329, Centre de Recherche en Biomédecine de Strasbourg, Strasbourg, France
| | - Chantal Sellier
- Université de Strasbourg, Inserm, Strasbourg Translational Neuroscience and Psychiatry, Inserm UMR-S 1329, Centre de Recherche en Biomédecine de Strasbourg, Strasbourg, France
| | - Geoffrey Stuart-Lopez
- Université de Strasbourg, Inserm, Strasbourg Translational Neuroscience and Psychiatry, Inserm UMR-S 1329, Centre de Recherche en Biomédecine de Strasbourg, Strasbourg, France
| | - Sylvie Dirrig-Grosch
- Université de Strasbourg, Inserm, Strasbourg Translational Neuroscience and Psychiatry, Inserm UMR-S 1329, Centre de Recherche en Biomédecine de Strasbourg, Strasbourg, France
| | - Charlotte Gorin
- Université de Strasbourg, Inserm, Strasbourg Translational Neuroscience and Psychiatry, Inserm UMR-S 1329, Centre de Recherche en Biomédecine de Strasbourg, Strasbourg, France
| | - Aurore Brunet
- Université de Strasbourg, Inserm, Strasbourg Translational Neuroscience and Psychiatry, Inserm UMR-S 1329, Centre de Recherche en Biomédecine de Strasbourg, Strasbourg, France
| | - Mathieu Fischer
- Université de Strasbourg, Inserm, Strasbourg Translational Neuroscience and Psychiatry, Inserm UMR-S 1329, Centre de Recherche en Biomédecine de Strasbourg, Strasbourg, France
| | - Céline Keime
- Université de Strasbourg, Inserm UMR-S 1258, CNRS UMR-S 7104, Institut de Génétique, Biologie Moléculaire et Cellulaire, Illkirch-Graffenstaden, France
| | - Pascal Kessler
- Université de Strasbourg, Inserm UMS 38, Centre de Recherche en Biomédecine de Strasbourg, Strasbourg, France
| | - Marco Antonio Mendoza-Parra
- UMR 8030 Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, University of Evry-val-d'Essonne, University Paris-Saclay, Evry, France
| | - Ramona A J Zwamborn
- Department of Neurology, Brain Centre Rudolf Magnus, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Jan H Veldink
- Department of Neurology, Brain Centre Rudolf Magnus, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Sonja W Scholz
- Neurodegenerative Diseases Research Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, USA
| | - Luigi Ferrucci
- Intramural Research Program of the National Institute on Aging, NIH, Baltimore, MD, USA
| | | | - Bryan Traynor
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, USA
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Therapeutic Development Branch, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Adriano Chio
- ALS Center "Rita Levi Montalcini" Department of Neuroscience, University of Turin, Turin, Italy
| | - Luc Dupuis
- Université de Strasbourg, Inserm, Strasbourg Translational Neuroscience and Psychiatry, Inserm UMR-S 1329, Centre de Recherche en Biomédecine de Strasbourg, Strasbourg, France
| | - Caroline Rouaux
- Université de Strasbourg, Inserm, Strasbourg Translational Neuroscience and Psychiatry, Inserm UMR-S 1329, Centre de Recherche en Biomédecine de Strasbourg, Strasbourg, France.
| |
Collapse
|
6
|
Stella R, Bertoli A, Lopreiato R, Peggion C. A Twist in Yeast: New Perspectives for Studying TDP-43 Proteinopathies in S. cerevisiae. J Fungi (Basel) 2025; 11:188. [PMID: 40137226 PMCID: PMC11943067 DOI: 10.3390/jof11030188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/27/2025] Open
Abstract
TAR DNA-binding protein 43 kDa (TDP-43) proteinopathies are a group of neurodegenerative diseases (NDs) characterized by the abnormal accumulation of the TDP-43 protein in neurons and glial cells. These proteinopathies are associated with several NDs, including amyotrophic lateral sclerosis, frontotemporal lobar degeneration, and some forms of Alzheimer's disease. Yeast models have proven valuable in ND research due to their simplicity, genetic tractability, and the conservation of many cellular processes shared with higher eukaryotes. For several decades, Saccharomyces cerevisiae has been used as a model organism to study the behavior and toxicity of TDP-43, facilitating the identification of genes and pathways that either exacerbate or mitigate its toxic effects. This review will discuss evidence showing that yeast models of TDP-43 exhibit defects in proteostasis, mitochondrial function, autophagy, and RNA metabolism, which are key features of TDP-43-related NDs. Additionally, we will explore how modulating proteins involved in these processes reduce TDP-43 toxicity, aiding in restoring normal TDP-43 function or preventing its pathological aggregation. These findings highlight potential therapeutic targets for the treatment of TDP-43-related diseases.
Collapse
Affiliation(s)
- Roberto Stella
- Laboratorio Farmaci Veterinari e Ricerca, Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy;
| | - Alessandro Bertoli
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (A.B.); (R.L.)
- Neuroscience Institute, Consiglio Nazionale Delle Ricerche, 35131 Padova, Italy
- Padova Neuroscience Center, University of Padova, 35131 Padova, Italy
| | - Raffaele Lopreiato
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (A.B.); (R.L.)
