1
|
Vitiello E, Castagnetti F, Mecarelli LS, D'Ambra E, Tollis P, Ruocco G, Laneve P, Caffarelli E, Mariani D, Bozzoni I. Live-cell imaging of circular and long noncoding RNAs associated with FUS pathological aggregates by Pepper fluorescent RNA. RNA (NEW YORK, N.Y.) 2025; 31:529-548. [PMID: 39779212 PMCID: PMC11912908 DOI: 10.1261/rna.080119.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025]
Abstract
Lately, important advancements in visualizing RNAs in fixed and live cells have been achieved. Although mRNA imaging techniques are well-established, the development of effective methods for studying noncoding RNAs (ncRNAs) in living cells is still challenging but necessary, as they show a variety of functions and intracellular localizations, including participation in highly dynamic processes like phase transition, which is still poorly studied in vivo. Addressing this issue, we tagged two exemplary ncRNAs with the fluorescent RNA (fRNA) Pepper. Specifically, we showed that circ-HDGFRP3 interacts with p-bodies and is recruited in pathological FUS aggregates in a dynamic fashion, and we super-resolved its distribution in such condensates via structured illumination microscopy. Moreover, we tracked the long noncoding RNA (lncRNA) nHOTAIRM1, a motor neuron-specific constituent of stress granules, monitoring its behavior throughout the oxidative-stress response in physiological and pathological conditions. Overall, as fRNA development progresses, our work demonstrates an effective use of Pepper for monitoring complex processes, such as phase transition, in living cells through the visualization of circular RNAs (circRNAs) and lncRNAs with super-resolution power.
Collapse
Affiliation(s)
- Erika Vitiello
- Center for Human Technologies, Italian Institute of Technology, Genoa, Italy
| | | | - Lorenzo Stufera Mecarelli
- Center for Human Technologies, Italian Institute of Technology, Genoa, Italy
- Department of Biology and Biotechnologies "C. Darwin", Sapienza University of Rome, Rome, Italy
| | - Eleonora D'Ambra
- Center for Life Nano- and Neuro-Science, Fondazione Italian Institute of Technology, Rome, Italy
| | - Paolo Tollis
- Center for Life Nano- and Neuro-Science, Fondazione Italian Institute of Technology, Rome, Italy
| | - Giancarlo Ruocco
- Center for Life Nano- and Neuro-Science, Fondazione Italian Institute of Technology, Rome, Italy
| | - Pietro Laneve
- Institute of Molecular Biology and Pathology, CNR, Rome, Italy
| | | | - Davide Mariani
- Center for Human Technologies, Italian Institute of Technology, Genoa, Italy
- Department of Biology and Biotechnologies "C. Darwin", Sapienza University of Rome, Rome, Italy
| | - Irene Bozzoni
- Center for Human Technologies, Italian Institute of Technology, Genoa, Italy
- Department of Biology and Biotechnologies "C. Darwin", Sapienza University of Rome, Rome, Italy
- Center for Life Nano- and Neuro-Science, Fondazione Italian Institute of Technology, Rome, Italy
| |
Collapse
|
2
|
Monti M, Fiorentino J, Miltiadis-Vrachnos D, Bini G, Cotrufo T, Sanchez de Groot N, Armaos A, Tartaglia GG. catGRANULE 2.0: accurate predictions of liquid-liquid phase separating proteins at single amino acid resolution. Genome Biol 2025; 26:33. [PMID: 39979996 PMCID: PMC11843755 DOI: 10.1186/s13059-025-03497-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 02/06/2025] [Indexed: 02/22/2025] Open
Abstract
Liquid-liquid phase separation (LLPS) enables the formation of membraneless organelles, essential for cellular organization and implicated in diseases. We introduce catGRANULE 2.0 ROBOT, an algorithm integrating physicochemical properties and AlphaFold-derived structural features to predict LLPS at single-amino-acid resolution. The method achieves high performance and reliably evaluates mutation effects on LLPS propensity, providing detailed predictions of how specific mutations enhance or inhibit phase separation. Supported by experimental validations, including microscopy data, it predicts LLPS across diverse organisms and cellular compartments, offering valuable insights into LLPS mechanisms and mutational impacts. The tool is freely available at https://tools.tartaglialab.com/catgranule2 and https://doi.org/10.5281/zenodo.14205831 .
