1
|
Li N, Zhan F, Guo M, Yuan X, Chen X, Li Y, Zhang G, Wang L, Liu J. Fingertip-Inspired Spatially Anisotropic Inductive Liquid Metal Sensors with Ultra-Wide Range, High Linearity and Exceptional Stability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2419524. [PMID: 40135258 DOI: 10.1002/adma.202419524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/19/2025] [Indexed: 03/27/2025]
Abstract
The advancement of robotic behavior and intelligence has led to an urgent demand for improving their sensitivity and interactive capabilities, which presents challenges in achieving multidimensional, wide-ranging, and reliable tactile sensing. Here an anisotropic inductive liquid metal sensor (AI-LMS) is introduced inspired by the human fingertip, which inherently possesses the capability to detect spatially multi-axis pressure with a wide sensing range, exceptional linearity, and signal stability. Additionally, it can detect very small pressures and responds swiftly to prescribed forces. Compared to resistive signals, inductive signals offer significant advantages. Further, integrated with a deep neural network model, the AI-LMS can decouple multi-axis pressures acting simultaneously upon it. Notably, the sensing range of Ecoflex and PDMS-based AI-LMS can be expanded by a factor of 4 and 9.5, respectively. For practical illustrations, a high-precision surface scanning reconstruction system is developed capable of capturing intricate details of 3D surface profiles. The utilization of biomimetic AI-LMS as robotic fingertips enables real-time discrimination of diverse delicate grasping behaviors across different fingers. The innovations and unique features in sensing mechanisms and structural design are expected to bring transformative changes and find extensive applications in the field of soft robotics.
Collapse
Affiliation(s)
- Nan Li
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fei Zhan
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, China
| | - Minghui Guo
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiaohong Yuan
- School of Economics and Business Administration, Chongqing University, Chongqing, 400044, China
| | - Xueqing Chen
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuqing Li
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangcheng Zhang
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Wang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, China
| | - Jing Liu
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
2
|
Hu QY, Lu ZQ, Zhang JH, Ding H, Chen LQ. A dynamic modeling approach for six-degree-of-freedom control of maglev planar motors with reference trajectory tracking. Sci Rep 2025; 15:13922. [PMID: 40263400 PMCID: PMC12015433 DOI: 10.1038/s41598-025-96742-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 03/31/2025] [Indexed: 04/24/2025] Open
Abstract
Magnetic levitation planar motors (MLPMs) exhibit significant potential in high-precision positioning applications, however the 6-degree-of-freedom (6-DOF) control performance is inherently limited by complex nonlinear dynamics. This paper proposes a 6-DOF dynamic modeling methodology for maglev planar motors based on reference trajectory tracking. The proposed approach synergistically combines magnetic flux analytical linearization with electromagnetic coupling field decoupling, establishing a unified control framework that comprehensively addresses kinematic nonlinearities and full-DOF coupling effects. By employing harmonic spectral analysis and a dual-reference coordinate transformation architecture, the method enables precise analytical derivation of electromagnetic force/torque distributions within the operational workspace. Numerical simulations validate the improved modeling accuracy, demonstrating a 5.3-fold reduction in wrench prediction errors under large yaw rotations compared to conventional methods. Finally, an experimental rig of the planar motor is manufactured to validate the theoretical trajectory tracking method. The experimental results confirm the robustness of the methodology in achieving high-precision motion control and long-stroke trajectory tracking, offering valuable insights for bridging theoretical modeling and industrial implementation of maglev planar motor systems.
Collapse
Affiliation(s)
- Qi-Yu Hu
- Shanghai Institute of Applied Mathematics and Mechanics, Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai Frontier Science Center of Mechanoinformatics, School of Mechanics and Engineering Science, Shanghai University, Shanghai, 200072, China
| | - Ze-Qi Lu
- Shanghai Institute of Applied Mathematics and Mechanics, Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai Frontier Science Center of Mechanoinformatics, School of Mechanics and Engineering Science, Shanghai University, Shanghai, 200072, China.
