1
|
Jia H, Wang M, Pakan JMP, Li SC, Chen X. Burst firing represents learned composite stimuli in primary sensory cortices. Curr Opin Neurobiol 2025; 93:103039. [PMID: 40334497 DOI: 10.1016/j.conb.2025.103039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 04/10/2025] [Accepted: 04/11/2025] [Indexed: 05/09/2025]
Abstract
The primary cortical areas of each sensory modality occupy a significant portion of the mammalian neocortex. Beyond mapping basic sensory features, such as visual object orientation or sound frequency, these regions may play a broader role in sensory processing. Here, we review recent advances in our understanding of sensory representations through a unique neuronal firing mode called bursting, with a particular focus on layer 2/3 (L2/3) pyramidal neurons. While maps of single-feature inputs are preserved in primary sensory cortices, individual L2/3 pyramidal neurons receive heterogeneous inputs from multiple basic features. The co-activation of these inputs can induce bursting, forming sparse yet persistent representations of composite sensory stimuli. Unlike basic sensory feature maps, which drift over time, experience-driven bursting patterns in L2/3 remain stable over long periods. Notably, these bursting representations are holistic, as single-featured component stimuli rarely elicit such activity. We propose that these holistic bursting neurons (HB neurons) in L2/3 play a crucial role in integrating sensory experiences, generating durable, sparse, and reliable representations that may serve as building blocks of long-term memory in the complexity of the real-world.
Collapse
Affiliation(s)
- Hongbo Jia
- Leibniz Institute for Neurobiology (LIN), 39118, Magdeburg, Germany; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China; Institute of Neuroscience and the SyNergy Cluster, Technical University of Munich, 80802, Munich, Germany; Center for Behavioral and Brain Science (CBBS), Otto von Guericke University, 39120, Magdeburg, Germany.
| | - Meng Wang
- Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing Medical University, Chongqing, China; Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, China
| | - Janelle M P Pakan
- Leibniz Institute for Neurobiology (LIN), 39118, Magdeburg, Germany; Center for Behavioral and Brain Science (CBBS), Otto von Guericke University, 39120, Magdeburg, Germany
| | - Sunny C Li
- LFC Laboratory and Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing 400064, China; NewLight Neuroscience Unit, Chongqing, 400064, China
| | - Xiaowei Chen
- Brain Research Center and State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
2
|
Zou F, Kuhl BA, DuBrow S, Hutchinson JB. Benefits of spaced learning are predicted by the re-encoding of past experience in ventromedial prefrontal cortex. Cell Rep 2025; 44:115232. [PMID: 39854206 PMCID: PMC12007619 DOI: 10.1016/j.celrep.2025.115232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/16/2024] [Accepted: 01/03/2025] [Indexed: 01/26/2025] Open
Abstract
More than a century of research shows that spaced learning improves long-term memory. However, there remains debate concerning why that is. A major limitation to resolving theoretical debates is the lack of evidence for how neural representations change as a function of spacing. Here, leveraging a massive-scale 7T human fMRI dataset, we tracked neural representations and behavioral expressions of memory as participants viewed thousands of natural scene images that repeated at lags ranging from seconds to many months. We show that spaced learning increases the similarity of human ventromedial prefrontal cortex representations across stimulus encounters and, critically, that these increases parallel and predict the behavioral benefits of spacing. Additionally, we show that these spacing benefits critically depend on remembering and, in turn, "re-encoding" past experience. Collectively, our findings provide fundamental insight into how spaced learning influences neural representations and why spacing is beneficial.
Collapse
Affiliation(s)
- Futing Zou
- Department of Psychology, University of Oregon, Eugene, OR, USA.
| | - Brice A Kuhl
- Department of Psychology, University of Oregon, Eugene, OR, USA; Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | - Sarah DuBrow
- Department of Psychology, University of Oregon, Eugene, OR, USA; Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | | |
Collapse
|
3
|
Kucyi A, Anderson N, Bounyarith T, Braun D, Shareef-Trudeau L, Treves I, Braga RM, Hsieh PJ, Hung SM. Individual variability in neural representations of mind-wandering. Netw Neurosci 2024; 8:808-836. [PMID: 39355438 PMCID: PMC11349032 DOI: 10.1162/netn_a_00387] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/14/2024] [Indexed: 10/03/2024] Open
Abstract
Mind-wandering is a frequent, daily mental activity, experienced in unique ways in each person. Yet neuroimaging evidence relating mind-wandering to brain activity, for example in the default mode network (DMN), has relied on population- rather than individual-based inferences owing to limited within-person sampling. Here, three densely sampled individuals each reported hundreds of mind-wandering episodes while undergoing multi-session functional magnetic resonance imaging. We found reliable associations between mind-wandering and DMN activation when estimating brain networks within individuals using precision functional mapping. However, the timing of spontaneous DMN activity relative to subjective reports, and the networks beyond DMN that were activated and deactivated during mind-wandering, were distinct across individuals. Connectome-based predictive modeling further revealed idiosyncratic, whole-brain functional connectivity patterns that consistently predicted mind-wandering within individuals but did not fully generalize across individuals. Predictive models of mind-wandering and attention that were derived from larger-scale neuroimaging datasets largely failed when applied to densely sampled individuals, further highlighting the need for personalized models. Our work offers novel evidence for both conserved and variable neural representations of self-reported mind-wandering in different individuals. The previously unrecognized interindividual variations reported here underscore the broader scientific value and potential clinical utility of idiographic approaches to brain-experience associations.
