1
|
Abu Kar S, Harris RC. Chronic kidney disease and sex dimorphism. Curr Opin Nephrol Hypertens 2025; 34:314-321. [PMID: 40366022 DOI: 10.1097/mnh.0000000000001093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
PURPOSE OF REVIEW This review highlights studies published in the last 18 months focusing on sex dimorphism in clinical and preclinical areas related to chronic kidney disease (CKD). RECENT FINDINGS Hypertension, cardiorenal disease, hormone exposure, heat stress and dietary intake are all risk factors with sexually dimorphic effects thus contributing differentially to the development of chronic kidney disease. In CKD, GFR decline and cardiovascular mortality are more pronounced in males. Females have higher STEMI related in hospital mortality. When on dialysis, females have higher cardiovascular events rate. Males develop anemia and hyperparathyroidism earlier. Hyperphosphatemia is more prevalent in males. Vitamin D deficiency is associated with CKD in males only. Males are more likely to develop severe sarcopenia. The renoprotective effects of estrogen or estrogen agonists are mediated in part through GPER. ET-1 dual antagonism offset the action of GPER. ET-1 dual antagonism abolished the sex differences in acclimation to high salt. Sodium transport and oxygen consumption across the different renal segments is sexually dimorphic. Sexually dimorphic gene expression is mostly seen in the proximal tubules and is under androgen control. SUMMARY The above findings emphasize the need to systematically include female models in preclinical and clinical research which will improve clinical management and allow for development and implementation of precision medicine tailored to sex.
Collapse
Affiliation(s)
- Sarah Abu Kar
- Division of Nephrology and Hypertension, Department of Medicine
| | - Raymond C Harris
- Division of Nephrology and Hypertension, Department of Medicine
- Veterans Affairs, Nashville, Tennessee, USA
| |
Collapse
|
2
|
Fu Y, Kenttämies A, Ruotsalainen S, Pirinen M, Tukiainen T. Role of X chromosome and dosage-compensation mechanisms in complex trait genetics. Am J Hum Genet 2025:S0002-9297(25)00145-4. [PMID: 40359939 DOI: 10.1016/j.ajhg.2025.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 04/16/2025] [Accepted: 04/16/2025] [Indexed: 05/15/2025] Open
Abstract
The X chromosome (chrX) is often excluded from genome-wide association studies due to its unique biology complicating the analysis and interpretation of genetic data. Consequently, the influence of chrX on human complex traits remains debated. Here, we systematically assessed the relevance of chrX and the effect of its biology on complex traits by analyzing 48 quantitative traits in 343,695 individuals in UK Biobank with replication in 412,181 individuals from FinnGen. We show that, in the general population, chrX contributes to complex trait heritability at a rate of 3% of the autosomal heritability, consistent with the amount of genetic variation observed in chrX. We find that a pronounced male bias in chrX heritability supports the presence of near-complete dosage compensation between sexes through X chromosome inactivation (XCI). However, we also find subtle yet plausible evidence of escape from XCI contributing to human height. Assuming full XCI, the observed chrX contribution to complex trait heritability in both sexes is greater than expected given the presence of only a single active copy of chrX, mirroring potential dosage compensation between chrX and the autosomes. We find this enhanced contribution attributable to systematically larger active allele effects from chrX compared to autosomes in both sexes, independent of allele frequency and variant deleteriousness. Together, these findings support a model in which the two dosage-compensation mechanisms work in concert to balance the influence of chrX across the population while preserving sex-specific differences at a manageable level. Overall, our study advocates for more comprehensive locus discovery efforts in chrX.
Collapse
Affiliation(s)
- Yu Fu
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, 00014 Helsinki, Finland
| | - Aino Kenttämies
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, 00014 Helsinki, Finland
| | - Sanni Ruotsalainen
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, 00014 Helsinki, Finland
| | - Matti Pirinen
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, 00014 Helsinki, Finland; Department of Public Health, University of Helsinki, 00014 Helsinki, Finland; Department of Mathematics and Statistics, University of Helsinki, 00014 Helsinki, Finland
| | - Taru Tukiainen
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, 00014 Helsinki, Finland.