Collapse
Affiliation(s)
- Michele Monti
- Center for Life Nano- & NeuroScience, Fondazione Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
- RNA Systems Biology Lab, Centre for Human Technologies, Fondazione Istituto Italiano di Tecnologia, Via Enrico Melen 83, 16152, Genoa, Italy
| | - Jonathan Fiorentino
- Center for Life Nano- & NeuroScience, Fondazione Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
- RNA Systems Biology Lab, Centre for Human Technologies, Fondazione Istituto Italiano di Tecnologia, Via Enrico Melen 83, 16152, Genoa, Italy
| | - Dimitrios Miltiadis-Vrachnos
- RNA Systems Biology Lab, Centre for Human Technologies, Fondazione Istituto Italiano di Tecnologia, Via Enrico Melen 83, 16152, Genoa, Italy
- Department of Biology and Biotechnologies, University of Rome Sapienza, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Giorgio Bini
- RNA Systems Biology Lab, Centre for Human Technologies, Fondazione Istituto Italiano di Tecnologia, Via Enrico Melen 83, 16152, Genoa, Italy
- Physics Department, University of Genoa, Via Dodecaneso 33, 16146, Genoa, Italy
| | - Tiziana Cotrufo
- Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat de Barcelona, Avenida Diagonal 643, 08028, Barcelona, Spain
| | - Natalia Sanchez de Groot
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), 08193, Barcelona, Spain
| | - Alexandros Armaos
- Center for Life Nano- & NeuroScience, Fondazione Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
- RNA Systems Biology Lab, Centre for Human Technologies, Fondazione Istituto Italiano di Tecnologia, Via Enrico Melen 83, 16152, Genoa, Italy
| | - Gian Gaetano Tartaglia
- Center for Life Nano- & NeuroScience, Fondazione Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy.
- RNA Systems Biology Lab, Centre for Human Technologies, Fondazione Istituto Italiano di Tecnologia, Via Enrico Melen 83, 16152, Genoa, Italy.
| |
Collapse
|
3
|
Fahim LE, Marcus JM, Powell ND, Ralston ZA, Walgamotte K, Perego E, Vicidomini G, Rossetta A, Lee JE. Fluorescence lifetime sorting reveals tunable enzyme interactions within cytoplasmic condensates. J Cell Biol 2025; 224:e202311105. [PMID: 39400294 PMCID: PMC11472878 DOI: 10.1083/jcb.202311105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 08/12/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024] Open
Abstract
Ribonucleoprotein (RNP) condensates partition RNA and protein into multiple liquid phases. The multiphasic feature of condensate-enriched components creates experimental challenges for distinguishing membraneless condensate functions from the surrounding dilute phase. We combined fluorescence lifetime imaging microscopy (FLIM) with phasor plot filtering and segmentation to resolve condensates from the dilute phase. Condensate-specific lifetimes were used to track protein-protein interactions by measuring FLIM-Förster resonance energy transfer (FRET). We used condensate FLIM-FRET to evaluate whether mRNA decapping complex subunits can form decapping-competent interactions within P-bodies. Condensate FLIM-FRET revealed the presence of core subunit interactions within P-bodies under basal conditions and the disruption of interactions between the decapping enzyme (Dcp2) and a critical cofactor (Dcp1A) during oxidative stress. Our results show a context-dependent plasticity of the P-body interaction network, which can be rewired within minutes in response to stimuli. Together, our FLIM-based approaches provide investigators with an automated and rigorous method to uncover and track essential protein-protein interaction dynamics within RNP condensates in live cells.