- School of Microelectronics, Shanghai University, Shanghai, 201800, China.
| | - Jian-Hua Zhang
- School of Microelectronics, Shanghai University, Shanghai, 201800, China
| | - Hu Ding
- Shanghai Institute of Applied Mathematics and Mechanics, Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai Frontier Science Center of Mechanoinformatics, School of Mechanics and Engineering Science, Shanghai University, Shanghai, 200072, China
| | - Li-Qun Chen
- Shanghai Institute of Applied Mathematics and Mechanics, Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai Frontier Science Center of Mechanoinformatics, School of Mechanics and Engineering Science, Shanghai University, Shanghai, 200072, China
- School of Microelectronics, Shanghai University, Shanghai, 201800, China
| |
Collapse
|
3
|
Hazra V, Saha S, Pati SK, Bhattacharyya S. Light-Triggered Reversible Assembly of Halide Perovskite Nanoplatelets. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2414170. [PMID: 39723711 DOI: 10.1002/adma.202414170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/18/2024] [Indexed: 12/28/2024]
Abstract
Advancements in stimuli-driven nanoactuators necessitate the discovery of photo-switchable, self-contained semiconductor nanostructures capable of precise mechanical responses. The reversible assembly of 0D Cs3Bi2I9 halide perovskite nanoplatelets (NPLs) between stacked and scattered configurations are demonstrated under light and dark, respectively. This sunlight-triggered perpetual flipping of the NPLs, occurring in less than a minute, is associated with a color change between brown and red. The photomechanical response is driven by the formation and cleavage of sulfide linkages at the NPL surface. In the stacked configuration, various stacking modes create moiré superstructures, enhancing the interlayer charge distribution, and increasing the electronic conductivity and optical absorbance. This leads to a decrease in exciton binding energy from 247 meV for scattered NPLs to 162 meV for stacked NPLs, resulting in a 3.5-fold enhancement in dark current for the stacked NPL films. The switchable control over color and electric current is continuously reversible and retraceable, exhibiting a minor memory effect observed during extended cycling. The self-flipping NPL nanoactuators demonstrate reversible mechanical responses, with topographical oscillations ranging from 14 nm in scattered NPLs to 50 nm in the vertically stacked configuration. This seamless reversible nano-assembly with color interchangeability offers numerous possibilities for nanorobotics, nanoscale switches, and sensors.
Collapse
Affiliation(s)
- Vishwadeepa Hazra
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, India
| | - Sougata Saha
- Theoretical Sciences Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
| | - Swapan K Pati
- Theoretical Sciences Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
| | - Sayan Bhattacharyya
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, India
| |
Collapse
|
4
|
Gao Y, Tang W, Zhong Y, Guo X, Qin K, Wang Y, Kramarenko EY, Zou J. Printing Untethered Self-Reconfigurable, Self-Amputating Soft Robots from Recyclable Self-Healing Fibers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410167. [PMID: 39691083 PMCID: PMC11809436 DOI: 10.1002/advs.202410167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/10/2024] [Indexed: 12/19/2024]
Abstract
Regarding the challenge of self-reconfiguration and self-amputation of soft robots, existing studies mainly focus on modular soft robots and connection methods between modules. Different from these studies, this study focus on the behavior of individual soft robots from a material perspective. Here, a kind of soft fibers, which consist of hot melt adhesive particles, magnetizable microparticles, and ferroferric oxide microparticles embedded in a thermoplastic polyurethane matrix are proposed. The soft fibers can achieve wireless self-healing and reversible bonding of the fibers by eddy current heating and can be actuated by magnetic fields. Moreover, the soft fibers are recyclable and printable. Building on this material foundation, an integrated material-structure-actuation printing strategy using soft fibers for the design and fabrication of soft robots are reported. The robots printed by this strategy can achieve their untethered motions and wireless self-healing. Soft gripper, soft crawling robot, and soft multi-legged robot, are then fabricated which demonstrates the self-healing, self-reconfigurable, self-amputating, and sustainable performances of soft robots so as to adapt to different environments and tasks. This integrated material-structure-actuation printing strategy using soft fibers is universal, easy to implement, and mass-manufactured, opening a door for sustainable, eco-friendly, untethered, self-reconfigurable, self-amputating soft robots.
