1
|
Abel DL. "Assembly Theory" in life-origin models: A critical review. Biosystems 2025; 247:105378. [PMID: 39710183 DOI: 10.1016/j.biosystems.2024.105378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 11/30/2024] [Accepted: 12/04/2024] [Indexed: 12/24/2024]
Abstract
Any homeostatic protometabolism would have required orchestration of disparate biochemical pathways into integrated circuits. Extraordinarily specific molecular assemblies were also required at the right time and place. Assembly Theory conflated with its cousins-Complexity Theory, Chaos theory, Quantum Mechanics, Irreversible Nonequilibrium Thermodynamics and Molecular Evolution theory- collectively have great naturalistic appeal in hopes of their providing the needed exquisite steering and controls. They collectively offer the best hope of circumventing the need for active selection required to formally orchestrate bona fide formal organization (as opposed to the mere self-ordering of chaos theory) (Abel and Trevors, 2006b). This paper focuses specifically on AT's contribution to naturalistic life-origin models.
Collapse
Affiliation(s)
- David Lynn Abel
- ProtoBioCybernetics & Protocellular Metabolomics, The Gene Emergence Project, The Origin of Life Science Foundation, Inc, USA.
| |
Collapse
|
2
|
Nan J, Peng X, Plümper O, ten Have IC, Lu JG, Liu QB, Li SL, Hu Y, Liu Y, Shen Z, Yao W, Tao R, Preiner M, Luo Y. Unraveling abiotic organic synthesis pathways in the mafic crust of mid-ocean ridges. Proc Natl Acad Sci U S A 2024; 121:e2308684121. [PMID: 39388277 PMCID: PMC11513914 DOI: 10.1073/pnas.2308684121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
The aqueous alteration of the oceanic lithosphere provides significant energy that impacts the synthesis and diversity of organic compounds, which are crucial for the deep carbon cycle and may have provided the first building blocks for life. Although abiotic organic synthesis has been documented in mantle-derived rocks, the formation mechanisms and complexity of organic compounds in crustal rocks remain largely unknown. Here, we show the specific association of aliphatic carbonaceous matter with Fe oxyhydroxides in mafic crustal rocks of the Southwest Indian Ridge (SWIR). We determine potential Fe-based pathways for abiotic organic synthesis from CO2 and H2 using multimodal and molecular nano-geochemical tools. Quantum mechanical modeling is further employed to constrain the catalytical activity of Fe oxyhydroxides, revealing that the catalytic cycle of hydrogen may play a key role in carbon-carbon bond formation. This approach offers the possibility of interpreting physicochemical organic formation and condensation mechanisms at an atomic scale. The findings expand our knowledge of the existence of abiotic organic carbon in the oceanic crustal rocks and emphasize the mafic oceanic crust of the SWIR as a potential site for low-temperature abiotic organic synthesis.
Collapse
Affiliation(s)
- Jingbo Nan
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya572000, China
- Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing210008, China
- Center for High Pressure Science and Technology Advanced Research, Beijing100094, China
| | - Xiaotong Peng
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya572000, China
| | - Oliver Plümper
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Utrecht3584 CD, The Netherlands
| | - Iris C. ten Have
- Debye Institute for Nanomaterials Science, Faculty of Science, Utrecht University, Utrecht3584 CG, The Netherlands
| | - Jing-Guang Lu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau999078, China
| | - Qian-Bao Liu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau999078, China
| | - Shao-Lin Li
- The State Key Laboratory of Lunar and Planetary Science, Macau University of Science and Technology, Taipa, Macau999078, China
| | - Yingjie Hu
- Nanjing Key Laboratory of Advanced Functional Materials, Nanjing Xiaozhuang University, Nanjing211171, China
| | - Yu Liu
- College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing100083, China
| | - Zhen Shen
- College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing100083, China
| | - Weiqi Yao
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen518055, China
| | - Renbiao Tao
- Center for High Pressure Science and Technology Advanced Research, Beijing100094, China
| | - Martina Preiner
