1
|
Kusy R, Grela K. Renaissance in Alkyne Semihydrogenation: Mechanism, Selectivity, Functional Group Tolerance, and Applications in Organic Synthesis. Chem Rev 2025; 125:4397-4527. [PMID: 40279298 DOI: 10.1021/acs.chemrev.4c00001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2025]
Abstract
Alkenes constitute a significant class of chemical compounds with applications in the bulk, pharmaceutical, or perfume industry. Among the known methods of olefin production, semihydrogenation of the C-C triple bond seems to be the most straightforward one. Nonetheless, the success of this reaction requires full control over diastereoselectivity, eradication of a parasitic process of over-reduction or migration of the C-C double bond formed, and achieving satisfactory functional-group compatibility. The review demonstrates developments in the field of alkyne semihydrogenation over the period 2010-2022, with selected papers published in 2023 and 2024, emphasizing solutions to the above-mentioned limitations. We discuss mechanistic aspects of this transformation, including those related to unconventional systems. The review includes examples of applications of alkyne semihydrogenation in organic synthesis, confirming the considerable utility of this process. Finally, strategies to enhance catalyst selectivity are summarized. For the reader's convenience, we provided a graphical guidebook to catalytic systems, illustrating the efficiency of the particular method.
Collapse
Affiliation(s)
- Rafał Kusy
- Leibniz-Institute for Catalysis, Albert-Einstein-Street 29a, 18059 Rostock, Germany
- Institute of Organic Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Karol Grela
- Institute of Organic Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
- Biological and Chemical Research Centre, Faculty of Chemistry University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| |
Collapse
|
2
|
Shaw R, Singh A, Althagafi I, Pratap R, Yadav DK. The stereo-divergent functionalization of alkynes: a comprehensive review. RSC Adv 2025; 15:12202-12245. [PMID: 40248221 PMCID: PMC12004116 DOI: 10.1039/d5ra01579k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Accepted: 03/31/2025] [Indexed: 04/19/2025] Open
Abstract
Alkynes are central in crafting pharmaceuticals, agrochemicals, and materials owing to their reactivity and linear geometry. This review unveils cutting-edge advancements in the stereo-divergent functionalization of alkynes, transforming them into invaluable tools for synthesizing stereochemically defined alkenes and alkanes. The review highlights ground-breaking methodologies that achieve exceptional E- and Z-selectivity using innovative catalysts like cobalt, nickel, and palladium through hydrogenation, hydroboration, and hydrosilylation. Recent breakthroughs such as dual-catalytic systems and energy transfer catalysis enable unprecedented stereocontrol. Sustainable strategies including water as a hydrogen source and recyclable catalysts align with green chemistry principles, paving the way for eco-friendly synthesis. This synthesis of cutting-edge techniques and their applications inspire new avenues in synthetic chemistry, offering transformative tools for creating complex molecular architectures with precision and sustainability.
Collapse
Affiliation(s)
- Ranjay Shaw
- Department of Chemistry, GLA University Mathura 281406 India
| | - Ashmita Singh
- Department of Chemistry, University of Delhi Delhi India 110007
| | - Ismail Althagafi
- Department of Chemistry, Faculty of Science, Umm Al-Qura University Makkah 21955 Saudi Arabia
| | - Ramendra Pratap
- Department of Chemistry, University of Delhi Delhi India 110007
| | - Dharmendra Kumar Yadav
- Department of Biologics, College of Pharmacy, Gachon University Hambakmoeiro 191, Yeonsu-gu Incheon 21924 Republic of Korea
| |
Collapse
|
3
|
Wei Z, Jing X, Zhao S, Yang Y, Duan C. Modulating the Aggregation States of a Pd 6L 4 Cage for Selectivity Flipping during the Stereo-Divergent Semi-Hydrogenation of Alkynes. Angew Chem Int Ed Engl 2025; 64:e202414894. [PMID: 39503072 DOI: 10.1002/anie.202414894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Indexed: 11/22/2024]
Abstract
An enzyme-mimicking catalytic system has been established using a singular palladium-based octahedral cage as the supramolecular reactor, deftly unlocking the off-on-off selectivity in the semi-hydrogenation of alkynes. Water serves as a critical regulator, modulating the catalyst states, reaction rates, and endpoints. The choice of solvent system influences the activity of host-guest binding and the reaction types of homogeneous and heterogeneous catalysis, effectively modifying the reaction steps involved in the Z→E isomerization during the semi-hydrogenation of alkynes. Kinetic and inhibition experiments indicate that the catalyst mimics the binding and activation characteristics of enzymes towards substrates, enabling selective transformations within the confined enzyme-mimicking environment. The utility of this switchable cage-confined catalysis has been demonstrated in the synthesis and modification of complex biologically active molecules with controllable E/Z selectivity. This work sheds light on the design and control of artificial supramolecular counterparts of enzymes, offering fundamental insights into the factors influencing the activity and catalytic selectivity of biological macromolecules.
