1
|
Yue XJ, Pei LP, Wang MC, Jia SK, Mei GJ. Synthesis of 3-indolyl all-carbon quaternary centers via Rh/Brønsted acid co-catalyzed three-component reactions of azoalkenes with indoles and diazoacetates. Org Biomol Chem 2025. [PMID: 40365940 DOI: 10.1039/d5ob00567a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Highly diastereoselective three-component reactions of azoalkenes with indoles and diazoacetates have been developed via a Rh/Brønsted acid co-catalyzed strategy. These transformations provide efficient construction of a range of 3-indolyl all-carbon quaternary centers in good yields and diastereoselectivities. This reaction is proposed to proceed through Michael-type trapping of zwitterionic intermediates generated from metal carbenes and indoles.
Collapse
Affiliation(s)
- Xiao-Jing Yue
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Li-Ping Pei
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Min-Can Wang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Shi-Kun Jia
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Guang-Jian Mei
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
2
|
Li GW, Shi SH, Li SS, Wang XJ, Gao YY, Liu LT, Lei X. Structure Confirmation of Quinazolinone and Hydroindole Using Residual Dipolar Couplings From Polyarylisocyanide Liquid Crystal. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2025. [PMID: 40326428 DOI: 10.1002/mrc.5526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/26/2025] [Accepted: 04/28/2025] [Indexed: 05/07/2025]
Abstract
Determining the constitution and configuration is a critical step in characterizing the structure of small molecules. In addition to the classical nuclear magnetic resonance (NMR) method conducted in isotropic solutions, the emerging anisotropic NMR parameters such as residual dipolar couplings (RDCs) were also employed to clarify the structures of organic molecules. These RDCs not only confirmed that the unexpectedly synthesized product was a quinazolinone but also validated the relative configuration of the diastereoisomeric hydroindole in a polyarylisocyanide lyotropic liquid crystalline solution through the induction of anisotropy. Singular value decomposition (SVD) was employed to fit the experimental RDC data against the low-energy conformational sets of an unexpected synthetic product, which were calculated using density functional theory (DFT). This analysis aimed to identify the correct molecular connection sites. Furthermore, the method was applied to determine the correct relative configuration between two possible diastereoisomers.
Collapse
Affiliation(s)
- Gao-Wei Li
- College of Chemistry and Chemical Engineering, Henan Engineering Research Center for Green Synthesis of Pharmaceuticals, Shangqiu Normal University, Shangqiu, China
| | - Shuai-Hua Shi
- College of Chemistry and Chemical Engineering, Henan Engineering Research Center for Green Synthesis of Pharmaceuticals, Shangqiu Normal University, Shangqiu, China
| | - Shu-Sen Li
- State Key Laboratory of Applied Organic Chemistry, Lanzhou Magnetic Resonance Center, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Xiao-Juan Wang
- College of Chemistry and Chemical Engineering, Henan Engineering Research Center for Green Synthesis of Pharmaceuticals, Shangqiu Normal University, Shangqiu, China
| | - Yuan-Yuan Gao
- College of Chemistry and Chemical Engineering, Henan Engineering Research Center for Green Synthesis of Pharmaceuticals, Shangqiu Normal University, Shangqiu, China
| | - Lan-Tao Liu
- College of Chemistry and Chemical Engineering, Henan Engineering Research Center for Green Synthesis of Pharmaceuticals, Shangqiu Normal University, Shangqiu, China
| | - Xinxiang Lei
- State Key Laboratory of Applied Organic Chemistry, Lanzhou Magnetic Resonance Center, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| |
Collapse
|
3
|
Wang K, Yu Z, Tan Z, Li S, Liu X, Pu M, Feng X. Catalytic Asymmetric Rearrangement of Azoalkene-Derived Sulfonium Ylides via Remote Chirality Control. Org Lett 2025; 27:3409-3413. [PMID: 40135685 DOI: 10.1021/acs.orglett.5c00825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
The [2,3]-sigmatropic rearrangement has been widely utilized to construct C-S bonds. Herein, we report an enantioselective, intermolecular, and noncarbenoid [2,3]-sigmatropic rearrangement of sulfonium ylides using azoalkenes. This process features a broad substrate scope, high efficiency, and excellent enantioselectivity, achieving yields of up to 99% and an enantiomeric excess (ee) of up to 96%. Furthermore, the protocol demonstrated good scalability.