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Utrecht3584 CD, The Netherlands
- Microcosm Earth Center, Max Planck Institute for Terrestrial Microbiology and Philipps Universität Marburg, Marburg35032, Germany
- Center for Synthetic Microbiology, Marburg35032, Germany
- Geochemical Protoenzymes Research Group, Max Planck Institute for Terrestrial Microbiology, Marburg35043, Germany
| | - Yongxiang Luo
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya572000, China
| |
Collapse
|
3
|
Pouliquen DL. The biophysics of water in cell biology: perspectives on a keystone for both marine sciences and cancer research. Front Cell Dev Biol 2024; 12:1403037. [PMID: 38803391 PMCID: PMC11128620 DOI: 10.3389/fcell.2024.1403037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
The biophysics of water, has been debated over more than a century. Although its importance is still underestimated, significant breakthroughs occurred in recent years. The influence of protein condensation on water availability control was documented, new findings on water-transport proteins emerged, and the way water molecules rearrange to minimize free energy at interfaces was deciphered, influencing membrane thermodynamics. The state of knowledge continued to progress in the field of deep-sea marine biology, highlighting unknown effects of high hydrostatic pressure and/or temperature on interactions between proteins and ligands in extreme environments, and membrane structure adaptations. The role of osmolytes in protein stability control under stress is also discussed here in relation to fish egg hydration/buoyancy. The complexity of water movements within the cell is updated, all these findings leading to a better view of their impact on many cellular processes. The way water flow and osmotic gradients generated by ion transport work together to produce the driving force behind cell migration is also relevant to both marine biology and cancer research. Additional common points concern water dynamic changes during the neoplastic transformation of cells and tissues, or embryo development. This could improve imaging techniques, early cancer diagnosis, and understanding of the molecular and physiological basis of buoyancy for many marine species.
Collapse
Affiliation(s)
- Daniel L. Pouliquen
- Inserm, CNRS, CRCINA, Nantes Université, University of Angers, Angers, France
| |
Collapse
|
4
|
Klein F, Schroeder T, John CM, Davis S, Humphris SE, Seewald JS, Sichel S, Bach W, Brunelli D. Mineral carbonation of peridotite fueled by magmatic degassing and melt impregnation in an oceanic transform fault. Proc Natl Acad Sci U S A 2024; 121:e2315662121. [PMID: 38346185 PMCID: PMC10895273 DOI: 10.1073/pnas.2315662121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/27/2023] [Indexed: 02/28/2024] Open
Abstract
Most of the geologic CO2 entering Earth's atmosphere and oceans is emitted along plate margins. While C-cycling at mid-ocean ridges and subduction zones has been studied for decades, little attention has been paid to degassing of magmatic CO2 and mineral carbonation of mantle rocks in oceanic transform faults. We studied the formation of soapstone (magnesite-talc rock) and other magnesite-bearing assemblages during mineral carbonation of mantle peridotite in the St. Paul's transform fault, equatorial Atlantic. Clumped carbonate thermometry of soapstone yields a formation (or equilibration) temperature of 147 ± 13 °C which, based on thermodynamic constraints, suggests that CO2(aq) concentrations of the hydrothermal fluid were at least an order of magnitude higher than in seawater. The association of magnesite with apatite in veins, magnesite with a δ13C of -3.40 ± 0.04‰, and the enrichment of CO2 in hydrothermal fluids point to magmatic degassing and melt-impregnation as the main source of CO2. Melt-rock interaction related to gas-rich alkali olivine basalt volcanism near the St. Paul's Rocks archipelago is manifested in systematic changes in peridotite compositions, notably a strong enrichment in incompatible elements with decreasing MgO/SiO2. These findings reveal a previously undocumented aspect of the geologic carbon cycle in one of the largest oceanic transform faults: Fueled by magmatism in or below the root zone of the transform fault and subsequent degassing, the fault constitutes a conduit for CO2-rich hydrothermal fluids, while carbonation of peridotite represents a vast sink for the emitted CO2.
