1
|
Xiao T, Liu J, Wu X, Liu S. Photoinduced Diazo Carbene-Promoted C(sp 3)-H Oxidative Cross-Coupling Reaction for α-Triazolation of Isochromans. J Org Chem 2025; 90:4202-4208. [PMID: 40094969 DOI: 10.1021/acs.joc.4c02722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
A photocatalytic diazo triplet carbene-promoted C(sp3)-H oxidative coupling of isochromans and triazoles was developed in up to 83% yield at room temperature in air. The radical-like triplet carbenes were used as efficient HAT acceptors, and the possible synergistic HAT enabled the unprecedented process with a high regioselectivity.
Collapse
Affiliation(s)
- Tang Xiao
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Jinhua Liu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Xiang Wu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Shunying Liu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| |
Collapse
|
2
|
Zhang Y, Li S, Chen H, Song W, Ning Y, Liu Z, Wu Y, Murali K, Sivaguru P, Zhang X. Dimethoxyacetaldehyde- N-triftosylhydrazone: Preparation and Carbene Reactivity in Cyclopropanation and Doyle-Kirmse Reactions. Org Lett 2025; 27:1941-1948. [PMID: 39976213 DOI: 10.1021/acs.orglett.5c00223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Herein, we developed the new, powerful, and easy-to-handle chemical reagent, dimethoxyacetaldehyde-N-triftosylhydrazone (DMHz-Tfs), as a convenient in situ source of dimethoxydiazoethane under mild conditions. We demonstrate the carbene reactivity of DMHz-Tfs in iron-catalyzed cyclopropanation and Doyle-Kirmse reactions, providing access to diverse acetal functionalized cyclopropanes and homoallylic- and allenyl-sulfides at gram-scale with high stereoselectivity. DFT calculations elucidated the involvement of the most stable doublet spin state iron-carbene intermediate over other possible spin states.
Collapse
Affiliation(s)
- Yifan Zhang
- Department of Chemistry, Northeast Normal University, Changchun 130024, PR China
| | - Shuang Li
- Forestry College of Beihua University, Jilin 132013, PR China
| | - Hongzhu Chen
- Department of Chemistry, Northeast Normal University, Changchun 130024, PR China
| | - Wei Song
- Department of Chemistry, Northeast Normal University, Changchun 130024, PR China
| | - Yongquan Ning
- Department of Chemistry, Northeast Normal University, Changchun 130024, PR China
| | - Zeyun Liu
- Department of Chemistry, Northeast Normal University, Changchun 130024, PR China
| | - Yong Wu
- Department of Chemistry, Northeast Normal University, Changchun 130024, PR China
| | - Karunanidhi Murali
- Department of Chemistry, Northeast Normal University, Changchun 130024, PR China
| | - Paramasivam Sivaguru
- Department of Chemistry, Northeast Normal University, Changchun 130024, PR China
| | - Xiaolong Zhang
- Department of Chemistry, Northeast Normal University, Changchun 130024, PR China
| |
Collapse
|
3
|
Kumar J, Sharma D, Hussain Y, Solaim, Sinhmar J, Muskan, Changotra A, Chauhan P. Exploring Diazo Compounds for the Divergent Electro-Cascade Sequence and S-H Insertion Reaction. Org Lett 2025; 27:1608-1613. [PMID: 39936898 DOI: 10.1021/acs.orglett.4c04670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
We have explored the reactivity of diazo compounds under electrochemical conditions to establish a cascade sequence of thiolation/cyclization/reduction reactions. Electrolyzing styryl diazo imides and aryl thiols enables direct access to a single diastereoisomer of 2,5-pyrrolidine-dione-fused thiochromans in good yield under mild and metal-free conditions. Notably, a tunable reactivity has been achieved via S-H insertion at the diazo center in modified reaction conditions. Based on the experimental evidences, including the detection of key intermediates and computational studies, the mechanism for the electrochemical cascade reaction has also been established.
