1
|
Ji T, Li X, Li J, Wang G. N-Glycosylation Modification of Fzd4 Is Essential for the Fzd4-Wnt-β-Catenin Signalling Axis. J Cell Mol Med 2025; 29:e70539. [PMID: 40230079 PMCID: PMC11997252 DOI: 10.1111/jcmm.70539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 02/22/2025] [Accepted: 03/24/2025] [Indexed: 04/16/2025] Open
Abstract
Wnt signalling is a highly conserved signalling pathway that plays an important role in a variety of biological processes. Frizzled (Fzd) family proteins are receptors for Wnt ligands. The physiological processes involved in mature trafficking of Fzd proteins remain elusive. Here, we identified asparagine residues 59 and 144 as the N-glycosylation modification sites of Fzd4. Sequence analysis of Fzd4 in different species showed that the two asparagine residues were highly conserved. N-glycosylation modification of Fzd4 is indispensable for its maturation and transport to the plasma membrane. N-glycosylation modification enhances the stability of Fzd4 and is also necessary for Fzd4 activity, which promotes Fzd4 interaction with Wnt ligands and co-receptor Norrin. Knockout of Fzd4 in the non-small cell lung cancer (NSCLC) cell line A549 followed by replenishment of Fzd4 glycosylation site mutants inhibited the growth and migration ability of A549 cells in vitro and in vivo. In summary, we identified N-glycosylation modification sites of Fzd4. N-glycosylation modification of Fzd4 is necessary for its stability and activity. When N-glycosylation modification is absent, Fzd4 cannot mediate the Wnt/β-catenin signalling pathway, which can inhibit the proliferation and migration of NSCLC and provide new targets and strategies for the treatment of NSCLC.
Collapse
Affiliation(s)
- Tianyi Ji
- College of Acupuncture and TuinaLiaoning University of Traditional Chinese MedicineShenyangChina
| | - Xiangying Li
- Endocrinology DepartmentShenyang Fifth People's HospitalShenyangChina
| | - Jiachen Li
- College of Acupuncture and TuinaLiaoning University of Traditional Chinese MedicineShenyangChina
| | - Guan Wang
- Department of Thoracic SurgeryCancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital and InstituteShenyangChina
| |
Collapse
|
2
|
Muneer G, Chen C, Chen Y. Advancements in Global Phosphoproteomics Profiling: Overcoming Challenges in Sensitivity and Quantification. Proteomics 2025; 25:e202400087. [PMID: 39696887 PMCID: PMC11735659 DOI: 10.1002/pmic.202400087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/29/2024] [Accepted: 11/29/2024] [Indexed: 12/20/2024]
Abstract
Protein phosphorylation introduces post-genomic diversity to proteins, which plays a crucial role in various cellular activities. Elucidation of system-wide signaling cascades requires high-performance tools for precise identification and quantification of dynamics of site-specific phosphorylation events. Recent advances in phosphoproteomic technologies have enabled the comprehensive mapping of the dynamic phosphoproteomic landscape, which has opened new avenues for exploring cell type-specific functional networks underlying cellular functions and clinical phenotypes. Here, we provide an overview of the basics and challenges of phosphoproteomics, as well as the technological evolution and current state-of-the-art global and quantitative phosphoproteomics methodologies. With a specific focus on highly sensitive platforms, we summarize recent trends and innovations in miniaturized sample preparation strategies for micro-to-nanoscale and single-cell profiling, data-independent acquisition mass spectrometry (DIA-MS) for enhanced coverage, and quantitative phosphoproteomic pipelines for deep mapping of cell and disease biology. Each aspect of phosphoproteomic analysis presents unique challenges and opportunities for improvement and innovation. We specifically highlight evolving phosphoproteomic technologies that enable deep profiling from low-input samples. Finally, we discuss the persistent challenges in phosphoproteomic technologies, including the feasibility of nanoscale and single-cell phosphoproteomics, as well as future outlooks for biomedical applications.