Collapse
Affiliation(s)
- Aaron Kucyi
- Department of Psychological and Brain Sciences, Drexel University, Philadelphia, PA, USA
| | - Nathan Anderson
- Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Tiara Bounyarith
- Department of Psychological and Brain Sciences, Drexel University, Philadelphia, PA, USA
| | - David Braun
- Department of Psychological and Brain Sciences, Drexel University, Philadelphia, PA, USA
| | - Lotus Shareef-Trudeau
- Department of Psychological and Brain Sciences, Drexel University, Philadelphia, PA, USA
| | - Isaac Treves
- Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Rodrigo M. Braga
- Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Po-Jang Hsieh
- Department of Psychology, National Taiwan University, Taipei, Taiwan
| | - Shao-Min Hung
- Waseda Institute for Advanced Study, Waseda University, Tokyo, Japan
| |
Collapse
|
4
|
Cui L, Bo K, Xiong C, Keil A, Ding M. Stimulus repetition induces a two-stage learning process in primary visual cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.03.611111. [PMID: 39282396 PMCID: PMC11398309 DOI: 10.1101/2024.09.03.611111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Repeated stimulus exposure alters the brain's response to the stimulus. We investigated the underlying neural mechanisms by recording functional MRI data from human observers passively viewing 120 presentations of two Gabor patches (each Gabor repeating 60 times). We evaluated support for two prominent models of stimulus repetition, the fatigue model and the sharpening model. Our results uncovered a two-stage learning process in the primary visual cortex. In Stage 1, univariate BOLD activation in V1 decreased over the first twelve repetitions of the stimuli, replicating the well-known effect of repetition suppression. Applying MVPA decoding along with a moving window approach, we found that (1) the decoding accuracy between the two Gabors decreased from above-chance level (∼60% to ∼70%) at the beginning of the stage to chance level at the end of the stage (∼50%). This result, together with the accompanying weight map analysis, suggested that the learning dynamics in Stage 1 were consistent with the predictions of the fatigue model. In Stage 2, univariate BOLD activation for the remaining 48 repetitions of the two stimuli exhibited significant fluctuations but no systematic trend. The MVPA decoding accuracy between the two Gabor patches was at chance level initially and became progressively higher as stimulus repetition continued, rising above and staying above chance level starting at the ∼35th repetition. Thus, results from the second stage supported the notion that sustained and prolonged stimulus repetition prompts sharpened representations. Additional analyses addressed (1) whether the neural patterns within each learning stage remained stable and (2) whether new neural patterns were evoked in Stage 2 relative to Stage 1.
Collapse
|
5
|
Zou F, Kuhl BA, DuBrow S, Hutchinson JB. Benefits of spaced learning are predicted by re-encoding of past experience in ventromedial prefrontal cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.14.594263. [PMID: 38798652 PMCID: PMC11118271 DOI: 10.1101/2024.05.14.594263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
More than a century of research shows that spaced learning improves long-term memory. Yet, there remains debate concerning why. A major limitation to resolving theoretical debates is the lack of evidence for how neural representations change as a function of spacing. Here, leveraging a massive-scale 7T human fMRI dataset, we tracked neural representations and behavioral expressions of memory as participants viewed thousands of natural scene images that repeated at lags ranging from seconds to many months. We show that spaced learning increases the similarity of human ventromedial prefrontal cortex representations across stimulus encounters and, critically, these increases parallel and predict the behavioral benefits of spacing. Additionally, we show that these spacing benefits critically depend on remembering and, in turn, 're-encoding' past experience. Collectively, our findings provide fundamental insight into how spaced learning influences neural representations and why spacing is beneficial.
Collapse
Affiliation(s)
- Futing Zou
- Department of Psychology, University of Oregon, Eugene, OR, USA
| | - Brice A. Kuhl
- Department of Psychology, University of Oregon, Eugene, OR, USA
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | - Sarah DuBrow
- Department of Psychology, University of Oregon, Eugene, OR, USA
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | | |
Collapse
|
6
|
Lopez MR, Wasberg SMH, Gagliardi CM, Normandin ME, Muzzio IA. Mystery of the memory engram: History, current knowledge, and unanswered questions. Neurosci Biobehav Rev 2024; 159:105574. [PMID: 38331127 DOI: 10.1016/j.neubiorev.2024.105574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/22/2023] [Accepted: 02/03/2024] [Indexed: 02/10/2024]
Abstract
The quest to understand the memory engram has intrigued humans for centuries. Recent technological advances, including genetic labelling, imaging, optogenetic and chemogenetic techniques, have propelled the field of memory research forward. These tools have enabled researchers to create and erase memory components. While these innovative techniques have yielded invaluable insights, they often focus on specific elements of the memory trace. Genetic labelling may rely on a particular immediate early gene as a marker of activity, optogenetics may activate or inhibit one specific type of neuron, and imaging may capture activity snapshots in a given brain region at specific times. Yet, memories are multifaceted, involving diverse arrays of neuronal subpopulations, circuits, and regions that work in concert to create, store, and retrieve information. Consideration of contributions of both excitatory and inhibitory neurons, micro and macro circuits across brain regions, the dynamic nature of active ensembles, and representational drift is crucial for a comprehensive understanding of the complex nature of memory.
Collapse
Affiliation(s)
- M R Lopez
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - S M H Wasberg
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - C M Gagliardi
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - M E Normandin
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - I A Muzzio
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|