Collapse
Affiliation(s)
- Jaswant Kumar
- Department of Chemistry, Indian Institute of Technology Jammu, Jagti, NH-44, Nagrota Bypass, Jammu 181221, J&K, India
| | - Deepak Sharma
- Department of Chemistry, Indian Institute of Technology Jammu, Jagti, NH-44, Nagrota Bypass, Jammu 181221, J&K, India
| | - Yaseen Hussain
- Department of Chemistry, Indian Institute of Technology Jammu, Jagti, NH-44, Nagrota Bypass, Jammu 181221, J&K, India
| | - Solaim
- Department of Chemistry, Indian Institute of Technology Jammu, Jagti, NH-44, Nagrota Bypass, Jammu 181221, J&K, India
| | - Jatin Sinhmar
- Department of Chemistry, Indian Institute of Technology Jammu, Jagti, NH-44, Nagrota Bypass, Jammu 181221, J&K, India
| | - Muskan
- Department of Chemistry, School of Sciences, Cluster University of Jammu, Jammu 180002, India
| | - Avtar Changotra
- Department of Chemistry, School of Sciences, Cluster University of Jammu, Jammu 180002, India
| | - Pankaj Chauhan
- Department of Chemistry, Indian Institute of Technology Jammu, Jagti, NH-44, Nagrota Bypass, Jammu 181221, J&K, India
| |
Collapse
|
4
|
He X, Fu Y, Xi R, Zhang C, Lan K, Su Z, Wang F, Feng X, Liu X. Asymmetric Carbene Insertion into Se-S Bonds by Synergistic Rh(II)/Guanidine Catalysis Involving Chalcogen-Bond Assistance. Angew Chem Int Ed Engl 2025; 64:e202417636. [PMID: 39487093 DOI: 10.1002/anie.202417636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/04/2024]
Abstract
The efficient construction of chalcogen-atom-based chiral compounds remains a challenge, despite the importance of organoselenium and organosulfur compounds in life and materials science. Chalcogen atoms can form net attractive interactions called chalcogen bonds, but it is an undeveloped tool to assist asymmetric catalysis. Herein, we report an enantioselective insertion platform to install a stereogenic center bearing selenyl and thiocyano functional groups. Our method operates by synergistic catalysis by a chiral guanidine and an achiral dirhodium complex in a three-component or four-component reaction, through Se-S bond insertion into carbene species, competing successfully with the spontaneous racemic process and showing high regioselectivity. As elucidated by spectroscopic experiments and computational studies, a unique mechanism involving chalcogen as well as hydrogen bonding was established to account for the enantiocontrol. The high stereoselectivity holds for a broad array of selenylthiocyanatopropanoates, which showed excellent anti-inflammatory toward IL-1β and low cytotoxicity.
Collapse
Affiliation(s)
- Xin He
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Yihua Fu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Ruiying Xi
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610064, China
| | - Cefei Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Kexin Lan
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Zhishan Su
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Fei Wang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610064, China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
5
|
Mou MJ, Guo MZ, Li QX, Ni SF, Lv J, Guo W, Wen LR, Zhang LB. Electrochemically Driven α,β-Dehydrogenation of Flavanones, Azaflavanones, and Thioflavanones. Org Lett 2024; 26:9547-9552. [PMID: 39451023 DOI: 10.1021/acs.orglett.4c03574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
α,β-Dehydrogenation of flavanones represents an ideal strategy to synthesize various flavones but remains challenging because of the requirements for rigorous conditions. Herein, a straightforward and efficient route for the synthesis of flavones via electrocatalysis is disclosed. This electro-oxidative approach shows a broad substrate scope, including azaflavanones and thioflavanones, which could be performed in an undivided cell without the removal of air or water and in the absence of metal catalysts, ligands, or external oxidants. Moreover, the combination of cyclic voltammetry, square wave voltammetry experiments, and density functional theory (DFT) calculations revealed the plausible mechanism.