Collapse
Affiliation(s)
- Gul Muneer
- Institute of ChemistryAcademia SinicaTaipeiTaiwan
| | | | - Yu‐Ju Chen
- Institute of ChemistryAcademia SinicaTaipeiTaiwan
- Department of ChemistryNational Taiwan UniversityTaipeiTaiwan
| |
Collapse
|
3
|
Kim DN, Yin T, Zhang T, Im AK, Cort JR, Rozum JC, Pollock D, Qian WJ, Feng S. Artificial Intelligence Transforming Post-Translational Modification Research. Bioengineering (Basel) 2024; 12:26. [PMID: 39851300 PMCID: PMC11762806 DOI: 10.3390/bioengineering12010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/16/2024] [Accepted: 12/29/2024] [Indexed: 01/26/2025] Open
Abstract
Post-Translational Modifications (PTMs) are covalent changes to amino acids that occur after protein synthesis, including covalent modifications on side chains and peptide backbones. Many PTMs profoundly impact cellular and molecular functions and structures, and their significance extends to evolutionary studies as well. In light of these implications, we have explored how artificial intelligence (AI) can be utilized in researching PTMs. Initially, rationales for adopting AI and its advantages in understanding the functions of PTMs are discussed. Then, various deep learning architectures and programs, including recent applications of language models, for predicting PTM sites on proteins and the regulatory functions of these PTMs are compared. Finally, our high-throughput PTM-data-generation pipeline, which formats data suitably for AI training and predictions is described. We hope this review illuminates areas where future AI models on PTMs can be improved, thereby contributing to the field of PTM bioengineering.
Collapse
Affiliation(s)
- Doo Nam Kim
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99352, USA (J.C.R.); (D.P.); (W.-J.Q.)
| | - Tianzhixi Yin
- National Security Directorate, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99352, USA
| | - Tong Zhang
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99352, USA (J.C.R.); (D.P.); (W.-J.Q.)
| | - Alexandria K. Im
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99352, USA (J.C.R.); (D.P.); (W.-J.Q.)
| | - John R. Cort
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99352, USA (J.C.R.); (D.P.); (W.-J.Q.)
| | - Jordan C. Rozum
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99352, USA (J.C.R.); (D.P.); (W.-J.Q.)
| | - David Pollock
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99352, USA (J.C.R.); (D.P.); (W.-J.Q.)
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99352, USA (J.C.R.); (D.P.); (W.-J.Q.)
| | - Song Feng
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99352, USA (J.C.R.); (D.P.); (W.-J.Q.)
| |
Collapse
|
4
|
Flender D, Vilenne F, Adams C, Boonen K, Valkenborg D, Baggerman G. Exploring the dynamic landscape of immunopeptidomics: Unravelling posttranslational modifications and navigating bioinformatics terrain. MASS SPECTROMETRY REVIEWS 2024. [PMID: 39152539 DOI: 10.1002/mas.21905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/19/2024]
Abstract
Immunopeptidomics is becoming an increasingly important field of study. The capability to identify immunopeptides with pivotal roles in the human immune system is essential to shift the current curative medicine towards personalized medicine. Throughout the years, the field has matured, giving insight into the current pitfalls. Nowadays, it is commonly accepted that generalizing shotgun proteomics workflows is malpractice because immunopeptidomics faces numerous challenges. While many of these difficulties have been addressed, the road towards the ideal workflow remains complicated. Although the presence of Posttranslational modifications (PTMs) in the immunopeptidome has been demonstrated, their identification remains highly challenging despite their significance for immunotherapies. The large number of unpredictable modifications in the immunopeptidome plays a pivotal role in the functionality and these challenges. This review provides a comprehensive overview of the current advancements in immunopeptidomics. We delve into the challenges associated with identifying PTMs within the immunopeptidome, aiming to address the current state of the field.