| | - Caterina Peggion
- Department of Biology, University of Padova, 35131 Padova, Italy
| |
Collapse
|
7
|
Chen HM, Zhao H, Zhu QY, Yan C, Liu YQ, Si S, Jamal MA, Xu KX, Jiao DL, Lv MJ, Wang W, Zhao HY, Chen L, Wang MS, Wei HJ. Genomic consequences of intensive inbreeding in miniature inbred pigs. BMC Genomics 2025; 26:154. [PMID: 39962408 PMCID: PMC11834389 DOI: 10.1186/s12864-025-11333-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 02/06/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Inbreeding, a central theme in evolutionary and conservation biology, is a crucial practice in breeding to stabilize and enhance the specific traits or to establish inbred lines. It also carries the risk of inbreeding depression, reduced fitness, and increased potential for extinction. Nevertheless, inbreeding has been extensively studied in small and endangered populations but its effects in large domesticated animals are poorly understood. Here, we aim to investigate the genomic consequences of inbreeding in the Banna miniature inbred pig (BN), a breed that has been inbred for over 40 years. RESULTS We have sequenced 41 genomes of BN and Diannan miniature pig (DN) at high-coverage (> 31×) and combined them with published whole-genomes of swine to comprehensively investigate the genetic consequences of inbreeding. We find that BN is genetically closely related to DN, which is consistent with breeding records. All families of BN have undergone an extreme bottleneck due to intensive inbreeding, resulting in higher genomic inbreeding coefficients, reduced genetic diversity, and a lower effective population size (Ne) compare to non-inbred pigs. Furthermore, BN and DN exhibit an increased genetic load relative to Asian wild boars. Prolonged inbreeding and bottlenecks have led to some purging of deleterious mutations in BN compared to DN, and a conversion from masked load to realized load. CONCLUSIONS We present a comprehensive analysis to understand and assess the consequences of inbreeding in miniature inbred pigs from a perspective of population genomics. Utilizing genomic measurements proves effective in estimating the consequences of inbreeding, especially when a detailed and accurate historical record of pedigree are lacking. Our results provide valuable resources and a detailed perspective on the genomic impacts of inbreeding, potentially guiding efforts in breeding, breed improvement, and conservation.
Collapse
Affiliation(s)
- Hong-Man Chen
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, 650201, China
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, China
| | - Heng Zhao
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, 650201, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, China
| | - Qun-Yao Zhu
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, 650201, China
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Chen Yan
- Key Laboratory of Genetic Evolution & Animal Models, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Ya-Qi Liu
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Si Si
- Key Laboratory of Genetic Evolution & Animal Models, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Muhammad Ameen Jamal
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Genetic Evolution & Animal Models, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Kai-Xiang Xu
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, 650201, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, China
| | - De-Ling Jiao
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, 650201, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, China
| | - Min-Juan Lv
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, 650201, China
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Wen Wang
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Hong-Ye Zhao
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, 650201, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, China
| | - Lei Chen
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Ming-Shan Wang
- Key Laboratory of Genetic Evolution & Animal Models, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
- Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
| | - Hong-Jiang Wei
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, 650201, China.
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China.
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, China.
- Key Laboratory of Genetic Evolution & Animal Models, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
| |
Collapse
|
8
|
Zhou Y, Ahsan FM, Soukas AA. The nuclear pore complex connects energy sensing to transcriptional plasticity in longevity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.17.638704. [PMID: 40027662 PMCID: PMC11870510 DOI: 10.1101/2025.02.17.638704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
As the only gateway governing nucleocytoplasmic transport, the nuclear pore complex (NPC) maintains fundamental cellular processes and deteriorates with age. However, the study of age-related roles of single NPC components remains challenging owing to the complexity of NPC composition. Here we demonstrate that the master energy sensor, AMPK, post-translationally regulates the abundance of the nucleoporin NPP-16/NUP50 in response to nutrient availability and energetic stress. In turn, NPP-16/NUP50 promotes transcriptomic activation of lipid catabolism to extend the lifespan of Caenorhabditis elegans independently of its role in nuclear transport. Rather, the intrinsically disordered region (IDR) of NPP-16/NUP50, through direct interaction with the transcriptional machinery, transactivates the promoters of catabolic genes. Remarkably, elevated NPP-16/NUP50 levels are sufficient to promote longevity and metabolic stress defenses. AMPK-NUP50 signaling is conserved to human, indicating that bridging energy sensing to metabolic adaptation is an ancient role of this signaling axis.
Collapse
Affiliation(s)
- Yifei Zhou
- Center for Genomic Medicine and Diabetes Unit, Endocrine Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, United States
- Broad Institute of Harvard and MIT, Cambridge, United States
| | - Fasih M Ahsan
- Center for Genomic Medicine and Diabetes Unit, Endocrine Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, United States
- Broad Institute of Harvard and MIT, Cambridge, United States
- Program in Biological and Biomedical Sciences, Division of Medical Sciences, Harvard Medical School, Boston, United States
| | - Alexander A Soukas
- Center for Genomic Medicine and Diabetes Unit, Endocrine Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, United States
- Broad Institute of Harvard and MIT, Cambridge, United States
| |
Collapse
|
9
|
Vattathil SM, Gerasimov ES, Canon SM, Lori A, Tan SSM, Kim PJ, Liu Y, Lai EC, Bennett DA, Wingo TS, Wingo AP. Mapping the microRNA landscape in the older adult brain and its genetic contribution to neuropsychiatric conditions. NATURE AGING 2025; 5:306-319. [PMID: 39643657 PMCID: PMC11839474 DOI: 10.1038/s43587-024-00778-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 11/07/2024] [Indexed: 12/09/2024]
Abstract
MicroRNAs (miRNAs) play a crucial role in regulating gene expression and influence many biological processes. Despite their importance, understanding of how genetic variation affects miRNA expression in the brain and how this relates to brain disorders remains limited. Here we investigated these questions by identifying microRNA expression quantitative trait loci (miR-QTLs), or genetic variants associated with brain miRNA levels, using genome-wide small RNA sequencing profiles from dorsolateral prefrontal cortex samples of 604 older adult donors of European ancestry. Here we show that nearly half (224 of 470) of the analyzed miRNAs have associated miR-QTLs, many of which fall in regulatory regions such as brain promoters and enhancers. We also demonstrate that intragenic miRNAs often have genetic regulation independent from their host genes. Furthermore, by integrating our findings with 16 genome-wide association studies of psychiatric and neurodegenerative disorders, we identified miRNAs that likely contribute to bipolar disorder, depression, schizophrenia and Parkinson's disease. These findings advance understanding of the genetic regulation of miRNAs and their role in brain health and disease.
Collapse
Affiliation(s)
- Selina M Vattathil
- Department of Neurology, University of California, Davis, Sacramento, CA, USA
| | | | - Se Min Canon
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Adriana Lori
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Sarah Sze Min Tan
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Paul J Kim
- Department of Psychiatry, Emory University School of Medicine, Atlanta, GA, USA
| | - Yue Liu
- Department of Neurology, University of California, Davis, Sacramento, CA, USA
| | - Eric C Lai
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Thomas S Wingo
- Department of Neurology, University of California, Davis, Sacramento, CA, USA.