Collapse
Affiliation(s)
- Mei-Jin Mou
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Ming-Zhong Guo
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Quan-Xin Li
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Shao-Fei Ni
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Jian Lv
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Weisi Guo
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Li-Rong Wen
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Lin-Bao Zhang
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| |
Collapse
|
6
|
Rana A, Chauhan R, Mottafegh A, Kim DP, Singh AK. DigiChemTree enables programmable light-induced carbene generation for on demand chemical synthesis. Commun Chem 2024; 7:251. [PMID: 39487355 PMCID: PMC11530455 DOI: 10.1038/s42004-024-01330-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/17/2024] [Indexed: 11/04/2024] Open
Abstract
The reproducibility of chemical reactions, when obtaining protocols from literature or databases, is highly challenging for academicians, industry professionals and even now for the machine learning process. To synthesize the organic molecule under the photochemical condition, several years for the reaction optimization, highly skilled manpower, long reaction time etc. are needed, resulting in non-affordability and slow down the research and development. Herein, we have introduced the DigiChemTree backed with the artificial intelligence to auto-optimize the photochemical reaction parameter and synthesizing the on demand library of the molecules in fast manner. Newly, auto-generated digital code was further tested for the late stage functionalization of the various active pharmaceutical ingredient.
Collapse
Affiliation(s)
- Abhilash Rana
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Ruchi Chauhan
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Amirreza Mottafegh
- Center for Intelligent Microprocess of Pharmaceutical Synthesis, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Dong Pyo Kim
- Center for Intelligent Microprocess of Pharmaceutical Synthesis, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Ajay K Singh
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India.
| |
Collapse
|
7
|
Alam T, Gupta S, Patel BK. Electrochemical NH-Sulfoximidation with α-Keto Acids. Chemphyschem 2024; 25:e202400599. [PMID: 38884606 DOI: 10.1002/cphc.202400599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
An electrochemical N-acylation of sulfoximine has been achieved via the coupling of α-keto acids and NH-sulfoximines. This process involves the sequential cleavage of C-C bond followed by C(sp2)-N bond formation, with the liberation of H2 and CO2 as the by-products. A library of N-aroylated sulfoximines is produced via the coupling of aroyl and sulfoximidoyl radicals by anodic oxidation under constant current electrolysis (CCE). The compatibility of the present protocol has been demonstrated by coupling of various bio-active compounds, such as NH-sulfoximine derived from (-)-borneol, L-menthol, D-glucose derivative, and some commercial drugs such as flurbiprofen, and ibuprofen. This late-stage functionalization highlights the importance of this sustainable protocol. Besides this, various control experiments and detection of H2 evolution have been performed to support the proposed mechanism.
Collapse
Affiliation(s)
- Tipu Alam
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Shalini Gupta
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Bhisma K Patel
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| |
Collapse
|
8
|
Chen W, Zhang X, Wang X, Zhang E, Wang ZL, Jia J. Synthesis of α-ketoamides via oxidative amidation of diazo compounds with O-benzoyl hydroxylamines as nitrogen source and the oxidant. Org Biomol Chem 2024; 22:6708-6712. [PMID: 39118467 DOI: 10.1039/d4ob00883a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
A simple, efficient method has been described for the construction of an array of α-ketoamides from readily available O-benzoyl hydroxylamines and diazo compounds as starting materials. There was a combined use of CuI as a catalyst and H2O as the oxygen source. The investigation reveals that the O-benzoyl hydroxylamines serve a dual role as both an amine source and the oxidant in this mechanism, thereby obviating the need for additional oxidants in the transformation process. This methodology could give a wider range of products in good to excellent yields for most substrates, and thus, we provide a new idea for the synthesis of α-ketoamides.
Collapse
Affiliation(s)
- Wenwen Chen
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, School of Chemical and Material Science, Shanxi Normal University, Taiyuan 030006, PR China.
| | - Xinyin Zhang
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, School of Chemical and Material Science, Shanxi Normal University, Taiyuan 030006, PR China.
| | - Xinyu Wang
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, School of Chemical and Material Science, Shanxi Normal University, Taiyuan 030006, PR China.
| | - EnXuan Zhang
- Fengcheng MediTech (Tianjin) Co., Ltd, Bld. 6, Zone C2, Binhai-Zhongguancun, Tianjin, 300457, P.R. China
| | - Zu-Li Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China.
| | - Jianfeng Jia
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, School of Chemical and Material Science, Shanxi Normal University, Taiyuan 030006, PR China.