Collapse
Affiliation(s)
- Daniel Flender
- Centre for Proteomics, University of Antwerp, Antwerpen, Belgium
- Health Unit, VITO, Mol, Belgium
| | - Frédérique Vilenne
- Health Unit, VITO, Mol, Belgium
- Data Science Institute, University of Hasselt, Hasselt, Belgium
| | - Charlotte Adams
- Department of Computer Science, University of Antwerp, Antwerp, Belgium
| | - Kurt Boonen
- Centre for Proteomics, University of Antwerp, Antwerpen, Belgium
- ImmuneSpec, Niel, Belgium
| | - Dirk Valkenborg
- Data Science Institute, University of Hasselt, Hasselt, Belgium
| | - Geert Baggerman
- Department of Computer Science, University of Antwerp, Antwerp, Belgium
- ImmuneSpec, Niel, Belgium
| |
Collapse
|
5
|
Kalhor M, Lapin J, Picciani M, Wilhelm M. Rescoring Peptide Spectrum Matches: Boosting Proteomics Performance by Integrating Peptide Property Predictors Into Peptide Identification. Mol Cell Proteomics 2024; 23:100798. [PMID: 38871251 PMCID: PMC11269915 DOI: 10.1016/j.mcpro.2024.100798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/26/2024] [Accepted: 06/09/2024] [Indexed: 06/15/2024] Open
Abstract
Rescoring of peptide spectrum matches originating from database search engines enabled by peptide property predictors is exceeding the performance of peptide identification from traditional database search engines. In contrast to the peptide spectrum match scores calculated by traditional database search engines, rescoring peptide spectrum matches generates scores based on comparing observed and predicted peptide properties, such as fragment ion intensities and retention times. These newly generated scores enable a more efficient discrimination between correct and incorrect peptide spectrum matches. This approach was shown to lead to substantial improvements in the number of confidently identified peptides, facilitating the analysis of challenging datasets in various fields such as immunopeptidomics, metaproteomics, proteogenomics, and single-cell proteomics. In this review, we summarize the key elements leading up to the recent introduction of multiple data-driven rescoring pipelines. We provide an overview of relevant post-processing rescoring tools, introduce prominent data-driven rescoring pipelines for various applications, and highlight limitations, opportunities, and future perspectives of this approach and its impact on mass spectrometry-based proteomics.
Collapse
Affiliation(s)
- Mostafa Kalhor
- Computational Mass Spectrometry, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Joel Lapin
- Computational Mass Spectrometry, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Mario Picciani
- Computational Mass Spectrometry, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Mathias Wilhelm
- Computational Mass Spectrometry, TUM School of Life Sciences, Technical University of Munich, Freising, Germany; Munich Data Science Institute, Technical University of Munich, Garching, Germany.
| |
Collapse
|
6
|
Lu XY, Wu HP, Ma H, Li H, Li J, Liu YT, Pan ZY, Xie Y, Wang L, Ren B, Liu GK. Deep Learning-Assisted Spectrum-Structure Correlation: State-of-the-Art and Perspectives. Anal Chem 2024; 96:7959-7975. [PMID: 38662943 DOI: 10.1021/acs.analchem.4c01639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Spectrum-structure correlation is playing an increasingly crucial role in spectral analysis and has undergone significant development in recent decades. With the advancement of spectrometers, the high-throughput detection triggers the explosive growth of spectral data, and the research extension from small molecules to biomolecules accompanies massive chemical space. Facing the evolving landscape of spectrum-structure correlation, conventional chemometrics becomes ill-equipped, and deep learning assisted chemometrics rapidly emerges as a flourishing approach with superior ability of extracting latent features and making precise predictions. In this review, the molecular and spectral representations and fundamental knowledge of deep learning are first introduced. We then summarize the development of how deep learning assist to establish the correlation between spectrum and molecular structure in the recent 5 years, by empowering spectral prediction (i.e., forward structure-spectrum correlation) and further enabling library matching and de novo molecular generation (i.e., inverse spectrum-structure correlation). Finally, we highlight the most important open issues persisted with corresponding potential solutions. With the fast development of deep learning, it is expected to see ultimate solution of establishing spectrum-structure correlation soon, which would trigger substantial development of various disciplines.