Collapse
Affiliation(s)
- Leyla E. Fahim
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Joshua M. Marcus
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Noah D. Powell
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Zachary A. Ralston
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Katherine Walgamotte
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Eleonora Perego
- Molecular Microscopy and Spectroscopy, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Giuseppe Vicidomini
- Molecular Microscopy and Spectroscopy, Istituto Italiano di Tecnologia, Genoa, Italy
| | | | - Jason E. Lee
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
4
|
Mariani D, Setti A, Castagnetti F, Vitiello E, Stufera Mecarelli L, Di Timoteo G, Giuliani A, D’Angelo A, Santini T, Perego E, Zappone S, Liessi N, Armirotti A, Vicidomini G, Bozzoni I. ALS-associated FUS mutation reshapes the RNA and protein composition of stress granules. Nucleic Acids Res 2024; 52:13269-13289. [PMID: 39494508 PMCID: PMC11602144 DOI: 10.1093/nar/gkae942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 10/02/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024] Open
Abstract
Stress granules (SG) are part of a cellular protection mechanism where untranslated messenger RNAs and RNA-binding proteins are stored upon conditions of cellular stress. Compositional variations due to qualitative or quantitative protein changes can disrupt their functionality and alter their structure. This is the case of different forms of amyotrophic lateral sclerosis (ALS) where a causative link has been proposed between the cytoplasmic de-localization of mutant proteins, such as FUS (Fused in Sarcoma), and the formation of cytotoxic inclusions. Here, we describe the SG transcriptome in neuroblastoma cells and define several features for RNA recruitment in these condensates. We demonstrate that SG dynamics and RNA content are strongly modified by the incorporation of mutant FUS, switching to a more unstructured, AU-rich SG transcriptome. Moreover, we show that mutant FUS, together with its protein interactors and their target RNAs, are responsible for the reshaping of the mutant SG transcriptome with alterations that can be linked to neurodegeneration. Our data describe the molecular differences between physiological and pathological SG in ALS-FUS conditions, showing how FUS mutations impact the RNA and protein composition of these condensates.
Collapse
Affiliation(s)
- Davide Mariani
- Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen 83, 16153, Genoa, Italy
- Department of Biology and Biotechnologies “C. Darwin”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Adriano Setti
- Department of Biology and Biotechnologies “C. Darwin”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Francesco Castagnetti
- Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen 83, 16153, Genoa, Italy
| | - Erika Vitiello
- Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen 83, 16153, Genoa, Italy
| | - Lorenzo Stufera Mecarelli
- Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen 83, 16153, Genoa, Italy
- Department of Biology and Biotechnologies “C. Darwin”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Gaia Di Timoteo
- Department of Biology and Biotechnologies “C. Darwin”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Andrea Giuliani
- Department of Biology and Biotechnologies “C. Darwin”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Angelo D’Angelo
- Department of Biology and Biotechnologies “C. Darwin”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Tiziana Santini
- Department of Biology and Biotechnologies “C. Darwin”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Eleonora Perego
- Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen 83, 16153, Genoa, Italy
| | - Sabrina Zappone
- Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen 83, 16153, Genoa, Italy
| | - Nara Liessi
- Analytical Chemistry Lab, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy
| | - Andrea Armirotti
- Analytical Chemistry Lab, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy
| | - Giuseppe Vicidomini
- Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen 83, 16153, Genoa, Italy
| | - Irene Bozzoni
- Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen 83, 16153, Genoa, Italy
- Department of Biology and Biotechnologies “C. Darwin”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
- Center for Life Nano-& Neuro-Science, Fondazione Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
| |
Collapse
|
5
|
Bucci A, Tortarolo G, Held MO, Bega L, Perego E, Castagnetti F, Bozzoni I, Slenders E, Vicidomini G. 4D Single-particle tracking with asynchronous read-out single-photon avalanche diode array detector. Nat Commun 2024; 15:6188. [PMID: 39043637 PMCID: PMC11266502 DOI: 10.1038/s41467-024-50512-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 07/14/2024] [Indexed: 07/25/2024] Open
Abstract
Single-particle tracking techniques enable investigation of the complex functions and interactions of individual particles in biological environments. Many such techniques exist, each demonstrating trade-offs between spatiotemporal resolution, spatial and temporal range, technical complexity, and information content. To mitigate these trade-offs, we enhanced a confocal laser scanning microscope with an asynchronous read-out single-photon avalanche diode array detector. This detector provides an image of the particle's emission, precisely reflecting its position within the excitation volume. This localization is utilized in a real-time feedback system to drive the microscope scanning mechanism and ensure the particle remains centered inside the excitation volume. As each pixel is an independent single-photon detector, single-particle tracking is combined with fluorescence lifetime measurement. Our system achieves 40 nm lateral and 60 nm axial localization precision with 100 photons and sub-millisecond temporal sampling for real-time tracking. Offline tracking can refine this precision to the microsecond scale. We validated the system's spatiotemporal resolution by tracking fluorescent beads with diffusion coefficients up to 10 μm2/s. Additionally, we investigated the movement of lysosomes in living SK-N-BE cells and measured the fluorescence lifetime of the marker expressed on a membrane protein. We expect that this implementation will open other correlative imaging and tracking studies.