- Alzheimer's Disease Research Center, University of California, Davis, Sacramento, CA, USA.
| | - Aliza P Wingo
- Department of Psychiatry, University of California, Davis, Sacramento, CA, USA.
- Veterans Affairs Northern California Health Care System, Sacramento, CA, USA.
| |
Collapse
|
10
|
De Marchi F, Spinelli EG, Bendotti C. Neuroglia in neurodegeneration: Amyotrophic lateral sclerosis and frontotemporal dementia. HANDBOOK OF CLINICAL NEUROLOGY 2025; 210:45-67. [PMID: 40148057 DOI: 10.1016/b978-0-443-19102-2.00004-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are devastating neurodegenerative diseases sharing significant pathologic and genetic overlap, leading to consider these diseases as a continuum in the spectrum of their pathologic features. Although FTD compromises only specific brain districts, while ALS involves both the nervous system and the skeletal muscles, several neurocentric mechanisms are in common between ALS and FTD. Also, recent research has revealed the significant involvement of nonneuronal cells, particularly glial cells such as astrocytes, oligodendrocytes, microglia, and peripheral immune cells, in disease pathology. This chapter aims to provide an extensive overview of the current understanding of the role of glia in the onset and advancement of ALS and FTD, highlighting the recent implications in terms of prognosis and future treatment options.
Collapse
Affiliation(s)
- Fabiola De Marchi
- ALS Centre, Neurology Unit, Maggiore della Carità Hospital, University of Piemonte Orientale, Novara, Italy
| | - Edoardo Gioele Spinelli
- Neurology Unit, Department of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy; Vita-Salute San Raffaele University, Milano, Italy
| | - Caterina Bendotti
- Laboratory of Neurobiology and Preclinical Therapeutics, ALS Center, Department of Neuroscience, IRCCS-"Mario Negri" Institute for Pharmacological Research, Milano, Italy.
| |
Collapse
|
11
|
Keeley O, Coyne AN. Nuclear and degradative functions of the ESCRT-III pathway: implications for neurodegenerative disease. Nucleus 2024; 15:2349085. [PMID: 38700207 PMCID: PMC11073439 DOI: 10.1080/19491034.2024.2349085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 04/24/2024] [Indexed: 05/05/2024] Open
Abstract
The ESCRT machinery plays a pivotal role in membrane-remodeling events across multiple cellular processes including nuclear envelope repair and reformation, nuclear pore complex surveillance, endolysosomal trafficking, and neuronal pruning. Alterations in ESCRT-III functionality have been associated with neurodegenerative diseases including Frontotemporal Dementia (FTD), Amyotrophic Lateral Sclerosis (ALS), and Alzheimer's Disease (AD). In addition, mutations in specific ESCRT-III proteins have been identified in FTD/ALS. Thus, understanding how disruptions in the fundamental functions of this pathway and its individual protein components in the human central nervous system (CNS) may offer valuable insights into mechanisms underlying neurodegenerative disease pathogenesis and identification of potential therapeutic targets. In this review, we discuss ESCRT components, dynamics, and functions, with a focus on the ESCRT-III pathway. In addition, we explore the implications of altered ESCRT-III function for neurodegeneration with a primary emphasis on nuclear surveillance and endolysosomal trafficking within the CNS.
Collapse
Affiliation(s)
- Olivia Keeley
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alyssa N. Coyne
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
12
|
Fare CM, Rothstein JD. Nuclear pore dysfunction and disease: a complex opportunity. Nucleus 2024; 15:2314297. [PMID: 38383349 PMCID: PMC10883112 DOI: 10.1080/19491034.2024.2314297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/30/2024] [Indexed: 02/23/2024] Open
Abstract
The separation of genetic material from bulk cytoplasm has enabled the evolution of increasingly complex organisms, allowing for the development of sophisticated forms of life. However, this complexity has created new categories of dysfunction, including those related to the movement of material between cellular compartments. In eukaryotic cells, nucleocytoplasmic trafficking is a fundamental biological process, and cumulative disruptions to nuclear integrity and nucleocytoplasmic transport are detrimental to cell survival. This is particularly true in post-mitotic neurons, where nuclear pore injury and errors to nucleocytoplasmic trafficking are strongly associated with neurodegenerative disease. In this review, we summarize the current understanding of nuclear pore biology in physiological and pathological contexts and discuss potential therapeutic approaches for addressing nuclear pore injury and dysfunctional nucleocytoplasmic transport.
Collapse
Affiliation(s)
- Charlotte M Fare
- Department of Neurology and Brain Science Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Jeffrey D Rothstein
- Department of Neurology and Brain Science Institute, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
13
|
Morgan KJ, Carley E, Coyne AN, Rothstein JD, Lusk CP, King MC. Visualizing nuclear pore complex plasticity with Pan-Expansion Microscopy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.18.613744. [PMID: 39345637 PMCID: PMC11429769 DOI: 10.1101/2024.09.18.613744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Cell-type specific and environmentally-responsive plasticity in nuclear pore complex (NPC) composition and structure is an emerging area of investigation, but its molecular underpinnings remain ill defined. To understand the cause and consequence of NPC plasticity requires technologies to visualize differences within individual NPCs across the thousands in a given nucleus. We evaluate the utility of Pan Expansion Microscopy (Pan-ExM), which enables 16-20 fold isotropic cell enlargement while preserving the proteome, to reveal NPC plasticity. NPCs are robustly identified by deep learning-facilitated segmentation as tripartite structures corresponding to the nucleoplasmic ring, inner ring with central transport channel, and cytoplasmic ring, as confirmed by immunostaining. We demonstrate a range of NPC diameters with a bias for dilated NPCs at the basal nuclear surface, often in local clusters. These diameter biases are eliminated by disrupting linker of nucleoskeleton and cytoskeleton (LINC) complex-dependent connections between the nuclear envelope (NE) and the cytoskeleton, supporting that they reflect local variations in NE tension. Pan-ExM further reveals that the transmembrane nucleoporin/nup POM121 resides specifically at the nuclear ring in multiple model cell lines, surprising given the expectation that it would be a component of the inner ring like other transmembrane nups. Remarkably, however, POM121 shifts from the nuclear ring to the inner ring specifically in aged induced pluripotent stem cell derived neurons (iPSNs) from a patient with C9orf72 amyotrophic lateral sclerosis (ALS). Thus, Pan-ExM allows the visualization of changes in NPC architecture that may underlie early steps in an ALS pathomechanism. Taken together, Pan-ExM is a powerful and accessible tool to visualize NPC plasticity in physiological and pathological contexts at single NPC resolution.