Collapse
Affiliation(s)
- Kaixuan Wang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Zengcheng Yu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Zheng Tan
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Shiya Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Maoping Pu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
4
|
Caudle JD, Ennis MK, Dodge DC, Iskandar AA, Portillo Urquiza Y, Seo DK, Wright FM, Purser GH, Leonori D, Lamar AA. Atom-efficient chlorinative dearomatization of naphthol, quinolinol, and isoquinolinol derivatives using trichloroisocyanuric acid (TCCA). Org Biomol Chem 2025; 23:1633-1643. [PMID: 39761115 DOI: 10.1039/d4ob01894j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
A variety of dearomatized compounds have been prepared in moderate to excellent yields from planar scaffolds using trichloroisocyanuric acid (TCCA) as an atom-economical chlorinating agent. The method tolerates a broad range of functionalities and can take place in several green and/or sustainable solvents. Twenty-one examples of 1,1-dichlorinated products of dearomatized 2-naphthols and analogous heteroarenes (quinolinols, isoquinolinols, and quinazolinol) are reported along with five examples of monochlorinated dearomatized products. The utility of the 1,1-dichloronaphthalenone product as a reactive intermediate species is demonstrated in a two-step, one-pot reaction carried out in a green solvent. In a mechanistic investigation, the coordination of the chlorinating agent to the hydroxy substituent of the planar scaffold prior to chlorine transfer is implicated.
Collapse
Affiliation(s)
- Jenna D Caudle
- Department of Chemistry and Biochemistry, The University of Tulsa 800 South Tucker Drive, Tulsa, OK 74104, USA.
| | - Marlow K Ennis
- Department of Chemistry and Biochemistry, The University of Tulsa 800 South Tucker Drive, Tulsa, OK 74104, USA.
| | - Dillon C Dodge
- Department of Chemistry and Biochemistry, The University of Tulsa 800 South Tucker Drive, Tulsa, OK 74104, USA.
| | - Audrey A Iskandar
- Department of Chemistry and Biochemistry, The University of Tulsa 800 South Tucker Drive, Tulsa, OK 74104, USA.
| | - Yesenia Portillo Urquiza
- Department of Chemistry and Biochemistry, The University of Tulsa 800 South Tucker Drive, Tulsa, OK 74104, USA.
| | - David K Seo
- Department of Chemistry and Biochemistry, The University of Tulsa 800 South Tucker Drive, Tulsa, OK 74104, USA.
| | - Franklyn M Wright
- Department of Chemistry and Biochemistry, The University of Tulsa 800 South Tucker Drive, Tulsa, OK 74104, USA.
| | - Gordon H Purser
- Department of Chemistry and Biochemistry, The University of Tulsa 800 South Tucker Drive, Tulsa, OK 74104, USA.
| | - Daniele Leonori
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52056 Aachen, Germany
| | - Angus A Lamar
- Department of Chemistry and Biochemistry, The University of Tulsa 800 South Tucker Drive, Tulsa, OK 74104, USA.
| |
Collapse
|
5
|
Lei J, Xu ZG. Reaction strategies for the meta-selective functionalization of pyridine through dearomatization. Mol Divers 2025; 29:849-869. [PMID: 38647989 DOI: 10.1007/s11030-024-10861-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 03/25/2024] [Indexed: 04/25/2024]
Abstract
The pyridine moiety is a crucial structural component in various pharmaceuticals. While the direct ortho- and para-functionalization of pyridines is relatively straightforward, the meta-selective C-H functionalization remains a significant challenge. This review highlights dearomatization strategies as a key area of interest in expanding the application of meta-C-H functionalization of pyridines. Dearomatization enables the meta-functionalization through various catalytic methods that directly generate dearomatization products, and some products can be rearomatized back to pyridine derivatives. Furthermore, this article also covers the dearomatization of multiple positions of pyridine in the synthesis of polycyclic compounds. It offers a comprehensive overview of the latest advancements in dearomatization at different positions of pyridine, aiming to provide a valuable resource for researchers in this field. It also highlights the advantages and limitations of existing technologies, aiming to inform a broader audience about this important field and foster its future development.
