1
|
Ge Z, Wang L, Xu L, Zou R, Liu Y, Liu D, Zhong B. Three-dimensional urchin-like K 2Ti 8O 17 / Ag NPs composite as a SERS substrate for detecting folic acid and thiram. Talanta 2025; 292:127926. [PMID: 40090253 DOI: 10.1016/j.talanta.2025.127926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/18/2025] [Accepted: 03/10/2025] [Indexed: 03/18/2025]
Abstract
The three-dimensional (3D) semiconductor/noble metal composite substrates for surface-enhanced Raman scattering (SERS) have garnered increasing interest due to their excellent optical and chemical properties, as well as the capacity to trigger both electromagnetic mechanism (EM) and chemical mechanism (CM) simultaneously. In this work, a facile 3D urchin-like K2Ti8O17/Ag nanoparticles (Ag NPs) composite substrate is designed for multi-purpose SERS sensing. K2Ti8O17, as a dielectric medium, improves the electric field environment around Ag NPs, which is consistent with finite-different time domain (FDTD) results, and enhances the SERS performance of the K2Ti8O17/Ag composite substrate. Besides, the efficient "donor-bridge-acceptor" charge transfer mode, explored through energy level calculations and enhanced utilization of incident light, further strengthens the SERS performance. Results show that the prepared K2Ti8O17/Ag NPs substrate exhibits high detection sensitivity, with 10-11 and 10-12 M limits in detecting Methylene Blue (MB) and Crystal Violet (CV), and the enhancement factors (EFs) of 2.66 × 109 and 6.07 × 109, respectively. At the same time, the composite substrate also possesses good signal uniformity (RSD = 10.5 %) and promising photocatalytic ability. For practical applications, the prepared K2Ti8O17/Ag NPs substrate can detect folic acid of 10-7 M in the diluted serum environment and thiram of 10-8 M in lake water, respectively. The urchin-like K2Ti8O17/Ag NPs substrate expands the range of 3D semiconductor composite SERS substrates, which is expected to be used for biosensing and trace analysis of harmful substances.
Collapse
Affiliation(s)
- Zhongqi Ge
- School of Materials Science and Engineering, Harbin Institute of Technology at Weihai, 2 West Wenhua Road, Weihai, 264209, China
| | - Lijuan Wang
- School of Materials Science and Engineering, Harbin Institute of Technology at Weihai, 2 West Wenhua Road, Weihai, 264209, China.
| | - Lin Xu
- School of Materials Science and Engineering, Harbin Institute of Technology at Weihai, 2 West Wenhua Road, Weihai, 264209, China
| | - Ruikang Zou
- School of Materials Science and Engineering, Harbin Institute of Technology at Weihai, 2 West Wenhua Road, Weihai, 264209, China
| | - Yuqi Liu
- School of Materials Science and Engineering, Harbin Institute of Technology at Weihai, 2 West Wenhua Road, Weihai, 264209, China
| | - Dongdong Liu
- School of Materials Science and Engineering, Harbin Institute of Technology at Weihai, 2 West Wenhua Road, Weihai, 264209, China
| | - Bo Zhong
- School of Materials Science and Engineering, Harbin Institute of Technology at Weihai, 2 West Wenhua Road, Weihai, 264209, China.
| |
Collapse
|
2
|
Lan W, Zhao J, Zhai X, Gu C, Jiang T, Wang J. PCA-assisted direct diagnosis of Aβ proteins for Alzheimer's disease using non-metallic SERS platform of graphitic carbon nitride@metal-organic framework. Colloids Surf B Biointerfaces 2025; 252:114665. [PMID: 40174537 DOI: 10.1016/j.colsurfb.2025.114665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/20/2025] [Accepted: 03/26/2025] [Indexed: 04/04/2025]
Abstract
Here, we explored a non-metallic surface enhanced Raman scattering (SERS) platform based on graphitic carbon nitride@metal-organic framework (g-C3N4@MOF) for the sensitive direct diagnosis of Aβ proteins, assisted by principal component analysis (PCA). By systematically optimizing the deposition voltage and time, we successfully achieved a uniform coating of g-C3N4 nanosheets over a large-area copper foil during the initial electrodeposition step. Subsequently, a homogeneous layer of flower-like MOF structures was deposited onto the g-C3N4 nanosheets through a secondary electrodeposition process. This cooperation of g-C3N4 nanosheets and flower-like MOF not only significantly enlarged the effective area for molecular enrichment but also promoted charge transfer through energy-level matching between the two materials. The characteristic SERS spectra of Aβ40 and Aβ42, enhanced by the g-C3N4@MOF composite substrate, were recorded and classified using PCA to extract informative features of these important biomarkers. This research exploits a new avenue for the clinical assay of neurodegenerative diseases by extracting informative features of key biomarkers.