| |
Collapse
|
3
|
Poriswanish N, Eales J, Xu X, Scannali D, Neumann R, Wetton JH, Tomaszewski M, Jobling MA, May CA. Multiple origins and phenotypic implications of an extended human pseudoautosomal region shown by analysis of the UK Biobank. Am J Hum Genet 2025; 112:927-939. [PMID: 39983723 DOI: 10.1016/j.ajhg.2025.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 01/31/2025] [Accepted: 01/31/2025] [Indexed: 02/23/2025] Open
Abstract
The 2.7-Mb major pseudoautosomal region (PAR1) on the short arms of the human X and Y chromosomes plays a critical role in meiotic sex chromosome segregation and male fertility and has been regarded as evolutionarily stable. However, some European Y chromosomes belonging to Y haplogroups (Y-Hgs) R1b and I2a carry an ∼115-kb extension (ePAR [extended PAR]) arising from X-Y non-allelic homologous recombination (NAHR). To investigate the diversity, history, and dynamics of ePAR formation, we screened for its presence, and that of the predicted reciprocal X chromosome deletion, among ∼218,300 46,XY males of the UK Biobank (UKB), a cohort associated with longitudinal clinical data. The UKB incidence of ePAR is ∼0.77%, and that of the deletion is ∼0.02%. We found that Y-Hg I2a sub-lineages accounted for nearly 90% of ePAR cases but, by Y haplotyping and breakpoint sequencing, determined that, in total, there have been at least 18 independent ePAR origins, associated with nine different Y-Hgs. We found examples of ePAR linked to Y-Hg K among men of self-declared Pakistani ancestry and Y-Hg E1, typical of men with African ancestry, showing that ePAR is not restricted to Europeans. ePAR formation is likely random, with high frequencies in some Y-Hgs arising through drift and male-mediated expansions. Sequencing recombination junction fragments identified likely reciprocal events, and the heterogeneity of ePAR and X-deletion junctions highlighted the recurrent nature of the NAHR events. A phenome-wide association study revealed an association between ePAR and elevated levels of circulating IGF-1 as well as musculoskeletal phenotypes.
Collapse
Affiliation(s)
- Nitikorn Poriswanish
- Department of Genetics, Genomics and Cancer Sciences, University of Leicester, Leicester, UK; Department of Forensic Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - James Eales
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Xiaoguang Xu
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - David Scannali
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Rita Neumann
- Department of Genetics, Genomics and Cancer Sciences, University of Leicester, Leicester, UK
| | - Jon H Wetton
- Department of Genetics, Genomics and Cancer Sciences, University of Leicester, Leicester, UK
| | - Maciej Tomaszewski
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK; Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust Manchester, Manchester, UK
| | - Mark A Jobling
- Department of Genetics, Genomics and Cancer Sciences, University of Leicester, Leicester, UK.
| | - Celia A May
- Department of Genetics, Genomics and Cancer Sciences, University of Leicester, Leicester, UK.
| |
Collapse
|
4
|
Pausova Z, Tremblay J, Hamet P. Genetics of Hypertension: Additive and Interactive Effects. Hypertension 2025; 82:3-7. [PMID: 39523998 DOI: 10.1161/hypertensionaha.124.21724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Affiliation(s)
- Zdenka Pausova
- Centre hospitalier universitaire Sainte-Justine and Department of Pediatrics, University of Montreal, QC, Canada (Z.P.)
- Departments of Physiology and Nutritional Sciences, The Hospital for Sick Children, University of Toronto, ON, Canada (Z.P.)
| | - Johanne Tremblay
- Centre de recherche du Centre hospitalier de l'Université de Montréal, QC, Canada (J.T., P.H.)
| | - Pavel Hamet
- Centre de recherche du Centre hospitalier de l'Université de Montréal, QC, Canada (J.T., P.H.)
| |
Collapse
|
5
|
Belloy ME, Le Guen Y, Stewart I, Williams K, Herz J, Sherva R, Zhang R, Merritt V, Panizzon MS, Hauger RL, Gaziano JM, Logue M, Napolioni V, Greicius MD. Role of the X Chromosome in Alzheimer Disease Genetics. JAMA Neurol 2024; 81:1032-1042. [PMID: 39250132 PMCID: PMC11385320 DOI: 10.1001/jamaneurol.2024.2843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/11/2024] [Indexed: 09/10/2024]
Abstract
Importance The X chromosome has remained enigmatic in Alzheimer disease (AD), yet it makes up 5% of the genome and carries a high proportion of genes expressed in the brain, making it particularly appealing as a potential source of unexplored genetic variation in AD. Objectives To perform the first large-scale X chromosome-wide association study (XWAS) of AD. Design, Setting, and Participants This was a meta-analysis of genetic association studies in case-control, family-based, population-based, and longitudinal AD-related cohorts from the US Alzheimer's Disease Genetics Consortium, the Alzheimer's Disease Sequencing Project, the UK Biobank, the Finnish health registry, and the US Million Veterans Program. Risk of AD was evaluated through case-control logistic regression analyses. Data were analyzed between January 2023 and March 2024. Genetic data available from high-density single-nucleotide variant microarrays and whole-genome sequencing and summary statistics for multitissue expression and protein quantitative trait loci available from published studies were included, enabling follow-up genetic colocalization analyses. A total of 1 629 863 eligible participants were selected from referred and volunteer