Collapse
Affiliation(s)
- Yidan Gao
- State Key Laboratory of Fluid Power and Mechatronic SystemsSchool of Mechanical EngineeringZhejiang UniversityHangzhou310058China
| | - Wei Tang
- State Key Laboratory of Fluid Power and Mechatronic SystemsSchool of Mechanical EngineeringZhejiang UniversityHangzhou310058China
| | - Yiding Zhong
- State Key Laboratory of Fluid Power and Mechatronic SystemsSchool of Mechanical EngineeringZhejiang UniversityHangzhou310058China
| | - Xinyu Guo
- State Key Laboratory of Fluid Power and Mechatronic SystemsSchool of Mechanical EngineeringZhejiang UniversityHangzhou310058China
| | - Kecheng Qin
- State Key Laboratory of Fluid Power and Mechatronic SystemsSchool of Mechanical EngineeringZhejiang UniversityHangzhou310058China
| | - Yonghao Wang
- State Key Laboratory of Fluid Power and Mechatronic SystemsSchool of Mechanical EngineeringZhejiang UniversityHangzhou310058China
| | - Elena Yu. Kramarenko
- Faculty of PhysicsLomonosov Moscow State UniversityMoscow119991Russia
- Enikolopov Institute of Synthetic Polymeric Materials of Russian Academy of SciencesMoscow117393Russia
| | - Jun Zou
- State Key Laboratory of Fluid Power and Mechatronic SystemsSchool of Mechanical EngineeringZhejiang UniversityHangzhou310058China
| |
Collapse
|
5
|
Li N, Zhou Y, Li Y, Li C, Xiang W, Chen X, Zhang P, Zhang Q, Su J, Jin B, Song H, Cheng C, Guo M, Wang L, Liu J. Transformable 3D curved high-density liquid metal coils - an integrated unit for general soft actuation, sensing and communication. Nat Commun 2024; 15:7679. [PMID: 39237505 PMCID: PMC11377734 DOI: 10.1038/s41467-024-51648-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/15/2024] [Indexed: 09/07/2024] Open
Abstract
Rigid solenoid coils have long been indispensable in modern intelligent devices. However, their sparse structure and challenging preparation of flexible coils for soft robots impose limitations. Here, a transformable 3D curved high-density liquid metal coil (HD-LMC) is introduced that surpasses the structural density level of enameled wire. The fabrication technique employed for high-density channels in elastomers is universally applicable. Such HD-LMCs demonstrated excellent performance in pressure, temperature, non-contact distance sensors, and near-field communication. Soft electromagnetic actuators thus achieved significantly improved the electromagnetic force and power density. Moreover, precise control of swinging tail motion enables a bionic pufferfish to swim. Finally, HD-LMC is further utilized to successfully implement a soft rotary robot with integrated sensing and actuation capabilities. This groundbreaking research provides a theoretical and experimental basis for expanding the applications of liquid metal-based multi-dimensional complex flexible electronics and is expected to be widely used in liquid metal-integrated robotic systems.
Collapse
Affiliation(s)
- Nan Li
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Yingxin Zhou
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Yuqing Li
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Chunwei Li
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Wentao Xiang
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Xueqing Chen
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Pan Zhang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Qi Zhang
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Jun Su
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Bohao Jin
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Huize Song
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Cai Cheng
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Minghui Guo
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Lei Wang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, China.
| | - Jing Liu
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China.
