1
|
Jewlikar SS, Tolentino Collado J, Ali MI, Sabbah A, He Y, Iuliano JN, Hall CR, Adamczyk K, Greetham GM, Lukacs A, Meech SR, Tonge PJ. Probing the Signal Transduction Mechanism of the Light-Activated Adenylate Cyclase OaPAC Using Unnatural Amino Acid Mutagenesis. ACS Chem Biol 2025; 20:369-377. [PMID: 39844630 DOI: 10.1021/acschembio.4c00627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
OaPAC, the photoactivated adenylyl cyclase from Oscillatoria acuminata, is composed of a blue light using FAD (BLUF) domain fused to an adenylate cyclase (AC) domain. Since both the BLUF and AC domains are part of the same protein, OaPAC is a model for understanding how the ultrafast modulation of the chromophore binding pocket caused by photoexcitation results in the activation of the output domain on the μs-s time scale. In the present work, we use unnatural amino acid mutagenesis to identify specific sites in the protein that are involved in transducing the signal from the FAD binding site to the ATP binding site. To provide insight into site-specific structural dynamics, we replaced W90 which is close to the chromophore pocket, F103 which interacts with W90 across the dimer interface, and F180 in the central core of the AC domain, with the infrared probe azido-Phe (AzPhe). Using ultrafast IR, we show that AzPhe at position 90 responds on multiple time scales following photoexcitation. In contrast, the light minus dark IR spectrum of AzPhe103 shows only a minor perturbation in environment between the dark and light states, while replacement of F180 with AzPhe resulted in a protein with no catalytic activity. We also replaced Y125, which hydrogen bonds with N256 across the dimer interface, with fluoro-Tyr residues. All the fluoro-Tyr substituted proteins retained the light-induced red shift in the flavin absorption spectrum; however, only the 3-FY125 OaPAC retained photoinduced catalytic activity. The loss of activity in 3,5-F2Y125 and 2,3,5-F3Y125 OaPAC, which potentially increase the acidity of the Y125 phenol by more than 1000-fold, suggests that deprotonation of Y125 disrupts the signal transduction pathway from the BLUF to the AC domain.
Collapse
Affiliation(s)
- Samruddhi S Jewlikar
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | | | - Madeeha I Ali
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Aya Sabbah
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - YongLe He
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - James N Iuliano
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | | | - Katrin Adamczyk
- School of Chemistry, University of East Anglia, Norwich NR4 7TJ, U.K
| | - Gregory M Greetham
- Central Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0QX, U.K
| | - Andras Lukacs
- Department of Biophysics, Medical School, University of Pecs, Szigeti ut 12, 7624 Pecs, Hungary
| | - Stephen R Meech
- School of Chemistry, University of East Anglia, Norwich NR4 7TJ, U.K
| | - Peter J Tonge
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
- School of Chemistry, University of East Anglia, Norwich NR4 7TJ, U.K
| |
Collapse
|
2
|
Kapetanaki SM, Coquelle N, von Stetten D, Byrdin M, Rios-Santacruz R, Bean R, Bielecki J, Boudjelida M, Fekete Z, Grime GW, Han H, Hatton C, Kantamneni S, Kharitonov K, Kim C, Kloos M, Koua FHM, de Diego Martinez I, Melo D, Rane L, Round A, Round E, Sarma A, Schubert R, Schulz J, Sikorski M, Vakili M, Valerio J, Vitas J, de Wijn R, Wrona A, Zala N, Pearson A, Dörner K, Schirò G, Garman EF, Lukács A, Weik M. Crystal structure of a bacterial photoactivated adenylate cyclase determined by serial femtosecond and serial synchrotron crystallography. IUCRJ 2024; 11:991-1006. [PMID: 39470573 PMCID: PMC11533990 DOI: 10.1107/s2052252524010170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/18/2024] [Indexed: 10/30/2024]
Abstract
OaPAC is a recently discovered blue-light-using flavin adenosine dinucleotide (BLUF) photoactivated adenylate cyclase from the cyanobacterium Oscillatoria acuminata that uses adenosine triphosphate and translates the light signal into the production of cyclic adenosine monophosphate. Here, we report crystal structures of the enzyme in the absence of its natural substrate determined from room-temperature serial crystallography data collected at both an X-ray free-electron laser and a synchrotron, and we compare these structures with cryo-macromolecular crystallography structures obtained at a synchrotron by us and others. These results reveal slight differences in the structure of the enzyme due to data collection at different temperatures and X-ray sources. We further investigate the effect of the Y6W mutation in the BLUF domain, a mutation which results in a rearrangement of the hydrogen-bond network around the flavin and a notable rotation of the side chain of the critical Gln48 residue. These studies pave the way for picosecond-millisecond time-resolved serial crystallography experiments at X-ray free-electron lasers and synchrotrons in order to determine the early structural intermediates and correlate them with the well studied picosecond-millisecond spectroscopic intermediates.