Collapse
Affiliation(s)
- Kimberly J. Morgan
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Emma Carley
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Alyssa N. Coyne
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Jeffrey D. Rothstein
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - C. Patrick Lusk
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Megan C. King
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, 06520, USA
- Department of Molecular, Cell and Developmental Biology, Yale University, New Haven, CT, 06520, USA
| |
Collapse
|
14
|
Li S, Gui J, Passarelli MN, Andrew AS, Sullivan KM, Cornell KA, Traynor BJ, Stark A, Chia R, Kuenzler RM, Pioro EP, Bradley WG, Stommel EW. Genome-Wide and Transcriptome-Wide Association Studies on Northern New England and Ohio Amyotrophic Lateral Sclerosis Cohorts. Neurol Genet 2024; 10:e200188. [PMID: 39246739 PMCID: PMC11380502 DOI: 10.1212/nxg.0000000000200188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/23/2024] [Indexed: 09/10/2024]
Abstract
Background and Objectives Amyotrophic lateral sclerosis (ALS) is an age-associated, fatal neurodegenerative disorder causing progressive paralysis and respiratory failure. The genetic architecture of ALS is still largely unknown. Methods We performed a genome-wide association study (GWAS) and transcriptome-wide association study (TWAS) to understand genetic risk factors for ALS using a population-based case-control study of 435 ALS cases and 279 controls from Northern New England and Ohio. Single nucleotide polymorphism (SNP) genotyping was conducted using the Illumina NeuroChip array. Odds ratios were estimated using covariate-adjusted logistic regression. We also performed a genome-wide SNP-smoking interaction screening. TWAS analyses used PrediXcan to estimate associations between predicted gene expression levels across 15 tissues (13 brain tissues, skeletal muscle, and whole blood) and ALS risk. Results GWAS analyses identified the p.A382T missense variant (rs367543041, p = 3.95E-6) in the TARDBP gene, which has previously been reported in association with increased ALS risk and was found to share a close affinity with the Sardinian haplotype. Both GWAS and TWAS analyses suggested that ZNF235 is associated with decreased ALS risk. Discussion Our results support the need for future evaluation to clarify the role of these potential genetic risk factors for ALS and to understand genetic susceptibility to environmental risk factors.
Collapse
Affiliation(s)
- Siting Li
- From the Departments of Biomedical Data Science (S.L., J.G.), Epidemiology (S.L., M.N.P.), and Neurology, Geisel School of Medicine at Dartmouth (E.W.S.), Dartmouth College, Hanover; Dartmouth Health (A.S.A., K.M.S., K.A.C., E.W.S.), Lebanon, NH; Neuromuscular Diseases Research Section (B.J.T., A.S., R.C.), National Institute on Aging; National Institute of Neurological Disorders and Stroke (B.J.T.), National Institutes of Health, Bethesda; RNA Therapeutics Laboratory (B.J.T.), National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD; Cleveland Clinic (R.M.K.), OH; Department of Medicine (E.P.P.), University of British Columbia, Vancouver, BC, Canada; and University of Miami Miller School of Medicine (W.G.B.), FL
| | - Jiang Gui
- From the Departments of Biomedical Data Science (S.L., J.G.), Epidemiology (S.L., M.N.P.), and Neurology, Geisel School of Medicine at Dartmouth (E.W.S.), Dartmouth College, Hanover; Dartmouth Health (A.S.A., K.M.S., K.A.C., E.W.S.), Lebanon, NH; Neuromuscular Diseases Research Section (B.J.T., A.S., R.C.), National Institute on Aging; National Institute of Neurological Disorders and Stroke (B.J.T.), National Institutes of Health, Bethesda; RNA Therapeutics Laboratory (B.J.T.), National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD; Cleveland Clinic (R.M.K.), OH; Department of Medicine (E.P.P.), University of British Columbia, Vancouver, BC, Canada; and University of Miami Miller School of Medicine (W.G.B.), FL
| | - Michael N Passarelli
- From the Departments of Biomedical Data Science (S.L., J.G.), Epidemiology (S.L., M.N.P.), and Neurology, Geisel School of Medicine at Dartmouth (E.W.S.), Dartmouth College, Hanover; Dartmouth Health (A.S.A., K.M.S., K.A.C., E.W.S.), Lebanon, NH; Neuromuscular Diseases Research Section (B.J.T., A.S., R.C.), National Institute on Aging; National Institute of Neurological Disorders and Stroke (B.J.T.), National Institutes of Health, Bethesda; RNA Therapeutics Laboratory (B.J.T.), National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD; Cleveland Clinic (R.M.K.), OH; Department of Medicine (E.P.P.), University of British Columbia, Vancouver, BC, Canada; and University of Miami Miller School of Medicine (W.G.B.), FL
| | - Angeline S Andrew
- From the Departments of Biomedical Data Science (S.L., J.G.), Epidemiology (S.L., M.N.P.), and Neurology, Geisel School of Medicine at Dartmouth (E.W.S.), Dartmouth College, Hanover; Dartmouth Health (A.S.A., K.M.S., K.A.C., E.W.S.), Lebanon, NH; Neuromuscular Diseases Research Section (B.J.T., A.S., R.C.), National Institute on Aging; National Institute of Neurological Disorders and Stroke (B.J.T.), National Institutes of Health, Bethesda; RNA Therapeutics Laboratory (B.J.T.), National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD; Cleveland Clinic (R.M.K.), OH; Department of Medicine (E.P.P.), University of British Columbia, Vancouver, BC, Canada; and University of Miami Miller School of Medicine (W.G.B.), FL
| | - Kathleen M Sullivan
- From the Departments of Biomedical Data Science (S.L., J.G.), Epidemiology (S.L., M.N.P.), and Neurology, Geisel School of Medicine at Dartmouth (E.W.S.), Dartmouth College, Hanover; Dartmouth Health (A.S.A., K.M.S., K.A.C., E.W.S.), Lebanon, NH; Neuromuscular Diseases Research Section (B.J.T., A.S., R.C.), National Institute on Aging; National Institute of Neurological Disorders and Stroke (B.J.T.), National Institutes of Health, Bethesda; RNA Therapeutics Laboratory (B.J.T.), National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD; Cleveland Clinic (R.M.K.), OH; Department of Medicine (E.P.P.), University of British Columbia, Vancouver, BC, Canada; and University of Miami Miller School of Medicine (W.G.B.), FL