Collapse
Affiliation(s)
- Wenting Lan
- Department of Radiology, Department of Neurosurgery, Ningbo Key Laboratory of Nervous System and Brain Function, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, PR China
| | - Jialong Zhao
- School of Physical Science and Technology, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Xuesong Zhai
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, PR China
| | - Chenjie Gu
- School of Physical Science and Technology, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Tao Jiang
- School of Physical Science and Technology, Ningbo University, Ningbo, Zhejiang 315211, PR China.
| | - Jianyong Wang
- Department of Radiology, Department of Neurosurgery, Ningbo Key Laboratory of Nervous System and Brain Function, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, PR China.
| |
Collapse
|
3
|
Deng W, Liu X, Yang Y, Meng L, Lou Y, Li P, Zhang L, Wu W. A local shrinkage approach for creating dynamic hot-spots on thermoresponsive nanocellulose-based SERS substrate. J Colloid Interface Sci 2025; 685:706-715. [PMID: 39862849 DOI: 10.1016/j.jcis.2025.01.129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/12/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025]
Abstract
Surface-enhanced Raman scattering (SERS) is a highly sensitive technology to detect target analytes. The construction of dynamic "hot-spots" represents a significant approach to enhancing detection sensitivity. Herein, a hybrid plasma platform with dynamic "hot-spots" was developed for SERS recognition based on the assembly of gold nanospheres (AuNSs) on temperature-sensitive bacterial cellulose (BC) film grafted with poly(N-isopropylacrylamide) (PNIPAM). The dynamic "hot-spots" structure was regulated in-situ by local conformational contraction of the grafted thermoresponsive PNIPAM around the BC backbone without changing the overall morphology of the substrate. Moreover, the heating process was simplified by utilizing the plasma photothermal effect of AuNSs to regulate the "hot-spot" structure. The dynamic regulation measured value of the Raman signal of Rhodamine 6G (R6G) was increased by 6.5-times, and the SERS substrate exhibited extremely high sensitivity with a limit of detection (LOD) of 8.47 × 10-9 g/L and a relative standard deviation (RSD) of 9.24 %. Meanwhile, it can accurately detect the pesticide residues of thiram on apple peel with the detection limit of 6.54 × 10-11 g/L. This dynamic "hot-spot" modulation strategy via local structural regulation has significant potential to improve the convenience, flexibility, and sensitivity of on-site SERS detection.
Collapse
Affiliation(s)
- Wen Deng
- College of Light Industry and Food Engineering, Nanjing Forestry University, Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing 210037 China
| | - Xingyue Liu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing 210037 China
| | - Yuzhou Yang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing 210037 China
| | - Liucheng Meng
- College of Light Industry and Food Engineering, Nanjing Forestry University, Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing 210037 China
| | - Yanling Lou
- College of Light Industry and Food Engineering, Nanjing Forestry University, Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing 210037 China
| | - Peng Li
- School of Electronic and Information Engineering, Soochow University, Suzhou 215000 Jiangsu, China
| | - Lei Zhang
- Key Laboratory for Organic Electronics and Information, National Jiangsu Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023 China.
| | - Weibing Wu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing 210037 China.
| |
Collapse
|
4
|
Wang H, Zhang X, Liu J, Chen C. Modulating the electronic structure of graphdiyne-based nanomaterials for engineering nano-bio interfaces in biomedical applications. Adv Drug Deliv Rev 2025; 220:115570. [PMID: 40147533 DOI: 10.1016/j.addr.2025.115570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 03/29/2025]
Abstract
Graphdiyne (GDY), a two-dimensional (2D) carbon allotrope featuring a unique electronic structure, has attracted considerable attention due to its outstanding properties and potential applications in various fields, particularly in biomedicine due to its exceptional surface area, tunable electronic structure, and biocompatibility. Although promising, this field is still in the proof-of-concept stage due to incomplete understanding of the effects of structural regulation, particularly electronic structure, of GDY-based nanomaterials on their nano-bio interfaces, which seriously hinders the research of GDY-based nanomaterials in the biomedical field. To provide a comprehensive understanding of the relationship between electronic structures and nano-bio interfaces, this review focuses on the modulation of the electronic structure of GDY-based nanomaterials and its implications for engineering nano-bio interfaces for biomedical applications. Firstly, we delve into the intrinsic electronic properties of GDY, including its bandgap tunability and high carrier mobility, which are critical for its functionality in biomedical applications. We then discuss strategies for modulating these properties through oxidation, nonmetallic doping, covalent modification, and metal loading, aiming to optimize the electronic structure of GDY-based nanomaterials for superior performance in specific biomedical contexts, such as biomedical imaging, surface and interface catalysis, free radical scavenging, and drug delivery. Furthermore, we provide an overview of the methodologies for the investigation of these electronic properties, including theoretical simulation, characterization techniques, and real-time analysis of electron transfer at the nano-bio interfaces, highlighting their roles in advancing our understanding and guiding the design of novel GDY-based materials. Finally, this review provides an outlook on future research directions aimed at further optimizing the design of GDY-based nanomaterials and nano-bio interfaces, emphasizing the need for interdisciplinary collaboration to overcome current challenges and to fully realize the potential of GDY-based nanomaterials in biomedical applications. These principles are anticipated to facilitate the future development and clinical translation of precise, safe, and effective nanomedicines with intelligent theranostic features.