| |
Collapse
|
9
|
Ji WJ, Han W, Ren YY, Ma M, Shen ZL, Chu XQ. Silver-Promoted Three-Component Synthesis of Perfluoroalkenyl Pyrroles through Partial Defluorinative Functionalization of Perfluoroalkyl Halides. Org Lett 2024; 26:6197-6202. [PMID: 39004858 DOI: 10.1021/acs.orglett.4c02084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
A silver-promoted three-component heterocyclization of alkynes, perfluoroalkyl halides, and 1,3-dinucleophiles was developed for the efficient synthesis of privileged (E)-perfluoroalkenyl pyrroles. The reaction proceeded through a rationally designed sequence of radical perfluoroalkylation and intramolecular defluorinative [3 + 2]-heterocyclization. The utility of perfluoroalkyl halide as a perfluoroalkenyl reagent, by selective and controllable functionalization of two inert C(sp3)-F bonds at vicinal carbon centers on the perfluoroalkyl chain, provides a new reaction mode for the synthesis of value-added organofluorides starting from the easily available and low-cost fluorinated feedstock.
Collapse
Affiliation(s)
- Wen-Jun Ji
- Technical Institute of Fluorochemistry, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, People's Republic of China
| | - Wei Han
- Technical Institute of Fluorochemistry, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, People's Republic of China
| | - Yuan-Yuan Ren
- Technical Institute of Fluorochemistry, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, People's Republic of China
| | - Mengtao Ma
- Department of Chemistry and Materials Science, College of Science, Nanjing Forestry University, Nanjing, Jiangsu 210037, People's Republic of China
| | - Zhi-Liang Shen
- Technical Institute of Fluorochemistry, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, People's Republic of China
| | - Xue-Qiang Chu
- Technical Institute of Fluorochemistry, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, People's Republic of China
| |
Collapse
|
10
|
Hu M, Yang X, Zhang S, Qin C, Zhang Z, Wang J, Ji F, Jiang G. Electrochemical oxidative thioetherification of aldehyde hydrazones with thiophenols. Org Biomol Chem 2024; 22:5907-5912. [PMID: 38988186 DOI: 10.1039/d4ob00833b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
An electrochemically promoted oxidative dehydrogenation cross-coupling reaction between aldehyde hydrazones and thiophenols is demonstrated for the first time, which resulted in a variety of (Z)-thioetherified products in moderate to excellent yields. This strategy can be carried out under an air atmosphere, featuring scalability and excellent stereoselectivity. In addition, the transformation efficiently produces readily recyclable disulfide as a by-product with high yields, which significantly reduces the environmental pollution caused by thioetherification.
Collapse
Affiliation(s)
- Meiqian Hu
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin 541004, China.
| | - Xiaolin Yang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin 541004, China.
| | - Shuai Zhang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin 541004, China.
| | - Changsheng Qin
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin 541004, China.
| | - Zhihua Zhang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin 541004, China.
| | - Jingfang Wang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin 541004, China.
| | - Fanghua Ji
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin 541004, China.
| | - Guangbin Jiang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin 541004, China.
| |
Collapse
|
11
|
Li S, Ling J, Zhou L. Visible-Light-Promoted Radical gem-Selenosulfonylation or -Iodosulfonylation of 2,2,2-Trifluorodiazoethane under Photosensitizer-Free Conditions. Org Lett 2024; 26:5220-5225. [PMID: 38856637 DOI: 10.1021/acs.orglett.4c01876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
A visible-light-promoted radical gem-difunctionalization of trifluorodiazoethane with RSO2X (X = SeR', I) for the synthesis of α-seleno or α-iodo trifluoroethyl sulfones is described. This atom-economical reaction is external-photocatalyst- and additive-free and uses nontoxic ethyl acetate as the solvent. The resultant products, which incorporate sulfonyl, trifluoromethyl, and iodo or selenyl functional groups onto one carbon atom, can serve as versatile building blocks. A major synthetic application was demonstrated by ATRA reactions with various terminal alkynes.
Collapse
Affiliation(s)
- Sen Li
- Institute of Green Chemistry and Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jiahao Ling
- Institute of Green Chemistry and Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Lei Zhou
- Institute of Green Chemistry and Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
12
|
Liu G, Xu S, Yue Y, Su C, Song W. Synthesis of thioesters using an electrochemical three-component reaction involving elemental sulfur. Chem Commun (Camb) 2024; 60:6154-6157. [PMID: 38804515 DOI: 10.1039/d4cc01910e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
An electrochemical three-component reaction involving elemental sulfur is disclosed for achieving a metal-free, oxidant-free synthesis of thioesters in a high atom-economical, step-economical and chemoselective manner. A mechanistic investigation indicates that the use of elemental sulfur to trap acyl radical derived from radical umpolung of α-keto acid with an electrochemical design can efficiently generate a carbonyl thiyl radical, which can further be captured by diazoalkane to afford various thioesters.