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China.
| |
Collapse
|
6
|
Li N, Yuan X, Li Y, Zhang G, Yang Q, Zhou Y, Guo M, Liu J. Bioinspired Liquid Metal Based Soft Humanoid Robots. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404330. [PMID: 38723269 DOI: 10.1002/adma.202404330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/07/2024] [Indexed: 08/29/2024]
Abstract
The pursuit of constructing humanoid robots to replicate the anatomical structures and capabilities of human beings has been a long-standing significant undertaking and especially garnered tremendous attention in recent years. However, despite the progress made over recent decades, humanoid robots have predominantly been confined to those rigid metallic structures, which however starkly contrast with the inherent flexibility observed in biological systems. To better innovate this area, the present work systematically explores the value and potential of liquid metals and their derivatives in facilitating a crucial transition towards soft humanoid robots. Through a comprehensive interpretation of bionics, an overview of liquid metals' multifaceted roles as essential components in constructing advanced humanoid robots-functioning as soft actuators, sensors, power sources, logical devices, circuit systems, and even transformable skeletal structures-is presented. It is conceived that the integration of these components with flexible structures, facilitated by the unique properties of liquid metals, can create unexpected versatile functionalities and behaviors to better fulfill human needs. Finally, a revolution in humanoid robots is envisioned, transitioning from metallic frameworks to hybrid soft-rigid structures resembling that of biological tissues. This study is expected to provide fundamental guidance for the coming research, thereby advancing the area.
Collapse
Affiliation(s)
- Nan Li
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaohong Yuan
- School of Economics and Business Administration, Chongqing University, Chongqing, 400044, China
| | - Yuqing Li
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangcheng Zhang
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qianhong Yang
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yingxin Zhou
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Minghui Guo
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jing Liu
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
7
|
Tong D, Zhao Y, Wu Z, Chen Y, Xu X, Chen Q, Fan X, Yang Z. Octopus-Inspired Soft Robot for Slow Drug Release. Biomimetics (Basel) 2024; 9:340. [PMID: 38921220 PMCID: PMC11202092 DOI: 10.3390/biomimetics9060340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024] Open
Abstract
Octopus tentacles are equipped with numerous suckers, wherein the muscles contract and expel air, creating a pressure difference. Subsequently, when the muscular tension is released, objects can be securely adhered to. This mechanism has been widely employed in the development of adhesive systems. However, most existing octopus-inspired structures are passive and static, lacking dynamic and controllable adhesive switching capabilities and excellent locomotion performance. Here, we present an octopus-inspired soft robot (OISR). Attracted by the magnetic gradient field, the suction cup structure inside the OISR can generate a strong adsorption force, producing dynamically controllable adsorption and separation in the gastrointestinal (GI) tract. The experimental results show that the OISR has a variety of controllable locomotion behaviors, including quick scrolling and rolling motions, generating fast locomotion responses, rolling over gastric folds, and tumbling and swimming inside liquids. By carrying drugs that are absorbable by GI epithelial cells to target areas, the OISR enables continuous drug delivery at lesions or inflamed regions of the GI tract. This research may be a potential approach for achieving localized slow drug release within the GI tract.
Collapse
Affiliation(s)
- Dingwen Tong
- School of Mechanical and Electrical Engineering, Soochow University, Suzhou 215131, China; (D.T.); (Y.Z.); (Z.W.); (Q.C.)
- School of Future Science and Engineering, Soochow University, Suzhou 215222, China (X.X.)
| | - Yiqun Zhao
- School of Mechanical and Electrical Engineering, Soochow University, Suzhou 215131, China; (D.T.); (Y.Z.); (Z.W.); (Q.C.)
- School of Future Science and Engineering, Soochow University, Suzhou 215222, China (X.X.)
| | - Zhengnan Wu
- School of Mechanical and Electrical Engineering, Soochow University, Suzhou 215131, China; (D.T.); (Y.Z.); (Z.W.); (Q.C.)
- School of Future Science and Engineering, Soochow University, Suzhou 215222, China (X.X.)
| | - Yutan Chen
- School of Future Science and Engineering, Soochow University, Suzhou 215222, China (X.X.)
| | - Xinmiao Xu
- School of Future Science and Engineering, Soochow University, Suzhou 215222, China (X.X.)
| | - Qinkai Chen
- School of Mechanical and Electrical Engineering, Soochow University, Suzhou 215131, China; (D.T.); (Y.Z.); (Z.W.); (Q.C.)