Collapse
Affiliation(s)
- Andrea Bucci
- Molecular Microscopy and Spectroscopy, Istituto Italiano di Tecnologia, Genoa, Italy
- Dipartimento di Informatica, Bioingegneria, Robotica e Ingegneria dei Sistemi, University of Genoa, Genoa, Italy
| | - Giorgio Tortarolo
- Molecular Microscopy and Spectroscopy, Istituto Italiano di Tecnologia, Genoa, Italy
- Laboratory of Experimental Biophysics, EPFL, Lausanne, Switzerland
| | - Marcus Oliver Held
- Molecular Microscopy and Spectroscopy, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Luca Bega
- Molecular Microscopy and Spectroscopy, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Eleonora Perego
- Molecular Microscopy and Spectroscopy, Istituto Italiano di Tecnologia, Genoa, Italy
- Centre for Integrative Genomics, Université de Lausanne, Lausanne, Switzerland
| | - Francesco Castagnetti
- Non coding RNAs in Physiology and Pathology, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Irene Bozzoni
- Non coding RNAs in Physiology and Pathology, Istituto Italiano di Tecnologia, Genoa, Italy
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy
| | - Eli Slenders
- Molecular Microscopy and Spectroscopy, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Giuseppe Vicidomini
- Molecular Microscopy and Spectroscopy, Istituto Italiano di Tecnologia, Genoa, Italy.
| |
Collapse
|
6
|
Di Timoteo G, Giuliani A, Setti A, Biagi MC, Lisi M, Santini T, Grandioso A, Mariani D, Castagnetti F, Perego E, Zappone S, Lattante S, Sabatelli M, Rotili D, Vicidomini G, Bozzoni I. M 6A reduction relieves FUS-associated ALS granules. Nat Commun 2024; 15:5033. [PMID: 38866783 PMCID: PMC11169559 DOI: 10.1038/s41467-024-49416-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 05/30/2024] [Indexed: 06/14/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease due to gradual motoneurons (MN) degeneration. Among the processes associated to ALS pathogenesis, there is the formation of cytoplasmic inclusions produced by aggregation of mutant proteins, among which the RNA binding protein FUS. Here we show that, in neuronal cells and in iPSC-derived MN expressing mutant FUS, such inclusions are significantly reduced in number and dissolve faster when the RNA m6A content is diminished. Interestingly, stress granules formed in ALS conditions showed a distinctive transcriptome with respect to control cells, which reverted to similar to control after m6A downregulation. Notably, cells expressing mutant FUS were characterized by higher m6A levels suggesting a possible link between m6A homeostasis and pathological aggregates. Finally, we show that FUS inclusions are reduced also in patient-derived fibroblasts treated with STM-2457, an inhibitor of METTL3 activity, paving the way for its possible use for counteracting aggregate formation in ALS.
