1
|
Xiao L, Hu X, Zhou Z, Xie X, Huang S, Ji M, Xu A, Tian Y. Diverse applications of DNA origami as a cross-disciplinary tool. NANOSCALE 2025; 17:10411-10432. [PMID: 40192061 DOI: 10.1039/d4nr04490h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
As knowledge from a single discipline is no longer sufficient to keep pace with the growing complexity of technological advancements, interdisciplinary collaboration has become a crucial driver of innovation. DNA nanotechnology exemplifies this integration, serving as a field where cross-disciplinary communication is particularly prominent. Since its introduction by Rothemund in 2006, DNA origami has proved to be a powerful tool for interdisciplinary research, offering exceptional structural stability, programmability, and addressability. This review provides an overview of the development of DNA origami technology, highlights its major advances, and explores its innovative applications across various disciplines in recent years, showcasing its vast potential and future prospects. We believe DNA origami is poised for even broader applications, driving progress across multiple fields.
Collapse
Affiliation(s)
- Lingyun Xiao
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210023, China.
| | - Xiaoxue Hu
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210023, China.
| | - Zhaoyu Zhou
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210023, China.
| | - Xiaolin Xie
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210023, China.
| | - Shujing Huang
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210023, China.
| | - Min Ji
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210023, China.
| | - Aobo Xu
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210023, China.
| | - Ye Tian
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
2
|
Fan J, Yang C, Zhu H, Wang H, Li X, Liu J, Ding B. DNA/RNA Origami Based on Different Scaffolds and Their Biomedical Applications. ACS Biomater Sci Eng 2025; 11:2080-2095. [PMID: 40047239 DOI: 10.1021/acsbiomaterials.5c00154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Nucleic acids, including DNA and RNA, have been used extensively as building blocks to construct sophisticated nanostructures through complementary base pairing with predetermined shapes and sizes. With remarkable biocompatibility, spatial addressability, and structural programmability, self-assembled nucleic acid biomaterials have found widespread applications in various biomedical researches, including drug delivery, bioimaging, or disease diagnosis. Notably, as one of the representative nanostructures, DNA origami has drawn much attention. In this review, we summarize the latest developments in DNA/RNA origami design based on single-stranded DNA (ssDNA), double-stranded DNA (dsDNA), and single-stranded RNA (ssRNA) scaffolds for a range of biomedical applications, including drug delivery, gene regulation, immunomodulation, and receptor recognition. Additionally, the challenges and future opportunities of DNA/RNA origami in biomedical applications will be discussed.
Collapse
Affiliation(s)
- Jing Fan
- School of Materials Science and Engineering, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Changping Yang
- School of Materials Science and Engineering, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Hanyin Zhu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xintong Li
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianbing Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baoquan Ding
- School of Materials Science and Engineering, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Yang C, Fan J, Zhu H, Wang H, He Y, Liu J, Ding B. Genetically Encoded Nucleic Acid Nanostructures for Biological Applications. Chembiochem 2025; 26:e202400991. [PMID: 39809714 DOI: 10.1002/cbic.202400991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/14/2025] [Accepted: 01/14/2025] [Indexed: 01/16/2025]
Abstract
Nucleic acid, as a carrier of genetic information, has been widely employed as a building block for the construction of versatile nanostructures with pre-designed sizes and shapes through complementary base pairing. With excellent programmability, addressability, and biocompatibility, nucleic acid nanostructures are extensively applied in biomedical researches, such as bio-imaging, bio-sensing, and drug delivery. Notably, the original gene-encoding capability of the nucleic acids themselves has been utilized in these structurally well-defined nanostructures. In this review, we will summarize the recent progress in the design of double-stranded DNA and mRNA-encoded nanostructures for various biological applications, such as gene regulation, gene expression, and mRNA transcription. Furthermore, the challenges and future opportunities of genetically encoded nucleic acid nanostructures in biomedical applications will be discussed.