Collapse
Affiliation(s)
- Hui Wang
- New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaoyu Zhang
- New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Jing Liu
- New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, University of Chinese Academy of Sciences, Beijing 100190, China.
| | - Chunying Chen
- New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, University of Chinese Academy of Sciences, Beijing 100190, China; Research Unit of Nanoscience and Technology, Chinese Academy of Medical Sciences, Beijing 100730, China.
| |
Collapse
|
5
|
Zhou G, Li P, Zhao C, Guo X, Dong R, Yang L. Insights of Surface-Enhanced Raman Spectroscopy Detection by Guiding Molecules into Nanostructures to Activate Hot Spots. Anal Chem 2025; 97:5612-5623. [PMID: 40059289 DOI: 10.1021/acs.analchem.4c06299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
A misunderstanding of how target molecules enter hot spot nanostructures has significantly hindered the advancement of surface-enhanced Raman spectroscopy (SERS) detection methods in recent years. The challenge lies in finding convenient ways to transport target molecules to various nanostructures. In this work, we discovered that filling the gaps in empty nanostructures with water is often difficult, as metal surfaces are not well wetted. Additionally, the adsorption of pollutants from the air reduces the water wettability within the nanogaps, severely restricting the diffusion of molecules in the hot spots. This study proposes a method that uses a binary solvent mixture of ethanol and water (EtOH-H2O) to effectively guide target molecules into the nanostructures containing numerous hot spots. By utilizing the tunable surface tension gradient of this binary solvent mixture, we can control solvent transport within the nanostructures, significantly enhancing the activity of the hot spots and increasing the efficiency of SERS detection. The detection limit of this simple and rapid binary solvent mixing method is improved by 2-3 orders of magnitude compared to traditional methods that use only water or ethanol as solvents while also demonstrating high reproducibility. This method can be widely applied to various nanostructures for different types of molecules, maximizing the efficient use of intrinsic hot spots. This innovative approach provides new momentum for the advancement of SERS technology and lays a solid foundation for its widespread adoption in various analytical applications.
Collapse
Affiliation(s)
- Guoliang Zhou
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science & Technology of China, Hefei, Anhui 230026, China
| | - Pan Li
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Department of Pharmacy, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Chengxi Zhao
- University of Science & Technology of China, Hefei, Anhui 230026, China
| | - Xinran Guo
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science & Technology of China, Hefei, Anhui 230026, China
| | - Ronglu Dong
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Department of Pharmacy, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Liangbao Yang
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science & Technology of China, Hefei, Anhui 230026, China
- Department of Pharmacy, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| |
Collapse
|
6
|
Hsu YT, Chen CH, Hsu JY, Chen HW, Liu KK. Femtosecond laser-induced Au nanostructure-decorated with plasmonic nanomaterials for sensitive SERS-based detection of fentanyl. Talanta 2025; 284:127264. [PMID: 39581107 DOI: 10.1016/j.talanta.2024.127264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/06/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
Fentanyl and its analogs have emerged as the main factor behind the ongoing opioid abuse globally in recent years. However, the existing techniques for sensitive and accurate detection of fentanyl are often complex, laborious, expensive, and restricted to central healthcare facilities. We reported herein a plasmonic biochip fabricated by the femtosecond laser-induced nanostructures and plasmonic nanomaterials for sensitive SERS-based detection of fentanyl. Yolk-shell structured plasmonic nanomaterials are employed owing to their unique optical properties. The femtosecond laser direct writing technique creates three-dimensional silicon nanostructures followed by gold deposition and the immobilization of plasmonic nanomaterials. This SERS biochip fabricated by the femtosecond laser-induced nanostructure decorated with yolk-shell structured plasmonic nanomaterials enables the rapid and sensitive detection of fentanyl with the limit of detection of 3.33 ng/mL.