Collapse
Affiliation(s)
- Zhong Wei
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Xu Jing
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Song Zhao
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Yang Yang
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Chunying Duan
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
4
|
Liang C, Liu ZQ, Lin M, Huang XM, Xiong SQ, Zhang X, Li QH, Liu TL. Rhodium-Catalyzed Synthesis of Trifluoromethyl-Containing Allylic Alcohols Via Z-Alkenyl Transfer with High Stereochemistry Retention. Org Lett 2024; 26:10665-10670. [PMID: 39651549 DOI: 10.1021/acs.orglett.4c03160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Herein, we report the rhodium-catalyzed Z-alkenyl transfer from tertiary allylic alcohols to aryl trifluoromethyl ketones, which provided an efficient way of preparation of trifluoromethyl-containing Z-allylic alcohols via β-Z-alkenyl elimination. The key Z-alkenyl-rhodium species were generated with a high degree of stereochemical retention. This reaction featured a broad substrate scope and good functional tolerance and would offer a fascinating approach for the synthesis of Z-alkenes.
Collapse
Affiliation(s)
- Cheng Liang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Zheng-Qiang Liu
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Min Lin
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Xue-Mei Huang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Si-Qi Xiong
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Xue Zhang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Qing-Hua Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Tang-Lin Liu
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
5
|
Xu P, Ma C. Scalable deoxygenative alkynylation of alcohols via flow photochemistry. Commun Chem 2024; 7:276. [PMID: 39592716 PMCID: PMC11599925 DOI: 10.1038/s42004-024-01363-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Internal alkynes are often contained in bioactive pharmaceuticals and crucial intermediates in material sciences, yet their production methods are often limited and challenging, necessitating the development of more efficient and versatile synthetic routes. Here we report a method of deoxygenative alkynylation of alcohols via flow photochemistry. Formation of N-heterocyclic carbene-alcohol adducts undergoes oxidation by a photocatalyst, generating alkyl radicals. These radicals are subsequently trapped by an alkynylation agent, yielding the desired alkyne. Compared to batch reactions, the strategy using flow photochemistry is practical and efficient to complete the reaction in relatively short time with good yields. A wide range of functional groups were tolerated. The broad application of this method for alkyne synthesis in industry settings is anticipated, supported by the potential in late-stage functionalization of biomolecules and gram-scale synthesis.
Collapse
Affiliation(s)
- Pin Xu
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Cong Ma
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China.
| |
Collapse
|
6
|
Cao Y, Dodd NA, Bacsa J, Sadighi JP. Reversible C-CN Bond Cleavage by a Formal Dinickel(I) Hydride Cation. Organometallics 2024; 43:2895-2905. [PMID: 39610983 PMCID: PMC11600506 DOI: 10.1021/acs.organomet.4c00340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/09/2024] [Accepted: 10/23/2024] [Indexed: 11/30/2024]
Abstract
An N-heterocyclic carbene (NHC) ligand supports a stable [Ni2H]+ core, formally dinickel(I). This diamagnetic cation complex features a bent hydride bridge and a Ni···Ni distance, 2.9926(5) Å, larger than two covalent radii. The cation displays weakly protic character, undergoing deprotonation by strong base to form the corresponding (NHC)nickel(0) dimer. Its reaction with aliphatic nitriles results in C-CN bond cleavage. The organic products of this reaction suggest that this bond-breaking step involves reactive nickel alkyl intermediates and occurs reversibly.