Collapse
Affiliation(s)
- Xin-Yu Lu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
- Tan Kah Kee Innovation Laboratory, Xiamen 361005, P. R. China
| | - Hao-Ping Wu
- State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry & Toxicology, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, P. R. China
| | - Hao Ma
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
- Tan Kah Kee Innovation Laboratory, Xiamen 361005, P. R. China
| | - Hui Li
- Key Laboratory of Multimedia Trusted Perception and Efficient Computing, Ministry of Education of China, Xiamen University, Xiamen 361005, P. R. China
| | - Jia Li
- Institute of Artificial Intelligence, Xiamen University, Xiamen 361005, P. R. China
| | - Yan-Ti Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
- Tan Kah Kee Innovation Laboratory, Xiamen 361005, P. R. China
| | - Zheng-Yan Pan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Yi Xie
- School of Informatics, Xiamen University, Xiamen 361005, P. R. China
| | - Lei Wang
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, P. R. China
| | - Bin Ren
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
- Tan Kah Kee Innovation Laboratory, Xiamen 361005, P. R. China
| | - Guo-Kun Liu
- State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry & Toxicology, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, P. R. China
| |
Collapse
|
7
|
Joyce AW, Searle BC. Computational approaches to identify sites of phosphorylation. Proteomics 2024; 24:e2300088. [PMID: 37897210 DOI: 10.1002/pmic.202300088] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023]
Abstract
Due to their oftentimes ambiguous nature, phosphopeptide positional isomers can present challenges in bottom-up mass spectrometry-based workflows as search engine scores alone are often not enough to confidently distinguish them. Additional scoring algorithms can remedy this by providing confidence metrics in addition to these search results, reducing ambiguity. Here we describe challenges to interpreting phosphoproteomics data and review several different approaches to determine sites of phosphorylation for both data-dependent and data-independent acquisition-based workflows. Finally, we discuss open questions regarding neutral losses, gas-phase rearrangement, and false localization rate estimation experienced by both types of acquisition workflows and best practices for managing ambiguity in phosphosite determination.
Collapse
Affiliation(s)
- Alex W Joyce
- Department of Biomedical Informatics, The Ohio State University Medical Center, Columbus, Ohio, USA
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Brian C Searle
- Department of Biomedical Informatics, The Ohio State University Medical Center, Columbus, Ohio, USA
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
8
|
Yang Y, Fang Q. Prediction of glycopeptide fragment mass spectra by deep learning. Nat Commun 2024; 15:2448. [PMID: 38503734 PMCID: PMC10951270 DOI: 10.1038/s41467-024-46771-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 03/11/2024] [Indexed: 03/21/2024] Open
Abstract
Deep learning has achieved a notable success in mass spectrometry-based proteomics and is now emerging in glycoproteomics. While various deep learning models can predict fragment mass spectra of peptides with good accuracy, they cannot cope with the non-linear glycan structure in an intact glycopeptide. Herein, we present DeepGlyco, a deep learning-based approach for the prediction of fragment spectra of intact glycopeptides. Our model adopts tree-structured long-short term memory networks to process the glycan moiety and a graph neural network architecture to incorporate potential fragmentation pathways of a specific glycan structure. This feature is beneficial to model explainability and differentiation ability of glycan structural isomers. We further demonstrate that predicted spectral libraries can be used for data-independent acquisition glycoproteomics as a supplement for library completeness. We expect that this work will provide a valuable deep learning resource for glycoproteomics.
Collapse
Affiliation(s)
- Yi Yang
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311200, China.
| | - Qun Fang
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311200, China.
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
9
|
Lou R, Shui W. Acquisition and Analysis of DIA-Based Proteomic Data: A Comprehensive Survey in 2023. Mol Cell Proteomics 2024; 23:100712. [PMID: 38182042 PMCID: PMC10847697 DOI: 10.1016/j.mcpro.2024.100712] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/27/2023] [Accepted: 01/02/2024] [Indexed: 01/07/2024] Open
Abstract
Data-independent acquisition (DIA) mass spectrometry (MS) has emerged as a powerful technology for high-throughput, accurate, and reproducible quantitative proteomics. This review provides a comprehensive overview of recent advances in both the experimental and computational methods for DIA proteomics, from data acquisition schemes to analysis strategies and software tools. DIA acquisition schemes are categorized based on the design of precursor isolation windows, highlighting wide-window, overlapping-window, narrow-window, scanning quadrupole-based, and parallel accumulation-serial fragmentation-enhanced DIA methods. For DIA data analysis, major strategies are classified into spectrum reconstruction, sequence-based search, library-based search, de novo sequencing, and sequencing-independent approaches. A wide array of software tools implementing these strategies are reviewed, with details on their overall workflows and scoring approaches at different steps. The generation and optimization of spectral libraries, which are critical resources for DIA analysis, are also discussed. Publicly available benchmark datasets covering global proteomics and phosphoproteomics are summarized to facilitate performance evaluation of various software tools and analysis workflows. Continued advances and synergistic developments of versatile components in DIA workflows are expected to further enhance the power of DIA-based proteomics.
Collapse
Affiliation(s)
- Ronghui Lou
- iHuman Institute, ShanghaiTech University, Shanghai, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| | - Wenqing Shui
- iHuman Institute, ShanghaiTech University, Shanghai, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|