Collapse
Affiliation(s)
- Yun-Tzu Hsu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Chien-Hung Chen
- International Intercollegiate Ph.D. Program, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Ju-Yin Hsu
- National Taiwan University Hospital Hsinchu Branch, Hsinchu, 300001, Taiwan
| | - Hung-Wen Chen
- International Intercollegiate Ph.D. Program, National Tsing Hua University, Hsinchu, 300044, Taiwan; Institute of Photonics Technologies, National Tsing Hua University, Hsinchu, 300044, Taiwan.
| | - Keng-Ku Liu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 300044, Taiwan.
| |
Collapse
|
7
|
Cong L, Wang X, Wang J, Liu W, Xu W, Zhang S, Xu S. Three-Dimensional SERS-Active Hydrogel Microbeads Enable Highly Sensitive Homogeneous Phase Detection of Alkaline Phosphatase in Biosystems. ACS APPLIED MATERIALS & INTERFACES 2025; 17:5933-5941. [PMID: 39824751 DOI: 10.1021/acsami.4c18139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
Alkaline phosphatase (ALP) is a biomarker for many diseases, and monitoring its activity level is important for disease diagnosis and treatment. In this study, we used the microdroplet technology combined with an in situ laser-induced polymerization method to prepare the Ag nanoparticle (AgNP) doped hydrogel microbeads (HMBs) with adjustable pore sizes that allow small molecules to enter while blocking large molecules. The AgNPs embedded in the hydrogel microspheres can provide SERS activity, improving the SERS signal of small molecules that diffuse to the AgNPs. A specific hydrolysis reaction of ALP on 5-bromo-4-chloro-3-indolylphosphate (BCIP) was introduced and itsproduct 5,5'-dibromo-4,4'-dichloro-1H,1H-[2,2']bisindolyl-3,3'-dione (BCI) was employed to assess ALP activity due to its highly resonance Raman activity. The sensing platform was applied to model ALP activity in serum and evaluate ALP inhibitors. The SERS assay showed higher sensitivity than UV-vis absorption spectroscopy, with the lowest detectable ALP concentration of 1.0 × 10-20 M. In addition, the ALP activity in HepG2 cells was evaluated using this sensing platform, showing lower ALP-expressing activity than that of controls in response to hypoxia and iron metastasis. This SERS-activated HMB shows great potential in detecting ALP and is expected to help analyze complex clinical samples.
Collapse
Affiliation(s)
- Lili Cong
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun 130021, P. R. China
| | - Xin Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Jiaqi Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Weiyi Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Weiqing Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Songling Zhang
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun 130021, P. R. China
| | - Shuping Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
- Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
8
|
Zhang X, Hui L, He F, Li Y. The Interfacial Interpenetration Effect for Controlled Reaction Stability of Palladium Catalysts. J Am Chem Soc 2025; 147:436-445. [PMID: 39727306 DOI: 10.1021/jacs.4c11234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Tailoring well-defined interfacial structures of heterogeneous metal catalysts has become an effective strategy for identifying the interface relationships and facilitating the reactions involving multiple intermediates. Here, a particle-particle heterostructure catalyst consisting of Pd and copper oxide nanoparticles is designed to achieve high-performance alkaline methanol oxidation electrocatalysis. The strong coupling particle-particle heterostructure catalyst induced a unique interfacial interpenetration effect to improve the interfacial charge redistribution and regulate the d-band structure for optimizing the adsorption of CO intermediates on the catalyst. The resulting catalyst shows impressive mass activity (4.0 A mgPd-1) and current density (215.8 mA cm-2) for the methanol oxidation reaction (MOR) in alkaline media, which is 80.0 and 154.1 times higher than 10% Pd/C. The catalyst also exhibited outstanding stability for the MOR without obvious mass activity decay after 30,000 cycles. Experimental results and theoretical simulation (DFT) studies show that the chemical bond of the Cu-O-Pd interface can be regulated by the Pd penetration effect, greatly improving the activity and stability of the MOR. The present work exhibits the superiority of the metal particle-metal oxide heterostructure interface toward the rational design of advanced electrocatalysts.
Collapse
Affiliation(s)
- Xueting Zhang
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Lan Hui
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Feng He
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yuliang Li
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
9
|
Fan X, Zhao X, Tang X, Li G, Wei Y, Chen D, Kong F, Lan L, Wang J, Hao Q, Qiu T. High-specificity SERS sensing with magnet-powered hierarchically structured micromotors. OPTICS LETTERS 2024; 49:7106-7109. [PMID: 39671653 DOI: 10.1364/ol.543066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/10/2024] [Indexed: 12/15/2024]
Abstract
This work reports a hierarchically structured micromotor (HSM) surface-enhanced Raman scattering (SERS) platform comprising 3D tubular configurations with nanostructured outer walls. The HSMs can be powered by an external magnetic field in solution to enrich molecules with promoted adsorption efficiency. The nanostructured outer wall serves as containers to collect molecules and produce strong localized surface plasmon resonance to intensify Raman of the enriched molecules. Further coupling of HSMs after molecular enrichment can produce additional plasmonic hotspots at the sites where the molecules were enriched, providing a solution to manipulate molecules to enter the plasmonic hotspot region. Moreover, functionalizing specific molecules on the outer wall of HSMs enables high-specificity SERS sensing for benzaldehyde (BA) and Cu2+ ions in liquid. This SERS platform demonstrates great potential for practical applications in biochemical analysis and environmental monitoring, offering a rapid and sensitive tool for detecting low-concentration analytes in liquid.