Collapse
Affiliation(s)
- Changping Yang
- School of Materials Science and Engineering, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, China
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Jing Fan
- School of Materials Science and Engineering, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, China
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Hanyin Zhu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hong Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuling He
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Jianbing Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Baoquan Ding
- School of Materials Science and Engineering, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, China
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
4
|
Panigaj M, Basu Roy T, Skelly E, Chandler MR, Wang J, Ekambaram S, Bircsak K, Dokholyan NV, Afonin KA. Autonomous Nucleic Acid and Protein Nanocomputing Agents Engineered to Operate in Living Cells. ACS NANO 2025; 19:1865-1883. [PMID: 39760461 PMCID: PMC11757000 DOI: 10.1021/acsnano.4c13663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/23/2024] [Accepted: 12/27/2024] [Indexed: 01/07/2025]
Abstract
In recent years, the rapid development and employment of autonomous technology have been observed in many areas of human activity. Autonomous technology can readily adjust its function to environmental conditions and enable an efficient operation without human control. While applying the same concept to designing advanced biomolecular therapies would revolutionize nanomedicine, the design approaches to engineering biological nanocomputing agents for predefined operations within living cells remain a challenge. Autonomous nanocomputing agents made of nucleic acids and proteins are an appealing idea, and two decades of research has shown that the engineered agents act under real physical and biochemical constraints in a logical manner. Throughout all domains of life, nucleic acids and proteins perform a variety of vital functions, where the sequence-defined structures of these biopolymers either operate on their own or efficiently function together. This programmability and synergy inspire massive research efforts that utilize the versatility of nucleic and amino acids to encode functions and properties that otherwise do not exist in nature. This Perspective covers the key concepts used in the design and application of nanocomputing agents and discusses potential limitations and paths forward.
Collapse
Affiliation(s)
- Martin Panigaj
- Nanoscale
Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Tanaya Basu Roy
- Department
of Pharmacology, Department of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Elizabeth Skelly
- Nanoscale
Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | | | - Jian Wang
- Department
of Pharmacology, Department of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Srinivasan Ekambaram
- Department
of Pharmacology, Department of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Kristin Bircsak
- MIMETAS
US, INC, Gaithersburg, Maryland 20878, United States
| | - Nikolay V. Dokholyan
- Department
of Pharmacology, Department of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Kirill A. Afonin
- Nanoscale
Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| |
Collapse
|
5
|
Li K, Chen H, Li D, Yang C, Zhang H, Zhu Z. Empowering DNA-Based Information Processing: Computation and Data Storage. ACS APPLIED MATERIALS & INTERFACES 2024; 16:68749-68771. [PMID: 39648356 DOI: 10.1021/acsami.4c13948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Information processing is a critical topic in the digital age, as silicon-based circuits face unprecedented challenges such as data explosion, immense energy consumption, and approaching physical limits. Deoxyribonucleic acid (DNA), naturally selected as a carrier for storing and using genetic information, possesses unique advantages for information processing, which has given rise to the emerging fields of DNA computing and DNA data storage. To meet the growing practical demands, a wide variety of materials and interfaces have been introduced into DNA information processing technologies, leading to significant advancements. This review summarizes the advances in materials and interfaces that facilitate DNA computation and DNA data storage. We begin with a brief overview of the fundamental functions and principles of DNA computation and DNA data storage. Subsequently, we delve into DNA computing systems based on various materials and interfaces, including microbeads, nanomaterials, DNA nanostructures, hydrophilic-hydrophobic compartmentalization, hydrogels, metal-organic frameworks, and microfluidics. We also explore DNA data storage systems, encompassing encapsulation materials, microfluidics techniques, DNA nanostructures, and living cells. Finally, we discuss the current bottlenecks and obstacles in the fields and provide insights into potential future developments.