Collapse
Affiliation(s)
- Jie Lei
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Zhi-Gang Xu
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing, 402160, China.
| |
Collapse
|
6
|
Liu X, Zhu B, Chu A, Wang R. Organocatalyzed Enantioselective Double Dearomatization of Tricyclic Phenols and Alkoxybenzenes. Org Lett 2024; 26:10827-10832. [PMID: 39641758 DOI: 10.1021/acs.orglett.4c03921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
To advance more efficient dearomatization approaches, we present herein an organocatalyzed asymmetric double dearomatization reaction of tricyclic phenols and alkoxybenzenes by leveraging a novel steric hindrance-regulated dearomatization strategy for nonfunctionalized phenols. This protocol allows the efficient synthesis of structurally complex polycyclic diketones with four tertiary carbon centers under mild conditions while also showcasing the potential of multiple dearomatizations for building intricate molecular frameworks from simple starting materials.
Collapse
Affiliation(s)
- Xihong Liu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, China
| | - Boyan Zhu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, China
| | - Anqi Chu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, China
| | - Rui Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
7
|
Li H, Wang X, Chang M, Wu M, Yuan X, Hui X, Wei H, Xi J, Xie W. Construction of contiguous quaternary carbon centers enabled by dearomatization of phenols with 3-bromooxindoles. Org Biomol Chem 2024; 22:8413-8417. [PMID: 39352695 DOI: 10.1039/d4ob01163e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
A transition metal-free and oxidation-free dearomatization of phenols through conjugate addition to in situ generated indol-2-one from 3-bromooxindole is detailed in this report. This methodology offers an effective approach for the synthesis of a range of 3-substituted oxindoles containing contiguous quaternary carbon centers (CQCCs) with yields of up to 99%. The reaction is characterized by mild conditions, exceptional efficiency, environmental compatibility, favorable functional group tolerance, and scalability to large-scale production.
Collapse
Affiliation(s)
- Hui Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China.
| | - Xi Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China.
| | - Minhang Chang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China.
| | - Mengbo Wu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China.
| | - Xinyu Yuan
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China.
| | - Xiangyu Hui
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China.
| | - Hongbo Wei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China.
| | - Juyun Xi
- Department of General Surgery, Nanping People's Hospital, Nanping, 35300, China.
| | - Weiqing Xie
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China.
- Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Yangling, 712100, Shaanxi, China
| |
Collapse
|
8
|
Gao X, Li BB, Li YW, Xiao X, Liu MM, Mei GJ. Enantiodivergent Cyclization of Racemic Cyclohexadienones via Parallel Kinetic Asymmetric Transformation. Org Lett 2024; 26:6290-6294. [PMID: 39023054 DOI: 10.1021/acs.orglett.4c02396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Strategies that fully convert available racemic substrates into valuable enantioenriched products are urgently needed in organic synthesis. Reported herein is the first parallel kinetic asymmetric transformation of racemic cyclohexadienones. Racemic cyclohexadienones are first diastereoselectively converted into a new pair of racemic transient dienol intermediates, which are then parallel protonated by chiral phosphoric acid to deliver two sets of hydroindole products bearing a quaternary stereocenter with generally excellent enantioselectivity.
Collapse
Affiliation(s)
- Xiang Gao
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Bei-Bei Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Yu-Wei Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Xiao Xiao
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Meng-Meng Liu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Guang-Jian Mei
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- Pingyuan Laboratory (Zhengzhou University), Zhengzhou 450001, China
| |
Collapse
|
9
|
Zeng H, Wen G, Lin L, Feng X. Asymmetric dearomatization of benzyl 1-naphthyl ethers via [1,3] O-to-C rearrangement. Chem Commun (Camb) 2024; 60:7507-7510. [PMID: 38949684 DOI: 10.1039/d4cc02620a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
A catalytic asymmetric dearomatization reaction of benzyl 1-naphthyl ethers accelerated by a chiral N,N'-dioxide/Co(II) complex is disclosed. The reaction proceeds via an enantioselective [1,3] O-to-C rearrangement through a tight ion-pair pathway, providing a wide array of α-naphthalenone derivatives bearing an all-carbon quaternary center in high yields with excellent ee values.