Collapse
|
10
|
Hsu YT, Lin SH, Liu KK. A flexible plasmonic substrate for sensitive surface-enhanced Raman scattering-based detection of fentanyl. Chem Commun (Camb) 2024; 60:13903-13906. [PMID: 39501939 DOI: 10.1039/d4cc04988h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
In this work, we demonstrate a straightforward and versatile approach for fabricating flexible SERS substrates for highly sensitive fentanyl detection. Our design strategy integrates the synthesis of a yolk-shell structured plasmonic nanomaterial with a flexible cellulose substrate. The resulting SERS platform demonstrates excellent sensing capabilities, achieving a fentanyl detection limit as low as 4.89 ng mL-1.
Collapse
Affiliation(s)
- Yun-Tzu Hsu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan.
| | - Shih-Han Lin
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan.
| | - Keng-Ku Liu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan.
| |
Collapse
|
11
|
Tan L, Lu X, Yue S, Cao Y, Zhou Y, Jin B, Zhu JJ. Nitrogen-doped graphene quantum dot-intensified tungsten oxide nanosheets as a SERS substrate for antibiotics detection. Chem Commun (Camb) 2024; 60:13360-13363. [PMID: 39465655 DOI: 10.1039/d4cc05052e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
In this study, tungsten oxide nanosheets loaded with nitrogen-doped graphene oxide quantum dots (NGQDs/WO3 NSs) were fabricated as SERS substrates. The promoted photo-induced charge transfer (PICT) and the strong π-π stacking effect resulting from the unique structure of the NGQDs contributed to the enhanced SERS signal.
Collapse
Affiliation(s)
- Lu Tan
- Department of Chemistry, Anhui University, Hefei 230601, P. R. China.
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P. R. China.
| | - Xuanzhao Lu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P. R. China.
| | - Shuzhen Yue
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P. R. China.
| | - Yue Cao
- Key Laboratory for Organic Electronics & Information Displays and Institute of Advanced Materials, Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, P. R. China.
| | - Yang Zhou
- Key Laboratory for Organic Electronics & Information Displays and Institute of Advanced Materials, Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, P. R. China.
| | - Baokang Jin
- Department of Chemistry, Anhui University, Hefei 230601, P. R. China.
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P. R. China.
| |
Collapse
|
12
|
Zhao C, Huang J. Phase Transformation on Two-Dimensional MoTe 2 Films for Surface-Enhanced Raman Spectroscopy. Molecules 2024; 29:5216. [PMID: 39519857 PMCID: PMC11547442 DOI: 10.3390/molecules29215216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 10/27/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Two-dimensional (2D) transition metal dichalcogenides (TMDs) have recently become attractive candidate substrates for surface-enhanced Raman spectroscopy (SERS) owing to their atomically flat surfaces and adjustable electronic properties. Herein, large-scale 2D 1T'- and 2H-MoTe2 films were prepared using a chemical vapor deposition method. We found that phase structure plays an important role in the enhancement of the SERS performances of MoTe2 films. 1T'-MoTe2 films showed a strong SERS effect with a detection limit of 1 × 10-9 M for the R6G molecule, which is one order of magnitude lower than that of 2H-MoTe2 films. We demonstrated that the SERS sensitivity of MoTe2 films is derived from the efficient photoinduced charge transfer process between MoTe2 and adsorbed molecules. Moreover, a prohibited fish drug could be detected by using 1T'-MoTe2 films as SERS substrates. Our study paves the way to the development and application of high-performance SERS substrates based on TMD phase engineering.
Collapse
Affiliation(s)
- Caiye Zhao
- School of Mechanics and Optoelectronic Physics, Anhui University of Science and Technology, Huainan 232001, China;
| | | |
Collapse
|
13
|
Feng X, Liu J, Kong Y, Zhang Z, Zhang Z, Li S, Tong L, Gao X, Zhang J. Cu/Cu xO/Graphdiyne Tandem Catalyst for Efficient Electrocatalytic Nitrate Reduction to Ammonia. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405660. [PMID: 38884637 DOI: 10.1002/adma.202405660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/23/2024] [Indexed: 06/18/2024]
Abstract
The electrocatalytic reduction reaction of nitrate (NO3 -) to ammonia (NH3) is a feasible way to achieve artificial nitrogen cycle. However, the low yield rate and poor selectivity toward NH3 product is a technical challenge. Here a graphdiyne (GDY)-based tandem catalyst featuring Cu/CuxO nanoparticles anchored to GDY support (termed Cu/CuxO/GDY) for efficient electrocatalytic NO3 - reduction is presented. A high NH3 yield rate of 25.4 mg h-1 mgcat. -1 (25.4 mg h-1 cm-2) with a Faradaic efficiency of 99.8% at an applied potential of -0.8 V versus RHE using the designed catalyst is achieved. These performance metrics outperform most reported NO3 - to NH3 catalysts in the alkaline media. Electrochemical measurements and density functional theory reveal that the NO3 - preferentially attacks Cu/CuxO, and the GDY can effectively catalyze the reduction of NO2 - to NH3. This work highlights the efficacy of GDY as a new class of tandem catalysts for the artificial nitrogen cycle and provides powerful guidelines for the design of tandem electrocatalysts.