- School of Future Science and Engineering, Soochow University, Suzhou 215222, China (X.X.)
| | - Xinjian Fan
- School of Mechanical and Electrical Engineering, Soochow University, Suzhou 215131, China; (D.T.); (Y.Z.); (Z.W.); (Q.C.)
- School of Future Science and Engineering, Soochow University, Suzhou 215222, China (X.X.)
| | - Zhan Yang
- School of Mechanical and Electrical Engineering, Soochow University, Suzhou 215131, China; (D.T.); (Y.Z.); (Z.W.); (Q.C.)
- School of Future Science and Engineering, Soochow University, Suzhou 215222, China (X.X.)
| |
Collapse
|
8
|
Zhou S, Li Y, Wang Q, Lyu Z. Integrated Actuation and Sensing: Toward Intelligent Soft Robots. CYBORG AND BIONIC SYSTEMS 2024; 5:0105. [PMID: 38711958 PMCID: PMC11070852 DOI: 10.34133/cbsystems.0105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/16/2024] [Indexed: 05/08/2024] Open
Abstract
Soft robotics has received substantial attention due to its remarkable deformability, making it well-suited for a wide range of applications in complex environments, such as medicine, rescue operations, and exploration. Within this domain, the interaction of actuation and sensing is of utmost importance for controlling the movements and functions of soft robots. Nonetheless, current research predominantly focuses on isolated actuation and sensing capabilities, often neglecting the critical integration of these 2 domains to achieve intelligent functionality. In this review, we present a comprehensive survey of fundamental actuation strategies and multimodal actuation while also delving into advancements in proprioceptive and haptic sensing and their fusion. We emphasize the importance of integrating actuation and sensing in soft robotics, presenting 3 integration methodologies, namely, sensor surface integration, sensor internal integration, and closed-loop system integration based on sensor feedback. Furthermore, we highlight the challenges in the field and suggest compelling directions for future research. Through this comprehensive synthesis, we aim to stimulate further curiosity among researchers and contribute to the development of genuinely intelligent soft robots.
Collapse
Affiliation(s)
| | | | - Qianqian Wang
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering,
Southeast University, Nanjing 211189, China
| | - Zhiyang Lyu
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering,
Southeast University, Nanjing 211189, China
| |
Collapse
|
9
|
Ye J, Xiang W, Cheng C, Bao W, Zhang Q. Principles and methods of liquid metal actuators. SOFT MATTER 2024; 20:2196-2211. [PMID: 38372963 DOI: 10.1039/d3sm01756g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
As a promising material, liquid metals (LMs) have gained considerable interest in the field of soft robotics due to their ability to move as designed routines or change their shape dramatically under external stimuli. Inspired by the science fiction film Terminator, tremendous efforts have been devoted to liquid robots with high compliance and intelligence. How to manipulate LM droplets is crucial to achieving this goal. Accordingly, this review is dedicated to presenting the principles driving LMs and summarizing the potential methods to develop LM actuators of high maneuverability. Moreover, the recent progress of LM robots based on these methods is overviewed. The challenges and prospects of implementing autonomous robots have been proposed.
Collapse
Affiliation(s)
- Jiao Ye
- School of Mechanical and Electrical Engineering, Wuhan Institute of Technology, Wuhan, 430205, China.