Collapse
Affiliation(s)
- Sofia M. Kapetanaki
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale38044GrenobleFrance
| | - Nicolas Coquelle
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale38044GrenobleFrance
| | - David von Stetten
- European Molecular Biology Laboratory (EMBL)Hamburg Unit c/o DESYNotkestrasse 8522607HamburgGermany
| | - Martin Byrdin
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale38044GrenobleFrance
| | - Ronald Rios-Santacruz
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale38044GrenobleFrance
| | | | | | - Mohamed Boudjelida
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale38044GrenobleFrance
| | - Zsuzsana Fekete
- Department of Biophysics, Medical SchoolUniversity of PecsSzigeti Street 127624PécsHungary
| | - Geoffrey W. Grime
- Surrey Ion Beam CentreUniversity of SurreyGuildfordGU2 7XHUnited Kingdom
| | - Huijong Han
- European XFELHolzkoppel 422869SchenefeldGermany
| | - Caitlin Hatton
- Institute for Nanostructure and Solid-State PhysicsUniversität HamburgHARBOR, Luruper Chaussee 14922761HamburgGermany
| | | | | | - Chan Kim
- European XFELHolzkoppel 422869SchenefeldGermany
| | - Marco Kloos
- European XFELHolzkoppel 422869SchenefeldGermany
| | | | | | - Diogo Melo
- European XFELHolzkoppel 422869SchenefeldGermany
| | - Lukas Rane
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale38044GrenobleFrance
| | - Adam Round
- European XFELHolzkoppel 422869SchenefeldGermany
| | | | | | | | | | | | | | | | - Jovana Vitas
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale38044GrenobleFrance
| | | | | | - Ninon Zala
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale38044GrenobleFrance
| | - Arwen Pearson
- Institute for Nanostructure and Solid-State PhysicsUniversität HamburgHARBOR, Luruper Chaussee 14922761HamburgGermany
| | | | - Giorgio Schirò
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale38044GrenobleFrance
| | - Elspeth F. Garman
- Department of BiochemistryUniversity of OxfordDorothy Crowfoot Hodgkin Building, South Parks RoadOxfordOX1 3QUUnited Kingdom
| | - András Lukács
- Department of Biophysics, Medical SchoolUniversity of PecsSzigeti Street 127624PécsHungary
| | - Martin Weik
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale38044GrenobleFrance
| |
Collapse
|
3
|
Kang XW, Wang K, Zhang X, Zhong D, Ding B. Elementary Reactions in the Functional Triads of the Blue-Light Photoreceptor BLUF Domain. J Phys Chem B 2024; 128:2065-2075. [PMID: 38391132 DOI: 10.1021/acs.jpcb.3c07988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
The blue light using the flavin (BLUF) domain is one of the smallest photoreceptors in nature, which consists of a unique bidirectional electron-coupled proton relay process in its photoactivation reaction cycle. This perspective summarizes our recent efforts in dissecting the photocycle into three elementary processes, including proton-coupled electron transfer (PCET), proton rocking, and proton relay. Using ultrafast spectroscopy, we have determined the temporal sequence, rates, kinetic isotope effects (KIEs), and concertedness of these elementary steps. Our findings provide important implications for illuminating the photoactivation mechanism of the BLUF domain and suggest an engineering platform to characterize intricate reactions involving proton motions that are ubiquitous in nonphotosensitive protein machines.
Collapse
Affiliation(s)
- Xiu-Wen Kang
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kailin Wang
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaofan Zhang
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dongping Zhong
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Physics, Department of Chemistry and Biochemistry, and Programs of Biophysics, Programs of Chemical Physics, and Programs of Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Bei Ding
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|