Collapse
Affiliation(s)
- Xueting Feng
- Beijing National Laboratory for Molecular Sciences, Beijing Science and Engineering Center for Nanocarbons, College of Chemistry and Molecular Engineering, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Jiyuan Liu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Ya Kong
- Beijing National Laboratory for Molecular Sciences, Beijing Science and Engineering Center for Nanocarbons, College of Chemistry and Molecular Engineering, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Zixuan Zhang
- Beijing National Laboratory for Molecular Sciences, Beijing Science and Engineering Center for Nanocarbons, College of Chemistry and Molecular Engineering, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Zedong Zhang
- Beijing National Laboratory for Molecular Sciences, Beijing Science and Engineering Center for Nanocarbons, College of Chemistry and Molecular Engineering, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Shuzhou Li
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Lianming Tong
- Beijing National Laboratory for Molecular Sciences, Beijing Science and Engineering Center for Nanocarbons, College of Chemistry and Molecular Engineering, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Xin Gao
- Beijing National Laboratory for Molecular Sciences, Beijing Science and Engineering Center for Nanocarbons, College of Chemistry and Molecular Engineering, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Jin Zhang
- Beijing National Laboratory for Molecular Sciences, Beijing Science and Engineering Center for Nanocarbons, College of Chemistry and Molecular Engineering, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
14
|
Tan R, Zeng M, Huang Q, Zhou N, Deng M, Li Y, Luo X. Dual-mode SERS/colorimetric sensing of nitrite in meat products based on multifunctional au NPs@COF composite. Food Chem 2024; 457:140166. [PMID: 38936123 DOI: 10.1016/j.foodchem.2024.140166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024]
Abstract
The presence of nitrite in food products has generated significant public concern. A simple and rapid dual-mode surface-enhanced Raman spectroscopy (SERS)/colorimetric detection of nitrite is proposed based on a diazo reaction and multifunctional gold nanoparticle-doped covalent organic framework (Au@COF) composite. Under acidic conditions, the reaction between toluidine blue and nitrite yielded a colorless diazo salt, simultaneously attenuating its characteristic absorption peak and Raman signal. The multifunctional Au@COF materials enhanced the Raman signal and ensured good reproducibility. Additionally, the reaction rates improved, and the sensitivity was enhanced due to the excellent adsorption capacity of the COF. The proposed method demonstrated high sensitivity and excellent recovery rates for nitrite detection in food samples. This approach shows potential for precisely detecting nitrite content in real-world food samples by integrating the simplicity of colorimetric analysis with the enhanced sensitivity of SERS.
Collapse
Affiliation(s)
- Rui Tan
- School of Science, Xihua University, Chengdu 610039, PR China
| | - Mei Zeng
- School of Science, Xihua University, Chengdu 610039, PR China
| | - Qiuwen Huang
- School of Science, Xihua University, Chengdu 610039, PR China
| | - Na Zhou
- School of Science, Xihua University, Chengdu 610039, PR China
| | - Mengjiang Deng
- School of Science, Xihua University, Chengdu 610039, PR China
| | - Yuanyuan Li
- Shanghai Anti-doping Laboratory, Shanghai University of Sport, Shanghai 200,438, PR China..
| | - Xiaojun Luo
- School of Science, Xihua University, Chengdu 610039, PR China; Asymmetric Synthesis and Chiral technology Key Laboratory of Sichuan Province, Chengdu 610,039, PR China..
