1
|
He Y, Zhao Q, Yuan W, Gong L. Photo-Induced Three-Component Reaction for the Construction Of α-Tertiary Amino Acid Derivatives. Chemistry 2024; 30:e202402995. [PMID: 39305150 DOI: 10.1002/chem.202402995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Indexed: 11/01/2024]
Abstract
The synthesis of α-tertiary amino acids (ATAAs), which are pivotal components in natural metabolism and pharmaceutical innovation, continues to attract significant research interest. Despite substantial advancements, the pursuit of a facile, versatile, and resource-efficient methodology remains an area of active development. In this work, we introduce a visible light-triggered three-component reaction involving readily available nitrosoarenes, N-acyl pyrazoles, and allyl or (bromomethyl)benzenes under mild conditions. This approach enables the straightforward assembly of a wide array of ATAA derivatives (42 examples) in commendably high yields (up to 89 %). Mechanistic investigations elucidate that the reaction proceeds through a dehydration condensation between nitrosoarenes and N-acyl pyrazoles to generate ketimine intermediates. This is followed by a light-driven halogen atom transfer (XAT) process and a radical addition, culminating in the formation of the desired products. The approach showcases excellent functional group compatibility and late-stage derivatization potential, offering new insights and avenues for the synthesis of ATAA analogs.
Collapse
Affiliation(s)
- Yuhang He
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Qianyi Zhao
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
| | - Wei Yuan
- Department of Pharmacy, Xiamen Medical College, Xiamen, 361023, China
| | - Lei Gong
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
| |
Collapse
|
2
|
Chen M, Lu Y, Shen Y, Wang Q. N-Trifluoroethoxy Benzotriazolium Triflate: A Readily Available Reagent for Direct Radical Trifluoroethoxylation of Alkenes. Org Lett 2024; 26:9586-9591. [PMID: 39470382 DOI: 10.1021/acs.orglett.4c03710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Herein, we describe the development and application of a novel benzotriazole-based reagent toward radical trifluoroethoxylation. Various alkene classes, including styrene derivatives, enol carbonates, and allyl silanes, are viable reaction partners in this transformation, yielding diverse trifluoroethoxylated products. Furthermore, this method is readily applicable for the late-stage modification of natural product and drugs molecules. Mechanistic and computational studies suggest the intermediacy of an OCH2CF3 radical generated under photocatalytic conditions.
Collapse
Affiliation(s)
- Mingxi Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, Guangxi People's Republic of China
| | - Yuhui Lu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, Guangxi People's Republic of China
| | - Yiwen Shen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, Guangxi People's Republic of China
| | - Quande Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, Guangxi People's Republic of China
| |
Collapse
|
3
|
Naveen K, Rawat VS, Verma R, Gnanamani E. Catalyst-free ring opening of azlactones in water microdroplets. Chem Commun (Camb) 2024; 60:13263-13266. [PMID: 39445768 DOI: 10.1039/d4cc04487h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
A catalyst-free method was developed for the ring opening of azlactones (also known as oxazolones) in water microdroplets. Azlactone was dissolved in a water : acetonitrile (1 : 1) mixture, and the solution is sprayed by using nitrogen gas at a pressure of 120 psi to generate microdroplets. This method promoted selective cleavage of the lactone bond to afford the corresponding N-benzoyl derivatives in up to 94% isolated yield with no epimerization. Our method produces the ring-opening products in milliseconds (up to 94 μmol for 33.3 minutes), and may have utility for high-throughput synthesis applications.
Collapse
Affiliation(s)
- Kumar Naveen
- Asymmetric Synthesis and Catalysis Laboratory, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| | - Vishesh Singh Rawat
- Asymmetric Synthesis and Catalysis Laboratory, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| | - Rahul Verma
- Asymmetric Synthesis and Catalysis Laboratory, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| | - Elumalai Gnanamani
- Asymmetric Synthesis and Catalysis Laboratory, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| |
Collapse
|
4
|
Gallego-Gamo A, Sarró P, Ji Y, Pleixats R, Molins E, Gimbert-Suriñach C, Vallribera A, Granados A. Direct Synthesis of 2-Hydroxytrifluoroethylacetophenones via Organophotoredox-Mediated Net-Neutral Radical/Polar Crossover. J Org Chem 2024; 89:11682-11692. [PMID: 39087492 PMCID: PMC11334190 DOI: 10.1021/acs.joc.4c01419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024]
Abstract
Alkene difunctionalization is a very attractive tool in synthetic organic chemistry. Herein, we disclose an operationally and practically simple method to access 2-hydroxytrifluoroethylacetophenones from styrene derivatives via photoredox catalysis. This light-mediated transformation promotes the generation of the 1-hydroxy-2,2,2-trifluoroethyl carbon-centered radical as key synthon, which undergoes Giese addition with styrenes followed by a Kornblum oxidation process. The presented method is not only mild and cost-effective, but also utilizes an organic photocatalyst and DMSO as oxidant. Experimental investigations support the operative mechanism via net-neutral radical/polar crossover.