Collapse
Affiliation(s)
- Gongbo Liu
- Cancer Hospital of Dalian University of Technology, School of Chemistry, School of Chemical Engineering, Dalian, 116024, P. R. China.
| | - Shuoyu Xu
- Cancer Hospital of Dalian University of Technology, School of Chemistry, School of Chemical Engineering, Dalian, 116024, P. R. China.
| | - Yangyang Yue
- Cancer Hospital of Dalian University of Technology, School of Chemistry, School of Chemical Engineering, Dalian, 116024, P. R. China.
| | - Changhui Su
- Cancer Hospital of Dalian University of Technology, School of Chemistry, School of Chemical Engineering, Dalian, 116024, P. R. China.
| | - Wangze Song
- Cancer Hospital of Dalian University of Technology, School of Chemistry, School of Chemical Engineering, Dalian, 116024, P. R. China.
| |
Collapse
|
13
|
Li HR, Ran YA, Zhu YY, Guo W, Ni SF, Wen LR, Li M, Zhang LB. Electrochemical stereoselective synthesis of polysubstituted 1,4-dicarbonyl Z-alkenes via three-component coupling of sulfoxonium ylides and alkynes with water. Chem Sci 2024; 15:8156-8162. [PMID: 38817557 PMCID: PMC11134330 DOI: 10.1039/d4sc01141d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 04/16/2024] [Indexed: 06/01/2024] Open
Abstract
The first straightforward strategy for the synthesis of 1,4-dicarbonyl Z-alkenes has been developed via an electrochemical cross-coupling reaction of sulfoxonium ylides and alkynes with water. The metal-free protocol showed an easy-to-handle nature, good functional group tolerance, and high Z-stereoselectivity, which is rare in previous cases. The proposed reaction mechanism was convincingly established by carrying out a series of control experiments, cyclic voltammetry experiments, and density functional theory (DFT) studies.
Collapse
Affiliation(s)
- Hao-Ran Li
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Yi-An Ran
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Yu-Yi Zhu
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Weisi Guo
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Shao-Fei Ni
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Li-Rong Wen
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Ming Li
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Lin-Bao Zhang
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| |
Collapse
|
14
|
Li X, Xu Z. Skeletal Editing: Ring Insertion for Direct Access to Heterocycles. Molecules 2024; 29:1920. [PMID: 38731412 PMCID: PMC11085720 DOI: 10.3390/molecules29091920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Skeleton editing has rapidly advanced as a synthetic methodology in recent years, significantly streamlining the synthesis process and gaining widespread acceptance in drug synthesis and development. This field encompasses diverse ring reactions, many of which exhibit immense potential in skeleton editing, facilitating the generation of novel ring skeletons. Notably, reactions that involve the cleavage of two distinct rings followed by the reformation of new rings through ring insertion play a pivotal role in the construction of novel ring skeletons. This article aims to compile and systematize this category of reactions, emphasizing the two primary reaction types and offering a thorough exploration of their associated complexities and challenges. Our endeavor is to furnish readers with comprehensive reaction strategies, igniting research interest and injecting fresh impetus into the advancement of this domain.
Collapse
Affiliation(s)
| | - Zhigang Xu
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China;
| |
Collapse
|
15
|
Zhao P, Liu Y, Zhang Y, Wang L, Ma Y. Photodriven Radical-Polar Crossover Cyclization Strategy: Synthesis of Pyrazolo[1,5- a]pyridines from Diazo Compounds. Org Lett 2024. [PMID: 38506402 DOI: 10.1021/acs.orglett.4c00812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
This work demonstrates the synthesis of a variety of perfluoroalkyl heterocycles via a visible-light-driven radical-polar crossover cyclization strategy. In this process, single-electron reduction/SNV-type/cyclization sequences follow the radical addition reaction of a diazoester, which differs from the current role of diazoesters as radical precursors/acceptors. This transformation demonstrates excellent functional group compatibility and allows for the modification of many bioactive molecules with diazoesters. Such a reaction could represent a novel approach to the photochemical transformation of diazo compounds.