samples, 477 596 of whom were excluded for analysis exclusion criteria. The number of participants who declined to participate in original studies was not available. Main Outcome and Measures Risk of AD, reported as odds ratios (ORs) with 95% CIs. Associations were considered at X chromosome-wide (P < 1 × 10-5) and genome-wide (P < 5 × 10-8) significance. Primary analyses are nonstratified, while secondary analyses evaluate sex-stratified effects. Results Analyses included 1 152 284 participants of non-Hispanic White, European ancestry (664 403 [57.7%] female and 487 881 [42.3%] male), including 138 558 individuals with AD. Six independent genetic loci passed X chromosome-wide significance, with 4 showing support for links between the genetic signal for AD and expression of nearby genes in brain and nonbrain tissues. One of these 4 loci passed conservative genome-wide significance, with its lead variant centered on an intron of SLC9A7 (OR, 1.03; 95% CI, 1.02-1.04) and colocalization analyses prioritizing both the SLC9A7 and nearby CHST7 genes. Of these 6 loci, 4 displayed evidence for escape from X chromosome inactivation with regard to AD risk. Conclusion and Relevance This large-scale XWAS of AD identified the novel SLC9A7 locus. SLC9A7 regulates pH homeostasis in Golgi secretory compartments and is anticipated to have downstream effects on amyloid β accumulation. Overall, this study advances our knowledge of AD genetics and may provide novel biological drug targets. The results further provide initial insights into elucidating the role of the X chromosome in sex-based differences in AD.
Collapse
Affiliation(s)
- Michael E. Belloy
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St Louis, Missouri
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri
| | - Yann Le Guen
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California
- Quantitative Sciences Unit, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Ilaria Stewart
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California
| | - Kennedy Williams
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California
| | - Joachim Herz
- Center for Translational Neurodegeneration Research, Department of Molecular Genetics University of Texas Southwestern Medical Center at Dallas, Dallas
| | - Richard Sherva
- Biomedical Genetics, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts
| | - Rui Zhang
- National Center for PTSD, Behavioral Sciences Division, VA Boston Healthcare System, Boston, Massachusetts
| | - Victoria Merritt
- Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, San Diego, California
- Department of Psychiatry, University of California San Diego, La Jolla
| | - Matthew S. Panizzon
- Department of Psychiatry, University of California San Diego, La Jolla
- Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla
| | - Richard L. Hauger
- Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, San Diego, California
- Department of Psychiatry, University of California San Diego, La Jolla
- Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla
| | - J. Michael Gaziano
- Million Veteran Program (MVP) Coordinating Center, VA Boston Healthcare System, Boston, Massachusetts
- Division of Aging, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Mark Logue
- Biomedical Genetics, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts
- National Center for PTSD, Behavioral Sciences Division, VA Boston Healthcare System, Boston, Massachusetts
- Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
| | - Valerio Napolioni
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Michael D. Greicius
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
6
|
Leask MP, Crișan TO, Ji A, Matsuo H, Köttgen A, Merriman TR. The pathogenesis of gout: molecular insights from genetic, epigenomic and transcriptomic studies. Nat Rev Rheumatol 2024; 20:510-523. [PMID: 38992217 DOI: 10.1038/s41584-024-01137-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2024] [Indexed: 07/13/2024]
Abstract
The pathogenesis of gout involves a series of steps beginning with hyperuricaemia, followed by the deposition of monosodium urate crystal in articular structures and culminating in an innate immune response, mediated by the NLRP3 inflammasome, to the deposited crystals. Large genome-wide association studies (GWAS) of serum urate levels initially identified the genetic variants with the strongest effects, mapping mainly to genes that encode urate transporters in the kidney and gut. Other GWAS highlighted the importance of uncommon genetic variants. More recently, genetic and epigenetic genome-wide studies have revealed new pathways in the inflammatory process of gout, including genetic associations with epigenomic modifiers. Epigenome-wide association studies are also implicating epigenomic remodelling in gout, which perhaps regulates the responsiveness of the innate immune system to monosodium urate crystals. Notably, genes implicated in gout GWAS do not include those encoding components of the NLRP3 inflammasome itself, but instead include genes encoding molecules involved in its regulation. Knowledge of the molecular mechanisms underlying gout has advanced through the translation of genetic associations into specific molecular mechanisms. Notable examples include ABCG2, HNF4A, PDZK1, MAF and IL37. Current genetic studies are dominated by participants of European ancestry; however, studies focusing on other population groups are discovering informative population-specific variants associated with gout.