Collapse
Affiliation(s)
- Albert Gallego-Gamo
- Department
of Chemistry and Centro de Innovación en Química Avanzada
(ORFEO−CINQA), Universitat Autònoma
de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Pau Sarró
- Department
of Chemistry and Centro de Innovación en Química Avanzada
(ORFEO−CINQA), Universitat Autònoma
de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Yingmin Ji
- Department
of Chemistry and Centro de Innovación en Química Avanzada
(ORFEO−CINQA), Universitat Autònoma
de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Roser Pleixats
- Department
of Chemistry and Centro de Innovación en Química Avanzada
(ORFEO−CINQA), Universitat Autònoma
de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Elies Molins
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain
| | - Carolina Gimbert-Suriñach
- Department
of Chemistry and Centro de Innovación en Química Avanzada
(ORFEO−CINQA), Universitat Autònoma
de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Adelina Vallribera
- Department
of Chemistry and Centro de Innovación en Química Avanzada
(ORFEO−CINQA), Universitat Autònoma
de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Albert Granados
- Department
of Chemistry and Centro de Innovación en Química Avanzada
(ORFEO−CINQA), Universitat Autònoma
de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| |
Collapse
|
5
|
Shan Q, Wu Y, Chen M, Zhao X, Loh T, Hu X. Synergistic Copper-Aminocatalysis for Direct Tertiary α-Alkylation of Ketones with Electron-Deficient Alkanes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402255. [PMID: 38885363 PMCID: PMC11336924 DOI: 10.1002/advs.202402255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/17/2024] [Indexed: 06/20/2024]
Abstract
In this study, a novel approach for the tertiary α-alkylation of ketones using alkanes with electron-deficient C─H bonds is presented, employing a synergistic catalytic system combining inexpensive copper salts with aminocatalysis. This methodology addresses the limitations of traditional alkylation methods, such as the need for strong metallic bases, regioselectivity issues, and the risk of over alkylation, by providing a high reactivity and chemoselectivity without the necessity for pre-functionalized substrates. The dual catalytic strategy enables the direct functionalization of C(sp3)─H bonds, demonstrating remarkable selectivity in the presence of conventional C(sp3)─H bonds that are adjacent to heteroatoms or π systems, which are typically susceptible to single-electron transfer processes. The findings contribute to the advancement of alkylation techniques, offering a practical and efficient route for the construction of C(sp3)─C(sp3) bonds, and paving the way for further developments in the synthesis of complex organic molecules.
Collapse
Affiliation(s)
- Qi‐Chao Shan
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University30 South Puzhu RoadNanjing211816China
| | - You‐Wei Wu
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University30 South Puzhu RoadNanjing211816China
| | - Mu‐Xiang Chen
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University30 South Puzhu RoadNanjing211816China
| | - Xuefei Zhao
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University30 South Puzhu RoadNanjing211816China
| | - Teck‐Peng Loh
- College of Advanced Interdisciplinary Science and TechnologyHenan University of Technology100 Lianhua StreetZhengzhou450001China
- Division of Chemistry and Biological ChemistrySchool of ChemistryChemical Engineering and BiotechnologyNanyang Technological University21 Nanyang LinkSingapore637371Singapore
| | - Xu‐Hong Hu
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University30 South Puzhu RoadNanjing211816China
| |
Collapse
|
6
|
Abdukerem D, Chen H, Mao Z, Xia K, Zhu W, Liu C, Yu Y, Abdukader A. Transition metal-free C(sp 3)-H selenation of β-ketosulfones. Org Biomol Chem 2024; 22:2075-2080. [PMID: 38363158 DOI: 10.1039/d4ob00006d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
The installation of selenium groups has become an essential step across a number of industries such as agrochemicals, drug discovery, and materials. However, direct C(sp3)-H selenation, which is most atom economical, remains a formidable challenge, and only a few examples have been reported to date. In this article, we introduce the transition metal-free C(sp3)-H selenation with the easily available β-ketosulfones and diselenides as the material source. This benign protocol permits access to a broad spectrum of α-aryl(alkyl) seleno-β-ketosulfones in high yields with outstanding functional group compatibility. Distinct advantages of this protocol over all previous methods encompass the utilization of base and air as an oxidant, room temperature, and enhanced green chemistry matrices.
Collapse
Affiliation(s)
- Dilshat Abdukerem
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, China.
| | - Hui Chen
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, China.
| | - Zechuan Mao
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, China.
| | - Kun Xia
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, China.
| | - Wenli Zhu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, China.
| | - Changhong Liu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, China.
| | - Yuming Yu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, China.
| | - Ablimit Abdukader
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, China.
| |
Collapse
|