Collapse
Affiliation(s)
- Kunjie Li
- Key Laboratory of Spectrochemical Analysis and Instrumentation, Ministry of Education, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Electronic Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, China
| | - Heng Chen
- Key Laboratory of Spectrochemical Analysis and Instrumentation, Ministry of Education, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Electronic Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, China
| | - Dayang Li
- Key Laboratory of Spectrochemical Analysis and Instrumentation, Ministry of Education, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Electronic Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, China
| | - Chaoyong Yang
- Key Laboratory of Spectrochemical Analysis and Instrumentation, Ministry of Education, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Electronic Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, China
| | - Huimin Zhang
- Key Laboratory of Spectrochemical Analysis and Instrumentation, Ministry of Education, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Electronic Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, China
| | - Zhi Zhu
- Key Laboratory of Spectrochemical Analysis and Instrumentation, Ministry of Education, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Electronic Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
6
|
Zhao Y, Li X, Zhou Y, Tian X, Miao Y, Wang J, Huang L, Meng F. Advancements in DNA computing: exploring DNA logic systems and their biomedical applications. J Mater Chem B 2024; 12:10134-10148. [PMID: 39282799 DOI: 10.1039/d4tb00936c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
DNA computing is regarded as one of the most promising candidates for the next generation of molecular computers, utilizing DNA to execute Boolean logic operations. In recent decades, DNA computing has garnered widespread attention due to its powerful programmable and parallel computing capabilities, demonstrating significant potential in intelligent biological analysis. This review summarizes the latest advancements in DNA logic systems and their biomedical applications. Firstly, it introduces recent DNA logic systems based on various materials such as functional DNA sequences, nanomaterials, and three-dimensional DNA nanostructures. The material innovations driving DNA computing have been summarized, highlighting novel molecular reactions and analytical performance metrics like efficiency, sensitivity, and selectivity. Subsequently, it outlines the biomedical applications of DNA computing-based multi-biomarker analysis in cellular imaging, clinical diagnosis, and disease treatment. Additionally, it discusses the existing challenges and future research directions for the development of DNA computing.
Collapse
Affiliation(s)
- Yuewei Zhao
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P. R. China.
| | - Xvelian Li
- Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P. R. China
| | - Yan Zhou
- Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P. R. China
| | - Xiaoting Tian
- Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P. R. China
| | - Yayou Miao
- Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P. R. China
| | - Jiayi Wang
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P. R. China.
- Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P. R. China
| | - Lin Huang
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P. R. China.
- Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P. R. China
| | - Fanyu Meng
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P. R. China.
- Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P. R. China
| |
Collapse
|
7
|
Zhan P, Yang J, Ding L, Jing X, Hipp K, Nussberger S, Yan H, Liu N. 3D DNA origami pincers that multitask on giant unilamellar vesicles. SCIENCE ADVANCES 2024; 10:eadn8903. [PMID: 39151012 PMCID: PMC11328896 DOI: 10.1126/sciadv.adn8903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 07/10/2024] [Indexed: 08/18/2024]
Abstract
Proteins self-assemble to function in living cells. They may execute essential tasks in the form of monomers, complexes, or supramolecular cages via oligomerization, achieving a sophisticated balance between structural topology and functional dynamics. The modularity and programmability make DNA origami unique in mimicking these key features. Here, we demonstrate three-dimensional reconfigurable DNA origami pincers (DOPs) that multitask on giant unilamellar vesicles (GUVs). By programmably adjusting their pinching angle, the DOPs can dynamically control the degree of GUV remodeling. When oligomerized on the GUV to form origami cages, the DOP units interact with one another and undergo reorganization, resulting in the capture, compartmentalization, and detachment of lipid fragments. This oligomerization process is accompanied with membrane disruptions, enabling the passage of cargo across the membrane. We envisage that interfacing synthetic cells with engineered, multifunctional DNA nanostructures may help to confer customized cellular properties, unleashing the potential of both fields.