| | - Wentao Xiang
- Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cai Cheng
- Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wendi Bao
- Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Zhang
- Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Chen Z, Wang Y, Chen H, Law J, Pu H, Xie S, Duan F, Sun Y, Liu N, Yu J. A magnetic multi-layer soft robot for on-demand targeted adhesion. Nat Commun 2024; 15:644. [PMID: 38245517 PMCID: PMC10799857 DOI: 10.1038/s41467-024-44995-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 01/04/2024] [Indexed: 01/22/2024] Open
Abstract
Magnetic soft robots have shown great potential for biomedical applications due to their high shape reconfigurability, motion agility, and multi-functionality in physiological environments. Magnetic soft robots with multi-layer structures can enhance the loading capacity and function complexity for targeted delivery. However, the interactions between soft entities have yet to be fully investigated, and thus the assembly of magnetic soft robots with on-demand motion modes from multiple film-like layers is still challenging. Herein, we model and tailor the magnetic interaction between soft film-like layers with distinct in-plane structures, and then realize multi-layer soft robots that are capable of performing agile motions and targeted adhesion. Each layer of the robot consists of a soft magnetic substrate and an adhesive film. The mechanical properties and adhesion performance of the adhesive films are systematically characterized. The robot is capable of performing two locomotion modes, i.e., translational motion and tumbling motion, and also the on-demand separation with one side layer adhered to tissues. Simulation results are presented, which have a good qualitative agreement with the experimental results. The feasibility of using the robot to perform multi-target adhesion in a stomach is validated in both ex-vivo and in-vivo experiments.
Collapse
Affiliation(s)
- Ziheng Chen
- School of Mechatronics Engineering and Automation, Shanghai University, Shanghai, 200444, China
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, China
- Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen, 518172, China
| | - Yibin Wang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, China
- Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen, 518172, China
| | - Hui Chen
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, China
- Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen, 518172, China
| | - Junhui Law
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, China
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada
| | - Huayan Pu
- School of Mechatronics Engineering and Automation, Shanghai University, Shanghai, 200444, China
| | - Shaorong Xie
- School of Computer Engineering and Science, Shanghai University, Shanghai, 200444, China
| | - Feng Duan
- Department of Interventional Radiology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yu Sun
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada
| | - Na Liu
- School of Mechatronics Engineering and Automation, Shanghai University, Shanghai, 200444, China.
| | - Jiangfan Yu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, China.
- Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen, 518172, China.
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, 518172, China.
| |
Collapse
|
11
|
Zhang Y, Pan C, Liu P, Peng L, Liu Z, Li Y, Wang Q, Wu T, Li Z, Majidi C, Jiang L. Coaxially printed magnetic mechanical electrical hybrid structures with actuation and sensing functionalities. Nat Commun 2023; 14:4428. [PMID: 37481621 PMCID: PMC10363174 DOI: 10.1038/s41467-023-40109-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 07/11/2023] [Indexed: 07/24/2023] Open
Abstract
Soft electromagnetic devices have great potential in soft robotics and biomedical applications. However, existing soft-magneto-electrical devices would have limited hybrid functions and suffer from damaging stress concentrations, delamination or material leakage. Here, we report a hybrid magnetic-mechanical-electrical (MME) core-sheath fiber to overcome these challenges. Assisted by the coaxial printing method, the MME fiber can be printed into complex 2D/3D MME structures with integrated magnetoactive and conductive properties, further enabling hybrid functions including programmable magnetization, somatosensory, and magnetic actuation along with simultaneous wireless energy transfer. To demonstrate the great potential of MME devices, precise and minimally invasive electro-ablation was performed with a flexible MME catheter with magnetic control, hybrid actuation-sensing was performed by a durable somatosensory MME gripper, and hybrid wireless energy transmission and magnetic actuation were demonstrated by an untethered soft MME robot. Our work thus provides a material design strategy for soft electromagnetic devices with unexplored hybrid functions.
Collapse
Affiliation(s)
- Yuanxi Zhang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, PR China
| | - Chengfeng Pan
- The State Key Laboratory of Fluid Power and Mechatronic Systems, College of Mechanical Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Pengfei Liu
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, PR China
| | - Lelun Peng
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, PR China
| | - Zhouming Liu
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, PR China
| | - Yuanyuan Li
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, PR China
| | - Qingyuan Wang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, PR China
| | - Tong Wu
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, PR China
| | - Zhe Li
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, PR China.
| | - Carmel Majidi
- Soft Machines Lab, Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
| | - Lelun Jiang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, PR China.
| |
Collapse
|