Collapse
Affiliation(s)
- Peng Zhao
- Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang 318000, China
| | - Yanbo Liu
- Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang 318000, China
| | - Yuting Zhang
- Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang 318000, China
| | - Lei Wang
- Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang 318000, China
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| | - Yongmin Ma
- Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang 318000, China
| |
Collapse
|
16
|
Mandal R, Ghosh S, Khandelia T, Panigrahi P, Patel BK. Base-Induced Decarboxylative 1,1-Alkoxy Thiolation via Hydrothiolation of Vinylene Carbonate. J Org Chem 2023; 88:16655-16660. [PMID: 37964434 DOI: 10.1021/acs.joc.3c02036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
A base-mediated 1,1-difunctionalization of vinylene carbonate has been achieved using two different nucleophiles, namely, thiol and alcohol, with the assistance of air (O2). In alcoholic solvents, decarboxylation occurs at room temperature to provide a 1,1-difunctionalized product, where vinylene carbonate serves as an ethynol (C2) synthon in this three-component reaction. On the other hand, in acetonitrile, exclusive hydrothiolation occurs under the basic conditions at room temperature. This method offers a one-pot decarboxylative regioselective difunctionalization of vinylene carbonate at room temperature for the construction of α-alkoxy-β-hydroxy sulfide.
Collapse
Affiliation(s)
- Raju Mandal
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati, Assam 781039, India
| | - Subhendu Ghosh
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati, Assam 781039, India
| | - Tamanna Khandelia
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati, Assam 781039, India
| | - Pritishree Panigrahi
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati, Assam 781039, India
| | - Bhisma K Patel
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati, Assam 781039, India
| |
Collapse
|
17
|
Alam T, Patel BK. Electrochemical N-Aroylation of Sulfoximines by Using Benzoyl Hydrazines with H 2 Generation. Chemistry 2023:e202303444. [PMID: 37990751 DOI: 10.1002/chem.202303444] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 11/23/2023]
Abstract
Developed here is a robust electrochemical cross-coupling reaction between aroyl hydrazine and NH-sulfoximine via concomitant cleavage and formation of C(sp2 )-N bonds with the evolution of H2 and N2 as innocuous by-products. This sustainable protocol avoids the use of toxic reagents and occurs at room temperature. The reaction proceeds via the generation of an aroyl and a sulfoximidoyl radical via anodic oxidation under constant current electrolysis (CCE), affording N-aroylated sulfoximine. The strategy is applied to late-stage sulfoximidation of L-menthol, (-)-borneol, D-glucose, vitamin-E derivatives, and marketed drugs such as probenecid, ibuprofen, flurbiprofen, ciprofibrate, and sulindac. In addition, the present methodology is mild, high functional group tolerance with broad substrate scope and scalable.
Collapse
Affiliation(s)
- Tipu Alam
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Guwahati, Assam, India
| | - Bhisma K Patel
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Guwahati, Assam, India
| |
Collapse
|
18
|
Li HR, Guo XY, Guo MZ, Liu K, Wen LR, Li M, Zhang LB. Electrochemical chemoselective hydrogenation of 1,4-enediones with HFIP as the hydrogen donor: scalable access to 1,4-diketones. Org Biomol Chem 2023; 21:8646-8650. [PMID: 37870475 DOI: 10.1039/d3ob01465g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
A straightforward electrochemical protocol for efficient hydrogenation of unsaturated CC bonds has been reported in an undivided cell. A series of versatile 1,4-diketones are smoothly generated under metal-free and external-reductant-free electrolytic conditions. Moreover, the tolerance of various functional groups and decagram-scale experiments have shown the practicability and potential applications of this methodology. Moreover, a range of heterocyclic compounds were easily prepared through follow-up procedures of 1,4-diketones.
Collapse
Affiliation(s)
- Hao-Ran Li
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Xue-Yang Guo
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Ming-Zhong Guo
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Kui Liu
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Li-Rong Wen
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Ming Li
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Lin-Bao Zhang
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| |
Collapse
|