| |
Collapse
|
15
|
Chen L, Liu H, Gao J, Wang J, Jin Z, Lv M, Yan S. Development and Biomedical Application of Non-Noble Metal Nanomaterials in SERS. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1654. [PMID: 39452990 PMCID: PMC11510763 DOI: 10.3390/nano14201654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/12/2024] [Accepted: 10/13/2024] [Indexed: 10/26/2024]
Abstract
Surface-enhanced Raman scattering (SERS) is vital in many fields because of its high sensitivity, fast response, and fingerprint effect. The surface-enhanced Raman mechanisms are generally electromagnetic enhancement (EM), which is mainly based on noble metals (Au, Ag, etc.), and chemical enhancement (CM). With more and more studies on CM mechanism in recent years, non-noble metal nanomaterial SERS substrates gradually became widely researched and applied due to their superior economy, stability, selectivity, and biocompatibility compared to noble metal. In addition, non-noble metal substrates also provide an ideal new platform for SERS technology to probe the mechanism of biomolecules. In this paper, we review the applications of non-noble metal nanomaterials in SERS detection for biomedical engineering in recent years. Firstly, we introduce the development of some more common non-noble metal SERS substrates and discuss their properties and enhancement mechanisms. Subsequently, we focus on the progress of the application of SERS detection of non-noble metal nanomaterials, such as analysis of biomarkers and the detection of some contaminants. Finally, we look forward to the future research process of non-noble metal substrate nanomaterials for biomedicine, which may draw more attention to the biosensor applications of non-noble metal nanomaterial-based SERS substrates.
Collapse
Affiliation(s)
- Liping Chen
- School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
| | - Hao Liu
- School of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (H.L.); (Z.J.)
| | - Jiacheng Gao
- School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
| | - Jiaxuan Wang
- School of Materials Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
| | - Zhihan Jin
- School of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (H.L.); (Z.J.)
| | - Ming Lv
- Department of Medical Engineering, Medical Supplies Center of PLA General Hospital, Beijing 100039, China;
| | - Shancheng Yan
- School of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (H.L.); (Z.J.)
| |
Collapse
|
16
|
Zheng Z, Qi L, Luan X, Zhao S, Xue Y, Li Y. Growing highly ordered Pt and Mn bimetallic single atomic layers over graphdiyne. Nat Commun 2024; 15:7331. [PMID: 39187493 PMCID: PMC11347568 DOI: 10.1038/s41467-024-51687-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 08/14/2024] [Indexed: 08/28/2024] Open
Abstract
Controlling the precise growth of atoms is necessary to achieve manipulation of atomic composition and atomic position, regulation of electronic structure, and an understanding of reactions at the atomic level. Herein, we report a facile method for ordered anchoring of zero-valent platinum and manganese atoms with single-atom thickness on graphdiyne under mild conditions. Due to strong and incomplete charge transfer between graphdiyne and metal atoms, the formation of metal clusters and nanoparticles can be inhibited. The size, composition and structure of the bimetallic nanoplates are precisely controlled by the natural structure-limiting effect of graphdiyne. Experimental characterization clearly demonstrates such a fine control process. Electrochemical measurements show that the active site of platinum-manganese interface on graphdiyne guarantees the high catalytic activity and selectivity (~100%) for alkene-to-diol conversion. This work lays a solid foundation for obtaining high-performance nanomaterials by the atomic engineering of active site.
Collapse
Affiliation(s)
- Zhiqiang Zheng
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University Jinan 250100, Jinan, China
| | - Lu Qi
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University Jinan 250100, Jinan, China
| | - Xiaoyu Luan
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University Jinan 250100, Jinan, China
| | - Shuya Zhao
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University Jinan 250100, Jinan, China
| | - Yurui Xue
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University Jinan 250100, Jinan, China.
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
| | - Yuliang Li
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University Jinan 250100, Jinan, China.
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
17
|
Zhang Z, Feng X, Zhang Z, Chen L, Liu W, Tong L, Gao X, Zhang J. Graphdiyne Enabled Nitrogen Vacancy Formation in Copper Nitride for Efficient Ammonia Synthesis. J Am Chem Soc 2024; 146:14898-14904. [PMID: 38749059 DOI: 10.1021/jacs.4c04985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
The electrocatalytic reduction of nitrate is promising for sustainable ammonia synthesis but suffers from slow reduction kinetics and multiple competing reactions. Here, we report a catalyst featuring copper nitride (Cu3N) anchored on a novel graphdiyne support (termed Cu3N/GDY), which is used for electrocatalytic reduction of nitrate to produce ammonia. The GDY absorbed hydrogen and enabled nitrogen (N) vacancy formation in Cu3N for the fast nitrate reduction reaction (NO3RR). Further, the distinct absorption sites formed by GDY and N vacancy enabled the excellent selectivity and stability of NO3RR. Notably, the Cu3N/GDY catalyst achieved a high ammonia yield (YNH3) up to 35280 μg h-1 mgcat.-1 and a high Faradaic efficiency (FE) of 98.1% using 0.1 M NO3- at -0.9 V versus a reversible hydrogen electrode (RHE). Using electron paramagnetic resonance (EPR) technology and in situ X-ray absorption fine structure (XAFS) spectroscopy measurement, we visualized the N vacancy formation in Cu3N and electrocatalytic NO3RR enabled by GDY. These findings show the promise of GDY in sustainable ammonia synthesis and highlight the efficacy of Cu3N/GDY as a catalyst.