Collapse
Affiliation(s)
- Yu Cao
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332-0400, United States
| | - Neil A. Dodd
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332-0400, United States
| | - John Bacsa
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332-0400, United States
- X-ray
Crystallography Center, Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Joseph P. Sadighi
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332-0400, United States
| |
Collapse
|
7
|
Sk M, Haldar S, Bera S, Banerjee D. Recent advances in the selective semi-hydrogenation of alkyne to ( E)-olefins. Chem Commun (Camb) 2024; 60:1517-1533. [PMID: 38251772 DOI: 10.1039/d3cc05395d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Considering the potential importance and upsurge in demand, the selective semi-hydrogenation of alkynes to (E)-olefins has attracted significant interest. This article highlights the recent advances in newer technologies and important methodologies directed to (E)-olefins from alkynes developed from 2015 to 2023. Notable features summarised include the catalyst or ligand design and control of product selectivity based on precious and nonprecious metal catalysts for semi-hydrogenation to (E)-olefins. Mechanistic studies for various catalytic transformations, including synthetic application to bioactive compounds, are summarised.
Collapse
Affiliation(s)
- Motahar Sk
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| | - Shuvojit Haldar
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| | - Sourajit Bera
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| | - Debasis Banerjee
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| |
Collapse
|
8
|
Gutiérrez-Blanco M, Algarra AG, Guillamón E, Fernández-Trujillo MJ, Oliva M, Basallote MG, Llusar R, Safont VS. Spin-Crossing in the ( Z)-Selective Alkyne Semihydrogenation Mechanism Catalyzed by Mo 3S 4 Clusters: A Density Functional Theory Exploration. Inorg Chem 2024; 63:1000-1009. [PMID: 38173271 DOI: 10.1021/acs.inorgchem.3c03057] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Semihydrogenation of internal alkynes catalyzed by the air-stable imidazolyl amino [Mo3S4Cl3(ImNH2)3]+ cluster selectively affords the (Z)-alkene under soft conditions in excellent yields. Experimental results suggest a sulfur-based mechanism with the formation of a dithiolene adduct through interaction of the alkyne with the bridging sulfur atoms. However, computational studies indicate that this mechanism is unable to explain the experimental outcome: mild reaction conditions, excellent selectivity toward the (Z)-isomer, and complete deuteration of the vinylic positions in the presence of CD3OD and CH3OD. An alternative mechanism that explains the experimental results is proposed. The reaction begins with the hydrogenation of two of the Mo3(μ3-S)(μ-S)3 bridging sulfurs to yield a bis(hydrosulfide) intermediate that performs two sequential hydrogen atom transfers (HAT) from the S-H groups to the alkyne. The first HAT occurs with a spin change from singlet to triplet. After the second HAT, the singlet state is recovered. Although the dithiolene adduct is more stable than the hydrosulfide species, the large energy required for the subsequent H2 addition makes the system evolve via the second alternative pathway to selectively render the (Z)-alkene with a lower overall activation barrier.
Collapse
Affiliation(s)
- María Gutiérrez-Blanco
- Departament de Química Física i Analítica, Universitat Jaume I, Av. Sos Baynat s/n, Castelló 12071, Spain
| | - Andrés G Algarra
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Instituto de Biomoléculas (INBIO), Facultad de Ciencias, Universidad de Cádiz, Apartado 40, Puerto Real, Cádiz 11510, Spain
| | - Eva Guillamón
- Departament de Química Física i Analítica, Universitat Jaume I, Av. Sos Baynat s/n, Castelló 12071, Spain
| | - M Jesús Fernández-Trujillo
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Instituto de Biomoléculas (INBIO), Facultad de Ciencias, Universidad de Cádiz, Apartado 40, Puerto Real, Cádiz 11510, Spain
| | - Mónica Oliva
- Departament de Química Física i Analítica, Universitat Jaume I, Av. Sos Baynat s/n, Castelló 12071, Spain
| | - Manuel G Basallote
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Instituto de Biomoléculas (INBIO), Facultad de Ciencias, Universidad de Cádiz, Apartado 40, Puerto Real, Cádiz 11510, Spain
| | - Rosa Llusar
- Departament de Química Física i Analítica, Universitat Jaume I, Av. Sos Baynat s/n, Castelló 12071, Spain
| | - Vicent S Safont
- Departament de Química Física i Analítica, Universitat Jaume I, Av. Sos Baynat s/n, Castelló 12071, Spain
| |
Collapse
|
9
|
Jiang ZJ, Xu SH, Su Y, Hu E, Han J, Bai JF, Tang B, Chen J, Gao Z. Nickel-catalyzed regioselective hydrogen isotope exchange accelerated by 2-pyridones. Chem Commun (Camb) 2024; 60:384-387. [PMID: 38063024 DOI: 10.1039/d3cc05257e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
A nickel-catalyzed hydrogen isotope exchange has been developed with acetone-d6 as the deuterium source. The reaction showed an improved kinetic feature of H/D exchange under the assistance of 2-pyridones, efficiently affording regioselective labeled aryl and alkyl carboxamides.