| | - Kevin A Cornell
- From the Departments of Biomedical Data Science (S.L., J.G.), Epidemiology (S.L., M.N.P.), and Neurology, Geisel School of Medicine at Dartmouth (E.W.S.), Dartmouth College, Hanover; Dartmouth Health (A.S.A., K.M.S., K.A.C., E.W.S.), Lebanon, NH; Neuromuscular Diseases Research Section (B.J.T., A.S., R.C.), National Institute on Aging; National Institute of Neurological Disorders and Stroke (B.J.T.), National Institutes of Health, Bethesda; RNA Therapeutics Laboratory (B.J.T.), National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD; Cleveland Clinic (R.M.K.), OH; Department of Medicine (E.P.P.), University of British Columbia, Vancouver, BC, Canada; and University of Miami Miller School of Medicine (W.G.B.), FL
| | - Bryan J Traynor
- From the Departments of Biomedical Data Science (S.L., J.G.), Epidemiology (S.L., M.N.P.), and Neurology, Geisel School of Medicine at Dartmouth (E.W.S.), Dartmouth College, Hanover; Dartmouth Health (A.S.A., K.M.S., K.A.C., E.W.S.), Lebanon, NH; Neuromuscular Diseases Research Section (B.J.T., A.S., R.C.), National Institute on Aging; National Institute of Neurological Disorders and Stroke (B.J.T.), National Institutes of Health, Bethesda; RNA Therapeutics Laboratory (B.J.T.), National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD; Cleveland Clinic (R.M.K.), OH; Department of Medicine (E.P.P.), University of British Columbia, Vancouver, BC, Canada; and University of Miami Miller School of Medicine (W.G.B.), FL
| | - Ali Stark
- From the Departments of Biomedical Data Science (S.L., J.G.), Epidemiology (S.L., M.N.P.), and Neurology, Geisel School of Medicine at Dartmouth (E.W.S.), Dartmouth College, Hanover; Dartmouth Health (A.S.A., K.M.S., K.A.C., E.W.S.), Lebanon, NH; Neuromuscular Diseases Research Section (B.J.T., A.S., R.C.), National Institute on Aging; National Institute of Neurological Disorders and Stroke (B.J.T.), National Institutes of Health, Bethesda; RNA Therapeutics Laboratory (B.J.T.), National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD; Cleveland Clinic (R.M.K.), OH; Department of Medicine (E.P.P.), University of British Columbia, Vancouver, BC, Canada; and University of Miami Miller School of Medicine (W.G.B.), FL
| | - Ruth Chia
- From the Departments of Biomedical Data Science (S.L., J.G.), Epidemiology (S.L., M.N.P.), and Neurology, Geisel School of Medicine at Dartmouth (E.W.S.), Dartmouth College, Hanover; Dartmouth Health (A.S.A., K.M.S., K.A.C., E.W.S.), Lebanon, NH; Neuromuscular Diseases Research Section (B.J.T., A.S., R.C.), National Institute on Aging; National Institute of Neurological Disorders and Stroke (B.J.T.), National Institutes of Health, Bethesda; RNA Therapeutics Laboratory (B.J.T.), National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD; Cleveland Clinic (R.M.K.), OH; Department of Medicine (E.P.P.), University of British Columbia, Vancouver, BC, Canada; and University of Miami Miller School of Medicine (W.G.B.), FL
| | - Rebecca M Kuenzler
- From the Departments of Biomedical Data Science (S.L., J.G.), Epidemiology (S.L., M.N.P.), and Neurology, Geisel School of Medicine at Dartmouth (E.W.S.), Dartmouth College, Hanover; Dartmouth Health (A.S.A., K.M.S., K.A.C., E.W.S.), Lebanon, NH; Neuromuscular Diseases Research Section (B.J.T., A.S., R.C.), National Institute on Aging; National Institute of Neurological Disorders and Stroke (B.J.T.), National Institutes of Health, Bethesda; RNA Therapeutics Laboratory (B.J.T.), National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD; Cleveland Clinic (R.M.K.), OH; Department of Medicine (E.P.P.), University of British Columbia, Vancouver, BC, Canada; and University of Miami Miller School of Medicine (W.G.B.), FL
| | - Erik P Pioro
- From the Departments of Biomedical Data Science (S.L., J.G.), Epidemiology (S.L., M.N.P.), and Neurology, Geisel School of Medicine at Dartmouth (E.W.S.), Dartmouth College, Hanover; Dartmouth Health (A.S.A., K.M.S., K.A.C., E.W.S.), Lebanon, NH; Neuromuscular Diseases Research Section (B.J.T., A.S., R.C.), National Institute on Aging; National Institute of Neurological Disorders and Stroke (B.J.T.), National Institutes of Health, Bethesda; RNA Therapeutics Laboratory (B.J.T.), National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD; Cleveland Clinic (R.M.K.), OH; Department of Medicine (E.P.P.), University of British Columbia, Vancouver, BC, Canada; and University of Miami Miller School of Medicine (W.G.B.), FL
| | - Walter G Bradley
- From the Departments of Biomedical Data Science (S.L., J.G.), Epidemiology (S.L., M.N.P.), and Neurology, Geisel School of Medicine at Dartmouth (E.W.S.), Dartmouth College, Hanover; Dartmouth Health (A.S.A., K.M.S., K.A.C., E.W.S.), Lebanon, NH; Neuromuscular Diseases Research Section (B.J.T., A.S., R.C.), National Institute on Aging; National Institute of Neurological Disorders and Stroke (B.J.T.), National Institutes of Health, Bethesda; RNA Therapeutics Laboratory (B.J.T.), National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD; Cleveland Clinic (R.M.K.), OH; Department of Medicine (E.P.P.), University of British Columbia, Vancouver, BC, Canada; and University of Miami Miller School of Medicine (W.G.B.), FL
| | - Elijah W Stommel