Collapse
Affiliation(s)
- Zixuan Zhang
- Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R. China
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
| | - Xueting Feng
- Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R. China
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
| | - Zedong Zhang
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Long Chen
- College of Environmental Sciences and Engineering, The Key Laboratory of Water and Sediment Sciences (Ministry of Education), Peking University, Beijing 100871, P.R. China
| | - Wen Liu
- College of Environmental Sciences and Engineering, The Key Laboratory of Water and Sediment Sciences (Ministry of Education), Peking University, Beijing 100871, P.R. China
| | - Lianming Tong
- Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R. China
| | - Xin Gao
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
| | - Jin Zhang
- Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R. China
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
18
|
Jiang J, Wang X, Bao Y, Shen F, Wang G, Li K, Lin Y. Harnessing Graphdiyne for Selective Cu 2+ Detection: A Promising Tool for Parkinson's Disease Diagnostics and Pathogenesis. ACS Sens 2024; 9:2317-2324. [PMID: 38752502 DOI: 10.1021/acssensors.4c00633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Cu2+ accelerates the viral-like propagation of α-synuclein fibrils and plays a key role in the pathogenesis of Parkinson's disease (PD). Therefore, the accurate detection of Cu2+ is essential for the diagnosis of PD and other neurological diseases. The Cu2+ detection process is impeded by substances that have similar electrochemical properties. In this study, graphdiyne (GDY), a new kind of carbon allotrope with strong electron-donating ability, was utilized for the highly selective detection of Cu2+ by taking advantage of its outstanding adsorption capacity for Cu2+. Density functional theory (DFT) calculations show that Cu atoms are adsorbed in the cavity of GDY, and the absorption energy between Cu and C atoms is higher than that of graphene (GR), indicating that the cavity of GDY is favorable for the adsorption of Cu atoms and electrochemical sensing. The GDY-based electrochemical sensor can effectively avoid the interference of amino acids, metal ions and neurotransmitters and has a high sensitivity of 9.77 μA·μM-1·cm-2, with a minimum detectable concentration of 200 nM. During the investigating pathogenesis and therapeutic process of PD with α-synuclein as the diagnostic standard, the concentration of Cu2+ in cells before and after L-DOPA and GSH treatments were examined, and it was found that Cu2+ exhibits high potential as a biomarker for PD. This study not only harnesses the favorable adsorption of the GDY and Cu2+ to improve the specificity of ion detection but also provide clues for deeper understanding of the role of Cu2+ in neurobiology and neurological diseases.
Collapse
Affiliation(s)
- Jing Jiang
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Xu Wang
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Yongqi Bao
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Fangxu Shen
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Guo Wang
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Kai Li
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Yuqing Lin
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| |
Collapse
|
19
|
Zhan C, Guan Z, Yu L, Jing T, Jia H, Chen X, Gao R. Microfluidics-aided fabrication of 3D micro-nano hierarchical SERS substrate for rapid detection of dual hepatocellular carcinoma biomarkers. LAB ON A CHIP 2024; 24:528-536. [PMID: 38168831 DOI: 10.1039/d3lc00907f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The simultaneous analysis of trace amounts of dual biomarkers is crucial in the early diagnosis, treatment, and prognosis of hepatocellular carcinoma (HCC). In this study, we prepared SERS-active hydrogel microparticles (SAHMs) with 3D hierarchical gold nanoparticles (AuNPs) micro-nanostructures by microdroplet technology and in situ synthesis, which demonstrated high reproducibility and sensitivity. Compared with traditional 2D SERS substrates, this newly prepared 3D SERS substrate provided a high density of nano-wrinkled structures and numerous AuNPs. Furthermore, a newly designed SERS-active substrate was proposed for the simultaneous microfluidic detection of AFP and AFU. The Raman signals of sandwich immunocomplexes on the surface of the SAHMs were measured for the trace analysis of these biomarkers. The proposed microfluidic platform achieved AFP and AFU detection in the range of 0.1-100 ng mL-1 and 0.01-100 ng mL-1, respectively, which represents a good response. Indeed, this platform is easy to fabricate, of low cost and has short detection time and comparable detection limits to other methods. As far as we know, this is the first study to achieve the simultaneous detection of AFP and AFU on a microfluidic platform. Therefore, we proposed a new simultaneous detection platform for dual HCC biomarkers that shows strong potential for the early diagnosis of HCC.
Collapse
Affiliation(s)
- Changbiao Zhan
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| | - Zihao Guan
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| | - Liandong Yu
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| | - Tongmei Jing
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| | - Huakun Jia
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| | - Xiaozhe Chen
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| | - Rongke Gao
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| |
Collapse
|