Collapse
Affiliation(s)
- Hongkun Zeng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Gang Wen
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Lili Lin
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
10
|
Zhang J, Sun WN, Jiang Z, Jia SK, Mei GJ. Diastereodivergent and Regioselective Synthesis of Tetrahydrofuro[2,3- b]furans with Four Consecutive Stereocenters. J Org Chem 2024; 89:4134-4144. [PMID: 38394632 DOI: 10.1021/acs.joc.4c00069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Base-catalyzed diastereodivergent and regioselective domino processes of triketone enones with arylacetaldehydes for the synthesis of tetrahydrofuro[2,3-b]furans with four consecutive stereocenters are reported. Good yields and diastereoselectivities are obtained when DBU is employed as a catalyst; in contrast, Et3N delivers a different diastereomer in excellent diastereoselectivity. This work offers many advantages, including switchable diastereoselectivity, cheap base catalysts, and a simple operation.
Collapse
Affiliation(s)
- Jing Zhang
- Advanced Research Institute and School of Pharmaceutical Science, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China
| | - Wen-Na Sun
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, Henan,P. R. China
| | - Zhiwei Jiang
- Advanced Research Institute and School of Pharmaceutical Science, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China
| | - Shi-Kun Jia
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, Henan,P. R. China
- Pingyuan Laboratory (Zhengzhou University), Zhengzhou 450001, P. R. China
| | - Guang-Jian Mei
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, Henan,P. R. China
- Pingyuan Laboratory (Zhengzhou University), Zhengzhou 450001, P. R. China
| |
Collapse
|
11
|
Gao H, Miao Y, Sun W, Zhao R, Xiao X, Hua Y, Jia S, Wang M, Mei G. Diversity-Oriented Catalytic Asymmetric Dearomatization of Indoles with o-Quinone Diimides. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2305101. [PMID: 37870177 PMCID: PMC10724437 DOI: 10.1002/advs.202305101] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/14/2023] [Indexed: 10/24/2023]
Abstract
Herein, the first diversity-oriented catalytic asymmetric dearomatization of indoles with o-quinone diimides (o-QDIs) is reported. The catalytic asymmetric dearomatization (CADA) of indoles is one of the research focuses in terms of the structural and biological importance of dearomatized indole derivatives. Although great achievements have been made in target-oriented CADA reactions, diversity-oriented CADA reactions are regarded as more challenging and remain elusive due to the lack of synthons featuring multiple reaction sites and the difficulty in precise control of chemo-, regio-, and enantio-selectivity. In this work, o-QDIs are employed as a versatile building block, enabling the chemo-divergent dearomative arylation and [4 + 2] cycloaddition reactions of indoles. Under the catalysis of chiral phosphoric acid and mild conditions, various indolenines, furoindolines/pyrroloindolines, and six-membered-ring fused indolines are collectively prepared in good yields with excellent enantioselectivities. This diversity-oriented synthesis protocol enriches the o-quinone chemistry and offers new opportunities for CADA reactions.
Collapse
Affiliation(s)
- Hao‐Jie Gao
- College of ChemistryPingyuan LaboratoryZhengzhou UniversityZhengzhou450001China
| | - Yu‐Hang Miao
- College of ChemistryPingyuan LaboratoryZhengzhou UniversityZhengzhou450001China
| | - Wen‐Na Sun
- College of ChemistryPingyuan LaboratoryZhengzhou UniversityZhengzhou450001China
| | - Rui Zhao
- College of ChemistryPingyuan LaboratoryZhengzhou UniversityZhengzhou450001China
| | - Xiao Xiao
- Collaborative Innovation Center of Yangtze River Delta Region Green PharmaceuticalsZhejiang University of TechnologyHangzhou310014China
| | - Yuan‐Zhao Hua
- College of ChemistryPingyuan LaboratoryZhengzhou UniversityZhengzhou450001China
| | - Shi‐Kun Jia
- College of ChemistryPingyuan LaboratoryZhengzhou UniversityZhengzhou450001China
| | - Min‐Can Wang
- College of ChemistryPingyuan LaboratoryZhengzhou UniversityZhengzhou450001China
| | - Guang‐Jian Mei
- College of ChemistryPingyuan LaboratoryZhengzhou UniversityZhengzhou450001China
| |
Collapse
|