Collapse
Affiliation(s)
- Frieder Klein
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA02543
| | | | - Cédric M. John
- Department of Earth Science and Engineering, Imperial College London, London02543, United Kingdom
| | - Simon Davis
- Department of Earth Science and Engineering, Imperial College London, London02543, United Kingdom
| | - Susan E. Humphris
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods HoleMA02543
| | - Jeffrey S. Seewald
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA02543
| | - Susanna Sichel
- Laboratório de Geologia Marinha, Universidade Federal Fluminense, Niteroi24210-340, Brazil
| | - Wolfgang Bach
- Fachbereich Geowissenschaften and MARUM, Universität Bremen, Bremen28359, Germany
| | - Daniele Brunelli
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods HoleMA02543
- Dipartimento di Scienze Chimiche e Geologiche, Università di Modena e Reggio Emilia, Modena41125, Italy
| |
Collapse
|
5
|
Chen C, Yi R, Igisu M, Sakaguchi C, Afrin R, Potiszil C, Kunihiro T, Kobayashi K, Nakamura E, Ueno Y, Antunes A, Wang A, Chandru K, Hao J, Jia TZ. Spectroscopic and Biophysical Methods to Determine Differential Salt-Uptake by Primitive Membraneless Polyester Microdroplets. SMALL METHODS 2023; 7:e2300119. [PMID: 37203261 DOI: 10.1002/smtd.202300119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/23/2023] [Indexed: 05/20/2023]
Abstract
α-Hydroxy acids are prebiotic monomers that undergo dehydration synthesis to form polyester gels, which assemble into membraneless microdroplets upon aqueous rehydration. These microdroplets are proposed as protocells that can segregate and compartmentalize primitive molecules/reactions. Different primitive aqueous environments with a variety of salts could have hosted chemistries that formed polyester microdroplets. These salts could be essential cofactors of compartmentalized prebiotic reactions or even directly affect protocell structure. However, fully understanding polyester-salt interactions remains elusive, partially due to technical challenges of quantitative measurements in condensed phases. Here, spectroscopic and biophysical methods are applied to analyze salt uptake by polyester microdroplets. Inductively coupled plasma mass spectrometry is applied to measure the cation concentration within polyester microdroplets after addition of chloride salts. Combined with methods to determine the effects of salt uptake on droplet turbidity, size, surface potential and internal water distribution, it was observed that polyester microdroplets can selectively partition salt cations, leading to differential microdroplet coalescence due to ionic screening effects reducing electrostatic repulsion forces between microdroplets. Through applying existing techniques to novel analyses related to primitive compartment chemistry and biophysics, this study suggests that even minor differences in analyte uptake can lead to significant protocellular structural change.
Collapse
Affiliation(s)
- Chen Chen
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8550, Japan
| | - Ruiqin Yi
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8550, Japan
| | - Motoko Igisu
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, 237-0061, Japan
| | - Chie Sakaguchi
- The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Misasa, Tottori, 682-0193, Japan
| | - Rehana Afrin
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8550, Japan
| | - Christian Potiszil
- The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Misasa, Tottori, 682-0193, Japan
| | - Tak Kunihiro
- The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Misasa, Tottori, 682-0193, Japan
| | - Katsura Kobayashi
- The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Misasa, Tottori, 682-0193, Japan
| | - Eizo Nakamura
- The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Misasa, Tottori, 682-0193, Japan
| | - Yuichiro Ueno
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8550, Japan
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, 237-0061, Japan
- Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8551, Japan
| | - André Antunes
- State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology (MUST), Taipa, Macau, SAR, China
- Blue Marble Space Institute of Science, Seattle, WA, 98104, USA
| | - Anna Wang
- School of Chemistry, UNSW Sydney, Sydney, NSW, 2052, Australia
- Australian Centre for Astrobiology, UNSW Sydney, Sydney, NSW, 2052, Australia
- RNA Institute, UNSW Sydney, Sydney, NSW, 2052, Australia
- ARC Centre of Excellence for Synthetic Biology, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Kuhan Chandru
- Space Science Center (ANGKASA), Institute of Climate Change, National University of Malaysia, Selangor, 43650, Malaysia
| | - Jihua Hao
- Blue Marble Space Institute of Science, Seattle, WA, 98104, USA
- Deep Space Exploration Laboratory/CAS Laboratory of Crust-Mantle Materials and Environments, University of Science and Technology of China, Hefei, 230026, China
| | - Tony Z Jia
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8550, Japan
- Blue Marble Space Institute of Science, Seattle, WA, 98104, USA
| |
Collapse
|