- From the Departments of Biomedical Data Science (S.L., J.G.), Epidemiology (S.L., M.N.P.), and Neurology, Geisel School of Medicine at Dartmouth (E.W.S.), Dartmouth College, Hanover; Dartmouth Health (A.S.A., K.M.S., K.A.C., E.W.S.), Lebanon, NH; Neuromuscular Diseases Research Section (B.J.T., A.S., R.C.), National Institute on Aging; National Institute of Neurological Disorders and Stroke (B.J.T.), National Institutes of Health, Bethesda; RNA Therapeutics Laboratory (B.J.T.), National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD; Cleveland Clinic (R.M.K.), OH; Department of Medicine (E.P.P.), University of British Columbia, Vancouver, BC, Canada; and University of Miami Miller School of Medicine (W.G.B.), FL
| |
Collapse
|
15
|
Lehmann J, Aly A, Steffke C, Fabbio L, Mayer V, Dikwella N, Halablab K, Roselli F, Seiffert S, Boeckers TM, Brenner D, Kabashi E, Mulaw M, Ho R, Catanese A. Heterozygous knockout of Synaptotagmin13 phenocopies ALS features and TP53 activation in human motor neurons. Cell Death Dis 2024; 15:560. [PMID: 39097602 PMCID: PMC11297993 DOI: 10.1038/s41419-024-06957-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/05/2024]
Abstract
Spinal motor neurons (MNs) represent a highly vulnerable cellular population, which is affected in fatal neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA). In this study, we show that the heterozygous loss of SYT13 is sufficient to trigger a neurodegenerative phenotype resembling those observed in ALS and SMA. SYT13+/- hiPSC-derived MNs displayed a progressive manifestation of typical neurodegenerative hallmarks such as loss of synaptic contacts and accumulation of aberrant aggregates. Moreover, analysis of the SYT13+/- transcriptome revealed a significant impairment in biological mechanisms involved in motoneuron specification and spinal cord differentiation. This transcriptional portrait also strikingly correlated with ALS signatures, displaying a significant convergence toward the expression of pro-apoptotic and pro-inflammatory genes, which are controlled by the transcription factor TP53. Our data show for the first time that the heterozygous loss of a single member of the synaptotagmin family, SYT13, is sufficient to trigger a series of abnormal alterations leading to MN sufferance, thus revealing novel insights into the selective vulnerability of this cell population.
Collapse
Affiliation(s)
- Johannes Lehmann
- Institute of Anatomy and Cell Biology, Ulm University School of Medicine, Ulm, Germany
| | - Amr Aly
- Institute of Anatomy and Cell Biology, Ulm University School of Medicine, Ulm, Germany
| | - Christina Steffke
- Institute of Anatomy and Cell Biology, Ulm University School of Medicine, Ulm, Germany
- Department of Neurology, Ulm University School of Medicine, Ulm, Germany
| | - Luca Fabbio
- Institute of Anatomy and Cell Biology, Ulm University School of Medicine, Ulm, Germany
| | - Valentin Mayer
- Institute of Anatomy and Cell Biology, Ulm University School of Medicine, Ulm, Germany
| | - Natalie Dikwella
- Department of Neurology, Ulm University School of Medicine, Ulm, Germany
| | - Kareen Halablab
- Department of Neurology, Ulm University School of Medicine, Ulm, Germany
| | - Francesco Roselli
- Department of Neurology, Ulm University School of Medicine, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE), Ulm Site, Ulm, Germany
| | - Simone Seiffert
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Tobias M Boeckers
- Institute of Anatomy and Cell Biology, Ulm University School of Medicine, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE), Ulm Site, Ulm, Germany
| | - David Brenner
- Department of Neurology, Ulm University School of Medicine, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE), Ulm Site, Ulm, Germany
| | - Edor Kabashi
- Institut Imagine, University Paris Descartes, Necker-Enfants Malades Hospital, Paris, France
| | - Medhanie Mulaw
- Unit for Single-Cell Genomics, Medical Faculty, Ulm University, Ulm, Germany
| | - Ritchie Ho
- Center for Neural Science and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Alberto Catanese
- Institute of Anatomy and Cell Biology, Ulm University School of Medicine, Ulm, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Ulm Site, Ulm, Germany.
- Institut Imagine, University Paris Descartes, Necker-Enfants Malades Hospital, Paris, France.
| |
Collapse
|
16
|
Li Y, Zhu J, Zhai F, Kong L, Li H, Jin X. Advances in the understanding of nuclear pore complexes in human diseases. J Cancer Res Clin Oncol 2024; 150:374. [PMID: 39080077 PMCID: PMC11289042 DOI: 10.1007/s00432-024-05881-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/03/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Nuclear pore complexes (NPCs) are sophisticated and dynamic protein structures that straddle the nuclear envelope and act as gatekeepers for transporting molecules between the nucleus and the cytoplasm. NPCs comprise up to 30 different proteins known as nucleoporins (NUPs). However, a growing body of research has suggested that NPCs play important roles in gene regulation, viral infections, cancer, mitosis, genetic diseases, kidney diseases, immune system diseases, and degenerative neurological and muscular pathologies. PURPOSE In this review, we introduce the structure and function of NPCs. Then We described the physiological and pathological effects of each component of NPCs which provide a direction for future clinical applications. METHODS The literatures from PubMed have been reviewed for this article. CONCLUSION This review summarizes current studies on the implications of NPCs in human physiology and pathology, highlighting the mechanistic underpinnings of NPC-associated diseases.
Collapse
Affiliation(s)
- Yuxuan Li
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, Zhejiang, China
| | - Jie Zhu
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Fengguang Zhai
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, Zhejiang, China
| | - Lili Kong
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, Zhejiang, China
| | - Hong Li
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China.
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, Zhejiang, China.
| | - Xiaofeng Jin
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China.