Collapse
Affiliation(s)
- Zhi-Jiang Jiang
- NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo, 315100, P. R. China.
| | - Si-Han Xu
- NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo, 315100, P. R. China.
- School of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yuhang Su
- NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo, 315100, P. R. China.
- School of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Erxun Hu
- NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo, 315100, P. R. China.
| | - Jiawei Han
- NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo, 315100, P. R. China.
- School of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Jian-Fei Bai
- NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo, 315100, P. R. China.
| | - Bencan Tang
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, P. R. China
| | - Jia Chen
- NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo, 315100, P. R. China.
- Ningbo Cuiying Chemical Technology Co. Ltd., Ningbo, 315100, P. R. China
| | - Zhanghua Gao
- NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo, 315100, P. R. China.
- Ningbo Cuiying Chemical Technology Co. Ltd., Ningbo, 315100, P. R. China
| |
Collapse
|
10
|
Paixão DB, Soares EGO, Silva CDG, Peglow TJ, Rampon DS, Schneider PH. CS 2/KOH System-Promoted Stereoselective Synthesis of ( E)-Alkenes from Diarylalkynes and a "Hidden" Zinin-Type Reduction of Nitroarenes into Arylamines. J Org Chem 2023. [PMID: 38010206 DOI: 10.1021/acs.joc.3c01949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
In this work, we present the CS2/KOH system as a practical and efficient reductive medium for obtaining (E)-alkenes from alkynes through a highly stereoselective semireduction reaction. This cost-effective system enabled successful semireduction reactions of diverse alkynes using water as a hydrogen source, yielding moderate to excellent yields. The versatility of this protocol is further demonstrated through the synthesis of relevant compounds such as pinosylvin and resveratrol precursors, along with the notable anticancer agent DMU-212. Furthermore, during the reaction scope investigation, we serendipitously disclosed that this reductive system was also able to promote a Zinin-type reaction to reduce nitroarenes into arylamines.
Collapse
Affiliation(s)
- Douglas B Paixão
- Instituto de Química, Departamento de Química Orgânica, Universidade Federal do Rio Grande do Sul (UFRGS), P.O. Box 15003, 91501-970 Porto Alegre, RS, Brazil
| | - Eduardo G O Soares
- Instituto de Química, Departamento de Química Orgânica, Universidade Federal do Rio Grande do Sul (UFRGS), P.O. Box 15003, 91501-970 Porto Alegre, RS, Brazil
| | - Caren D G Silva
- Instituto de Química, Departamento de Química Orgânica, Universidade Federal do Rio Grande do Sul (UFRGS), P.O. Box 15003, 91501-970 Porto Alegre, RS, Brazil
| | - Thiago J Peglow
- Instituto de Química, Departamento de Química Orgânica, Universidade Federal do Rio Grande do Sul (UFRGS), P.O. Box 15003, 91501-970 Porto Alegre, RS, Brazil
| | - Daniel S Rampon
- Laboratório de Polímeros e Catálise (LAPOCA), Departamento de Química, Universidade Federal do Paraná (UFPR), P.O. Box 19061, 81531-990 Curitiba, PR, Brazil
| | - Paulo H Schneider
- Instituto de Química, Departamento de Química Orgânica, Universidade Federal do Rio Grande do Sul (UFRGS), P.O. Box 15003, 91501-970 Porto Alegre, RS, Brazil
| |
Collapse
|