Collapse
Affiliation(s)
- Megan P Leask
- Department of Physiology, University of Otago, Dunedin, Aotearoa, New Zealand
- Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Tania O Crișan
- Department of Medical Genetics, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Aichang Ji
- Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Hirotaka Matsuo
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Saitama, Japan
| | - Anna Köttgen
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
| | - Tony R Merriman
- Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL, USA.
- Department of Microbiology and Immunology, University of Otago, Dunedin, Aotearoa, New Zealand.
| |
Collapse
|
7
|
Liu J, Wang G, Yang J, Wang Y, Guo R, Li B. Association between FOXP3 polymorphisms and expression and neuromyelitis optica spectrum disorder risk in the Northern Chinese Han population. Transl Neurosci 2024; 15:20220337. [PMID: 38584670 PMCID: PMC10998649 DOI: 10.1515/tnsci-2022-0337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/24/2024] [Accepted: 03/12/2024] [Indexed: 04/09/2024] Open
Abstract
Background Forkhead box P3 (FOXP3) plays a critical role in the pathogenesis of autoimmune disorders. In the present study, we genotyped three single-nucleotide polymorphisms, namely, rs2232365, rs3761548, and rs3761549, to determine the relationship between FOXP3 polymorphisms and neuromyelitis optica spectrum disorder (NMOSD) susceptibility among the Northern Chinese Han population. Materials and methods We genotyped single nucleotide polymorphisms at loci of the FOXP3 gene (rs2232365, rs3761548, and rs3761549136) in 136 NMOSD patients and 224 healthy subjects using the multiplex SNaPshot technique. Allele, genotype, and haplotype frequencies were compared. qPCR was used to analyze the mRNA expression levels of FOXP3 in the peripheral blood mononuclear cells of 63 NMOSD patients and 35 healthy subjects. Non-parametric tests were used to test the FOXP3 mRNA expression across the different groups. Results The minor allele frequency (MAF) of G in rs2232365 was markedly lower in the NMOSD group than in the control group (odds ratio [OR] = 0.57, 95% confidence interval [95% CI]: 0.41-0.79, p = 0.001). Using genetic (codominant, dominant, and recessive) models and performing haplotype analyses, the MAF of G in rs2232365 was shown to be associated with protection against NMOSD in this population. Furthermore, haplotype analysis revealed that the haplotype GCT and the rs2232365, rs3761548, and rs3761549 alleles predicted protection against NMOSD (OR = 0.63, 95% CI = 0.41-0.97, p = 0.038). The proportions of the three genotypes of rs2232365 (p = 0.001) were not significantly different between the moderate-to-severe (Expanded Disability Status Scale (EDSS) ≥ 3 points) and mild (EDSS < 3 points) groups. Evidently, the proportion of patients with the AA genotype (64.3%) among the rs2232365 patients was significantly greater in the moderate-to-severe group than in the mild group (36.4%). However, the proportion of patients with the GG genotype (15.2%) among the rs2232365 patients was significantly greater in the mild group than in the moderate-to-severe group (2.9%). The mRNA expression of FOXP3 was markedly greater in the NMOSD group than in the control group (p = 0.001). Nevertheless, acute non-treatment patients exhibited lower FOXP3 mRNA expression than healthy controls and patients in the remission group (p = 0.004 and 0.007, respectively). Conclusion FOXP3 polymorphisms and haplotypes are related to NMOSD susceptibility among the Han Chinese population. The minor allele G of FOXP3 rs2232365 and the haplotype GCT are associated with protection against NMOSD. The GG genotype may decrease the severity of NMOSD, whereas the AA genotype is related to moderate-to-severe NMOSD. FOXP3 mRNA expression is greater in patients with NMOSD than in healthy controls. However, it is decreased in acute non-treatment patients compared with healthy controls.
Collapse
Affiliation(s)
- Jing Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, No. 215, Hepingxi Road, Shijiazhuang, 050000, China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei 050000, China
- Department of Neurology, The First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Gaoning Wang
- Department of Neurology, The Second Hospital of Hebei Medical University, No. 215, Hepingxi Road, Shijiazhuang, 050000, China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei 050000, China
- Department of Neurology, The First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Jiahe Yang
- Department of Neurology, The Second Hospital of Hebei Medical University, No. 215, Hepingxi Road, Shijiazhuang, 050000, China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei 050000, China
| | - Yulin Wang
- Department of Neurology, The Second Hospital of Hebei Medical University, No. 215, Hepingxi Road, Shijiazhuang, 050000, China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei 050000, China
- Department of Neurology, The First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Ruoyi Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, No. 215, Hepingxi Road, Shijiazhuang, 050000, China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei 050000, China
| | - Bin Li
- Department of Neurology, The Second Hospital of Hebei Medical University, No. 215, Hepingxi Road, Shijiazhuang, 050000, China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei 050000, China
| |
Collapse
|