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, Zhejiang, China.
| |
Collapse
|
17
|
Castelli L, Vasta R, Allen SP, Waller R, Chiò A, Traynor BJ, Kirby J. From use of omics to systems biology: Identifying therapeutic targets for amyotrophic lateral sclerosis. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 176:209-268. [PMID: 38802176 DOI: 10.1016/bs.irn.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a heterogeneous progressive neurodegenerative disorder with available treatments such as riluzole and edaravone extending survival by an average of 3-6 months. The lack of highly effective, widely available therapies reflects the complexity of ALS. Omics technologies, including genomics, transcriptomic and proteomics have contributed to the identification of biological pathways dysregulated and targeted by therapeutic strategies in preclinical and clinical trials. Integrating clinical, environmental and neuroimaging information with omics data and applying a systems biology approach can further improve our understanding of the disease with the potential to stratify patients and provide more personalised medicine. This chapter will review the omics technologies that contribute to a systems biology approach and how these components have assisted in identifying therapeutic targets. Current strategies, including the use of genetic screening and biosampling in clinical trials, as well as the future application of additional technological advances, will also be discussed.
Collapse
Affiliation(s)
- Lydia Castelli
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom; Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| | - Rosario Vasta
- ALS Expert Center,'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Turin, Italy; Neuromuscular Diseases Research Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, United States
| | - Scott P Allen
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom; Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| | - Rachel Waller
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom; Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| | - Adriano Chiò
- ALS Expert Center,'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Turin, Italy; Neurology 1, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza of Turin, Turin, Italy
| | - Bryan J Traynor
- Neuromuscular Diseases Research Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, United States; RNA Therapeutics Laboratory, National Center for Advancing Translational Sciences, NIH, Rockville, MD, United States; National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States; Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, United States; Reta Lila Weston Institute, UCL Queen Square Institute of Neurology,University College London, London, United Kingdom
| | - Janine Kirby
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom; Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
18
|
Khalil B, Linsenmeier M, Smith CL, Shorter J, Rossoll W. Nuclear-import receptors as gatekeepers of pathological phase transitions in ALS/FTD. Mol Neurodegener 2024; 19:8. [PMID: 38254150 PMCID: PMC10804745 DOI: 10.1186/s13024-023-00698-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 12/13/2023] [Indexed: 01/24/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are fatal neurodegenerative disorders on a disease spectrum that are characterized by the cytoplasmic mislocalization and aberrant phase transitions of prion-like RNA-binding proteins (RBPs). The common accumulation of TAR DNA-binding protein-43 (TDP-43), fused in sarcoma (FUS), and other nuclear RBPs in detergent-insoluble aggregates in the cytoplasm of degenerating neurons in ALS/FTD is connected to nuclear pore dysfunction and other defects in the nucleocytoplasmic transport machinery. Recent advances suggest that beyond their canonical role in the nuclear import of protein cargoes, nuclear-import receptors (NIRs) can prevent and reverse aberrant phase transitions of TDP-43, FUS, and related prion-like RBPs and restore their nuclear localization and function. Here, we showcase the NIR family and how they recognize cargo, drive nuclear import, and chaperone prion-like RBPs linked to ALS/FTD. We also discuss the promise of enhancing NIR levels and developing potentiated NIR variants as therapeutic strategies for ALS/FTD and related neurodegenerative proteinopathies.
Collapse
Affiliation(s)
- Bilal Khalil
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, U.S.A
| | - Miriam Linsenmeier
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, U.S.A
| | - Courtney L Smith
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, U.S.A
- Mayo Clinic Graduate School of Biomedical Sciences, Neuroscience Track, Mayo Clinic, Jacksonville, FL, 32224, U.S.A
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, U.S.A..
| | - Wilfried Rossoll
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, U.S.A..
| |
Collapse
|
19
|
Baskerville V, Rapuri S, Mehlhop E, Coyne AN. SUN1 facilitates CHMP7 nuclear influx and injury cascades in sporadic amyotrophic lateral sclerosis. Brain 2024; 147:109-121. [PMID: 37639327 PMCID: PMC10766250 DOI: 10.1093/brain/awad291] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/16/2023] [Accepted: 08/07/2023] [Indexed: 08/31/2023] Open
Abstract
We have recently identified the aberrant nuclear accumulation of the ESCRT-III protein CHMP7 as an initiating event that leads to a significant injury to the nuclear pore complex (NPC) characterized by the reduction of specific nucleoporins from the neuronal NPC in sporadic amyotrophic lateral sclerosis (sALS) and C9orf72 ALS/frontotemporal dementia (FTD)-induced pluripotent stem cell-derived neurons (iPSNs), a phenomenon also observed in post-mortem patient tissues. Importantly, this NPC injury is sufficient to contribute to TDP-43 dysfunction and mislocalization, a common pathological hallmark of neurodegenerative diseases. However, the molecular mechanisms and events that give rise to increased nuclear translocation and/or retention of CHMP7 to initiate this pathophysiological cascade remain largely unknown. Here, using an iPSN model of sALS, we demonstrate that impaired NPC permeability barrier integrity and interactions with the LINC complex protein SUN1 facilitate CHMP7 nuclear localization and the subsequent 'activation' of NPC injury cascades. Collectively, our data provide mechanistic insights in the pathophysiological underpinnings of ALS/FTD and highlight SUN1 as a potent contributor to and modifier of CHMP7-mediated toxicity in sALS pathogenesis.
Collapse
Affiliation(s)
- Victoria Baskerville
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sampath Rapuri
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Emma Mehlhop
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Alyssa N Coyne
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
20
|
Theme 05 - Human Cell Biology and Pathology. Amyotroph Lateral Scler Frontotemporal Degener 2023; 24:140-160. [PMID: 37966320 DOI: 10.1080/21678421.2023.2260195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
|
21
|
Cristi AC, Rapuri S, Coyne AN. Nuclear pore complex and nucleocytoplasmic transport disruption in neurodegeneration. FEBS Lett 2023; 597:2546-2566. [PMID: 37657945 PMCID: PMC10612469 DOI: 10.1002/1873-3468.14729] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/29/2023] [Accepted: 08/24/2023] [Indexed: 09/03/2023]
Abstract
Nuclear pore complexes (NPCs) play a critical role in maintaining the equilibrium between the nucleus and cytoplasm, enabling bidirectional transport across the nuclear envelope, and are essential for proper nuclear organization and gene regulation. Perturbations in the regulatory mechanisms governing NPCs and nuclear envelope homeostasis have been implicated in the pathogenesis of several neurodegenerative diseases. The ESCRT-III pathway emerges as a critical player in the surveillance and preservation of well-assembled, functional NPCs, as well as nuclear envelope sealing. Recent studies have provided insights into the involvement of nuclear ESCRT-III in the selective reduction of specific nucleoporins associated with neurodegenerative pathologies. Thus, maintaining quality control of the nuclear envelope and NPCs represents a pivotal element in the pathological cascade leading to neurodegenerative diseases. This review describes the constituents of the nuclear-cytoplasmic transport machinery, encompassing the nuclear envelope, NPC, and ESCRT proteins, and how their structural and functional alterations contribute to the development of neurodegenerative diseases.