Collapse
Affiliation(s)
- Pengfei Zhan
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, 310022 Hangzhou, Zhejiang, China
- 2nd Physics Institute, University of Stuttgart, D-70569 Stuttgart, Germany
| | - Juanjuan Yang
- 2nd Physics Institute, University of Stuttgart, D-70569 Stuttgart, Germany
- Max Planck Institute for Solid State Research, D-70569 Stuttgart, Germany
| | - Longjiang Ding
- 2nd Physics Institute, University of Stuttgart, D-70569 Stuttgart, Germany
- Max Planck Institute for Solid State Research, D-70569 Stuttgart, Germany
| | - Xinxin Jing
- 2nd Physics Institute, University of Stuttgart, D-70569 Stuttgart, Germany
- Max Planck Institute for Solid State Research, D-70569 Stuttgart, Germany
| | - Katharina Hipp
- Electron Microscopy, Max Planck Institute for Biology Tübingen, 72076 Tübingen, Germany
| | - Stephan Nussberger
- Department of Biophysics, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, D-70569 Stuttgart, Germany
| | - Hao Yan
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe, AZ 85287, USA
| | - Na Liu
- 2nd Physics Institute, University of Stuttgart, D-70569 Stuttgart, Germany
- Max Planck Institute for Solid State Research, D-70569 Stuttgart, Germany
| |
Collapse
|
8
|
Reinsalu O, Ernits M, Linko V. Liposome-based hybrid drug delivery systems with DNA nanostructures and metallic nanoparticles. Expert Opin Drug Deliv 2024; 21:905-920. [PMID: 38962823 DOI: 10.1080/17425247.2024.2375389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/28/2024] [Indexed: 07/05/2024]
Abstract
INTRODUCTION This review discusses novel hybrid assemblies that are based on liposomal formulations. The focus is on the hybrid constructs that are formed through the integration of liposomes/vesicles with other nano-objects such as nucleic acid nanostructures and metallic nanoparticles. The aim is to introduce some of the recent, specific examples that bridge different technologies and thus may form a new platform for advanced drug delivery applications. AREAS COVERED We present selected examples of liposomal formulations combined with complex nanostructures either based on biomolecules like DNA origami or on metallic materials - metal/metal oxide/magnetic particles and metallic nanostructures, such as metal organic frameworks - together with their applications in drug delivery and beyond. EXPERT OPINION Merging the above-mentioned techniques could lead to development of drug delivery vehicles with the most desirable properties; multifunctionality, biocompatibility, high drug loading efficiency/accuracy/capacity, and stimuli-responsiveness. In the near future, we believe that especially the strategies combining dynamic, triggerable and programmable DNA nanostructures and liposomes could be used to create artificial liposome clusters for multiple applications such as examining protein-mediated interactions between lipid bilayers and channeling materials between liposomes for enhanced pharmacokinetic properties in drug delivery.
Collapse
Affiliation(s)
- Olavi Reinsalu
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Mart Ernits
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Veikko Linko
- Institute of Technology, University of Tartu, Tartu, Estonia
- Department of Bioproducts and Biosystems, Aalto University School of Chemical Engineering, Espoo, Finland
| |
Collapse
|
9
|
Peng Z, Iwabuchi S, Izumi K, Takiguchi S, Yamaji M, Fujita S, Suzuki H, Kambara F, Fukasawa G, Cooney A, Di Michele L, Elani Y, Matsuura T, Kawano R. Lipid vesicle-based molecular robots. LAB ON A CHIP 2024; 24:996-1029. [PMID: 38239102 PMCID: PMC10898420 DOI: 10.1039/d3lc00860f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/12/2023] [Indexed: 02/28/2024]
Abstract
A molecular robot, which is a system comprised of one or more molecular machines and computers, can execute sophisticated tasks in many fields that span from nanomedicine to green nanotechnology. The core parts of molecular robots are fairly consistent from system to system and always include (i) a body to encapsulate molecular machines, (ii) sensors to capture signals, (iii) computers to make decisions, and (iv) actuators to perform tasks. This review aims to provide an overview of approaches and considerations to develop molecular robots. We first introduce the basic technologies required for constructing the core parts of molecular robots, describe the recent progress towards achieving higher functionality, and subsequently discuss the current challenges and outlook. We also highlight the applications of molecular robots in sensing biomarkers, signal communications with living cells, and conversion of energy. Although molecular robots are still in their infancy, they will unquestionably initiate massive change in biomedical and environmental technology in the not too distant future.
Collapse
Affiliation(s)
- Zugui Peng
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| | - Shoji Iwabuchi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| | - Kayano Izumi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| | - Sotaro Takiguchi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| | - Misa Yamaji
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| | - Shoko Fujita
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| | - Harune Suzuki
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| | - Fumika Kambara
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| | - Genki Fukasawa
- School of Life Science and Technology, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-Ku, Tokyo 152-8550, Japan
| | - Aileen Cooney
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
| | - Lorenzo Di Michele
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
- FabriCELL, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
| | - Yuval Elani
- Department of Chemical Engineering, Imperial College London, South Kensington, London SW7 2AZ, UK
- FabriCELL, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
| | - Tomoaki Matsuura
- Earth-Life Science Institute, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-Ku, Tokyo 152-8550, Japan
| | - Ryuji Kawano
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| |
Collapse
|