Collapse
Grants
- ERC-2019-SyG 855923-ASTRA EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
- ERC-2018-CoG 818669-BrightEyes EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
- AIRC IG 2019 Id. 23053 Associazione Italiana per la Ricerca sul Cancro (Italian Association for Cancer Research)
- PRIN 2017 2017P352Z4 Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
- NextGenerationEU PNRR MUR Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
- "National Center for Gene Therapy and Drugbased on RNA Technology" (CN00000041) Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
- "National Center for Gene Therapy and Drug based on RNA Technology" (CN00000041) Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
- NextGenerationEU PNRR MUR Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
- "Sapienza" Ateneo Project 2021 n. RM12117A61C811CE Sapienza Università di Roma (Sapienza University of Rome)
- Regione Lazio PROGETTI DI GRUPPI DI RICERCA 2020 - A0375-2020-36597 Regione Lazio (Region of Lazio)
Collapse
Affiliation(s)
- Gaia Di Timoteo
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, 00185, Italy
| | - Andrea Giuliani
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, 00185, Italy
| | - Adriano Setti
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, 00185, Italy
| | - Martina C Biagi
- Center for Life Nano- & Neuro-Science@Sapienza, Fondazione Istituto Italiano di Tecnologia (IIT), Rome, 00161, Italy
| | - Michela Lisi
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, 00185, Italy
| | - Tiziana Santini
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, 00185, Italy
| | - Alessia Grandioso
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, 00185, Italy
| | - Davide Mariani
- Center for Human Technologies@Istituto Italiano di Tecnologia (IIT), Genoa, 16152, Italy
| | - Francesco Castagnetti
- Center for Human Technologies@Istituto Italiano di Tecnologia (IIT), Genoa, 16152, Italy
| | - Eleonora Perego
- Center for Human Technologies@Istituto Italiano di Tecnologia (IIT), Genoa, 16152, Italy
| | - Sabrina Zappone
- Center for Human Technologies@Istituto Italiano di Tecnologia (IIT), Genoa, 16152, Italy
| | - Serena Lattante
- Section of Genomic Medicine, Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Mario Sabatelli
- Section of Neurology, Department of Neuroscience, Faculty of Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
- Adult NEMO Clinical Center, Unit of Neurology, Department of Aging, Neurological, Orthopedic and Head-Neck Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| | - Dante Rotili
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185, Rome, Italy
| | - Giuseppe Vicidomini
- Center for Human Technologies@Istituto Italiano di Tecnologia (IIT), Genoa, 16152, Italy
| | - Irene Bozzoni
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, 00185, Italy.
- Center for Life Nano- & Neuro-Science@Sapienza, Fondazione Istituto Italiano di Tecnologia (IIT), Rome, 00161, Italy.
- Center for Human Technologies@Istituto Italiano di Tecnologia (IIT), Genoa, 16152, Italy.
| |
Collapse
|
7
|
Shang B, Li C, Zhang X. How intrinsically disordered proteins order plant gene silencing. Trends Genet 2024; 40:260-275. [PMID: 38296708 PMCID: PMC10932933 DOI: 10.1016/j.tig.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/25/2023] [Accepted: 12/29/2023] [Indexed: 02/02/2024]
Abstract
Intrinsically disordered proteins (IDPs) and proteins with intrinsically disordered regions (IDRs) possess low sequence complexity of amino acids and display non-globular tertiary structures. They can act as scaffolds, form regulatory hubs, or trigger biomolecular condensation to control diverse aspects of biology. Emerging evidence has recently implicated critical roles of IDPs and IDR-contained proteins in nuclear transcription and cytoplasmic post-transcriptional processes, among other molecular functions. We here summarize the concepts and organizing principles of IDPs. We then illustrate recent progress in understanding the roles of key IDPs in machineries that regulate transcriptional and post-transcriptional gene silencing (PTGS) in plants, aiming at highlighting new modes of action of IDPs in controlling biological processes.
Collapse
Affiliation(s)
- Baoshuan Shang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization (Henan University), State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China; Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Changhao Li
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Xiuren Zhang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA; Department of Biology, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|