Collapse
Affiliation(s)
- América Chandía Cristi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore MD 21205, USA
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore MD 21205, USA
| | - Sampath Rapuri
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore MD 21205, USA
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore MD 21205, USA
| | - Alyssa N Coyne
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore MD 21205, USA
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore MD 21205, USA
| |
Collapse
|
22
|
Jellinger KA. The Spectrum of Cognitive Dysfunction in Amyotrophic Lateral Sclerosis: An Update. Int J Mol Sci 2023; 24:14647. [PMID: 37834094 PMCID: PMC10572320 DOI: 10.3390/ijms241914647] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Cognitive dysfunction is an important non-motor symptom in amyotrophic lateral sclerosis (ALS) that has a negative impact on survival and caregiver burden. It shows a wide spectrum ranging from subjective cognitive decline to frontotemporal dementia (FTD) and covers various cognitive domains, mainly executive/attention, language and verbal memory deficits. The frequency of cognitive impairment across the different ALS phenotypes ranges from 30% to 75%, with up to 45% fulfilling the criteria of FTD. Significant genetic, clinical, and pathological heterogeneity reflects deficits in various cognitive domains. Modern neuroimaging studies revealed frontotemporal degeneration and widespread involvement of limbic and white matter systems, with hypometabolism of the relevant areas. Morphological substrates are frontotemporal and hippocampal atrophy with synaptic loss, associated with TDP-43 and other co-pathologies, including tau deposition. Widespread functional disruptions of motor and extramotor networks, as well as of frontoparietal, frontostriatal and other connectivities, are markers for cognitive deficits in ALS. Cognitive reserve may moderate the effect of brain damage but is not protective against cognitive decline. The natural history of cognitive dysfunction in ALS and its relationship to FTD are not fully understood, although there is an overlap between the ALS variants and ALS-related frontotemporal syndromes, suggesting a differential vulnerability of motor and non-motor networks. An assessment of risks or the early detection of brain connectivity signatures before structural changes may be helpful in investigating the pathophysiological mechanisms of cognitive impairment in ALS, which might even serve as novel targets for effective disease-modifying therapies.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, A-1150 Vienna, Austria
| |
Collapse
|
23
|
McGoldrick P, Robertson J. Unraveling the impact of disrupted nucleocytoplasmic transport systems in C9orf72-associated ALS. Front Cell Neurosci 2023; 17:1247297. [PMID: 37720544 PMCID: PMC10501458 DOI: 10.3389/fncel.2023.1247297] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 08/08/2023] [Indexed: 09/19/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are two adult-onset neurodegenerative diseases that are part of a common disease spectrum due to clinical, genetic, and pathological overlap. A prominent genetic factor contributing to both diseases is a hexanucleotide repeat expansion in a non-coding region of the C9orf72 gene. This mutation in C9orf72 leads to nuclear depletion and cytoplasmic aggregation of Tar DNA-RNA binding protein 43 (TDP-43). TDP-43 pathology is characteristic of the majority of ALS cases, irrespective of disease causation, and is present in ~50% of FTD cases. Defects in nucleocytoplasmic transport involving the nuclear pore complex, the Ran-GTPase cycle, and nuclear transport factors have been linked with the mislocalization of TDP-43. Here, we will explore and discuss the implications of these system abnormalities of nucleocytoplasmic transport in C9orf72-ALS/FTD, as well as in other forms of familial and sporadic ALS.
Collapse
Affiliation(s)
- Philip McGoldrick
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Janice Robertson
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
24
|
Oliveira NAS, Pinho BR, Oliveira JMA. Swimming against ALS: How to model disease in zebrafish for pathophysiological and behavioral studies. Neurosci Biobehav Rev 2023; 148:105138. [PMID: 36933816 DOI: 10.1016/j.neubiorev.2023.105138] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/02/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023]
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease that leads to progressive disability and motor impairment. Existing therapies provide modest improvements in patient survival, raising a need for new treatments for ALS. Zebrafish is a promising model animal for translational and fundamental research in ALS - it is an experimentally tractable vertebrate, with high homology to humans and an ample experimental toolbox. These advantages allow high-throughput study of behavioral and pathophysiological phenotypes. The last decade saw an increased interest in modelling ALS in zebrafish, leading to the current abundance and variety of available methods and models. Additionally, the rise of gene editing techniques and toxin combination studies has created novel opportunities for ALS studies in zebrafish. In this review, we address the relevance of zebrafish as a model animal for ALS studies, the strategies for model induction and key phenotypical evaluation. Furthermore, we discuss established and emerging zebrafish models of ALS, analyzing their validity, including their potential for drug testing, and highlighting research opportunities in this area.
Collapse
Affiliation(s)
- Nuno A S Oliveira
- UCIBIO-REQUIMTE, Applied Molecular Biosciences Unit, Mitochondria and Neurobiology Lab, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, Department of Drug Sciences, Pharmacology Lab, University of Porto, 4050-313 Porto, Portugal
| | - Brígida R Pinho
- UCIBIO-REQUIMTE, Applied Molecular Biosciences Unit, Mitochondria and Neurobiology Lab, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, Department of Drug Sciences, Pharmacology Lab, University of Porto, 4050-313 Porto, Portugal
| | - Jorge M A Oliveira
- UCIBIO-REQUIMTE, Applied Molecular Biosciences Unit, Mitochondria and Neurobiology Lab, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, Department of Drug Sciences, Pharmacology Lab, University of Porto, 4050-313 Porto, Portugal.
| |
Collapse
|