1
|
Molina-Lopez C, Hurtado-Navarro L, O'Neill LAJ, Pelegrin P. 4-octyl itaconate reduces human NLRP3 inflammasome constitutive activation with the cryopyrin-associated periodic syndrome p.R262W, p.D305N and p.T350M variants. Cell Mol Life Sci 2025; 82:209. [PMID: 40410596 PMCID: PMC12102053 DOI: 10.1007/s00018-025-05699-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 03/27/2025] [Accepted: 04/06/2025] [Indexed: 05/25/2025]
Abstract
Cryopyrin-associated periodic syndrome (CAPS) is a condition characterized by dominant genetic variants in the NLRP3 gene, which lead to the formation of constitutively active inflammasomes. These inflammasomes play a crucial role in CAPS patients' inflammatory episodes, these being primarily driven by the production of interleukin (IL)-1b. Although treatment with IL-1 blockers is effective for CAPS, some patients develop refractory responses and adverse reactions to these therapies. Consequently, there is a need for novel treatments for CAPS patients. Promising candidates are the derivatives of itaconate, which have been shown to impair NLRP3 inflammasome activation and IL-1β release in blood mononuclear cells from CAPS patients. In this study, we provide insight into the inhibitory mechanisms by which the itaconate derivative 4-octyl itaconate (4-OI) acts on NLRP3 that has different gain-of-function mutations (p.R262W, p.D305N and p.T350M) associated with CAPS. Notably, 4-OI effectively blocks the basal auto-activation of the inflammasome formed by NLRP3 p.R262W, p.D305N and p.T350M variants, which in turn reduces caspase-1 activation, gasdermin D processing, and IL-18 release. Furthermore, after lipopolysaccharide priming of macrophages, 4-OI also decreases IL-1β gene expression and release. Overall, 4-OI impairs CAPS-associated inflammasome function at multiple levels, meaning that therapeutic agents based on itaconate could be a promising therapeutic approach to managing inflammatory episodes in CAPS patients carrying p.R262W, p.D305N or p.T350M variants.
Collapse
Affiliation(s)
- Cristina Molina-Lopez
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB), Edificio LAIB 4ª Planta, Carretera Buenavista S/N, 30120, El Palmar, Murcia, Spain
- CABIMER, Seville, Spain
| | - Laura Hurtado-Navarro
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB), Edificio LAIB 4ª Planta, Carretera Buenavista S/N, 30120, El Palmar, Murcia, Spain
- IdiPaz, Madrid, Spain
| | - Luke A J O'Neill
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Pablo Pelegrin
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB), Edificio LAIB 4ª Planta, Carretera Buenavista S/N, 30120, El Palmar, Murcia, Spain.
- Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, 30120, Murcia, Spain.
| |
Collapse
|
7
|
Balahura (Stămat) LR, Dinu AI, Lungu A, Herman H, Balta C, Hermenean A, Șerban AI, Dinescu S. Implantable Polymer Scaffolds Loaded with Paclitaxel-Cyclodextrin Complexes for Post-Breast Cancer Tissue Reconstruction. Polymers (Basel) 2025; 17:402. [PMID: 39940603 PMCID: PMC11819909 DOI: 10.3390/polym17030402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/28/2025] [Accepted: 01/30/2025] [Indexed: 02/16/2025] Open
Abstract
The side effects associated with the chemotherapy of triple-negative breast cancer (TNBC), such as nucleotide-binding oligomerization domain (NOD)-like receptor family (NLR), pyrin domain containing 3 (NLRP3) inflammasome activity, are responsible for the treatment failure and high mortality rates. Therefore, advanced delivery systems have been developed to improve the transport and targeted administration of anti-tumor agents at the tumor sites using tissue engineering approaches. Implantable delivery systems based on biodegradable polymers are an effective alternative due high biocompatibility, porosity, and mechanical strength. Moreover, the use of paclitaxel (PTX)-cyclodextrin complexes increases the solubility and permeability of PTX, enhancing the bioavailability and efficacy of the drug. All of these properties contribute to the efficient encapsulation and controlled release of drugs, preventing the damage of healthy tissues. In the current study, we detailed the synthesis process and evaluation of 3D scaffolds based on gelatin functionalized with methacryloyl groups (GelMA) and pectin loaded with PTX-cyclodextrin inclusion complexes on TNBC pathogenesis in vitro and in vivo. Bio-physio-chemical analysis of the proposed scaffolds revealed favorable mechanical and biological properties for the cellular component. To improve the drug solubility, a host-guest interaction was performed by the complexation of PTX with a cyclodextrin derivative prior to scaffold synthesis. The presence of PTX suppressed the growth of breast tumor cells and promoted caspase-1 activity, the release of interleukin (IL)-1β, and the production of reactive oxygen species (ROS), conditioning the expression levels of the genes and proteins associated with breast tumorigenesis and NLRP3 inflammasome. The in vivo experiments suggested the activation of pyroptosis tumor cell death, confirming the in vitro experiments. In conclusion, the bio-mechanical properties of the GelMA and pectin-based scaffolds as well as the addition of the PTX-cyclodextrin complexes allow for the targeted and efficient delivery of PTX, suppressing the viability of the breast tumor cells via pyroptosis cell death initiation.
Collapse
Affiliation(s)
| | - Andreea Ioana Dinu
- Advanced Polymer Materials Group, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (A.I.D.); (A.L.)
| | - Adriana Lungu
- Advanced Polymer Materials Group, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (A.I.D.); (A.L.)
| | - Hildegard Herman
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, 310414 Arad, Romania; (H.H.); (C.B.); (A.H.)
| | - Cornel Balta
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, 310414 Arad, Romania; (H.H.); (C.B.); (A.H.)
| | - Anca Hermenean
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, 310414 Arad, Romania; (H.H.); (C.B.); (A.H.)
| | - Andreea Iren Șerban
- Department Preclinical Sciences, Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 050097 Bucharest, Romania;
| | - Sorina Dinescu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania;
- Research Institute of the University of Bucharest, 050663 Bucharest, Romania
| |
Collapse
|
8
|
Matico R, Grauwen K, Chauhan D, Yu X, Abdiaj I, Adhikary S, Adriaensen I, Aranzazu GM, Alcázar J, Bassi M, Brisse E, Cañellas S, Chaudhuri S, Delgado F, Diéguez-Vázquez A, Du Jardin M, Eastham V, Finley M, Jacobs T, Keustermans K, Kuhn R, Llaveria J, Leenaerts J, Linares ML, Martín ML, Martín-Pérez R, Martínez C, Miller R, Muñoz FM, Muratore ME, Nooyens A, Perez-Benito L, Perrier M, Pietrak B, Serré J, Sharma S, Somers M, Suarez J, Tresadern G, Trabanco AA, Van den Bulck D, Van Gool M, Van Hauwermeiren F, Varghese T, Vega JA, Youssef SA, Edwards MJ, Oehlrich D, Van Opdenbosch N. Navigating from cellular phenotypic screen to clinical candidate: selective targeting of the NLRP3 inflammasome. EMBO Mol Med 2025; 17:54-84. [PMID: 39653810 PMCID: PMC11730736 DOI: 10.1038/s44321-024-00181-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 11/23/2024] [Accepted: 11/26/2024] [Indexed: 01/15/2025] Open
Abstract
The NLRP3 inflammasome plays a pivotal role in host defense and drives inflammation against microbial threats, crystals, and danger-associated molecular patterns (DAMPs). Dysregulation of NLRP3 activity is associated with various human diseases, making it an attractive therapeutic target. Patients with NLRP3 mutations suffer from Cryopyrin-Associated Periodic Syndrome (CAPS) emphasizing the clinical significance of modulating NLRP3. In this study, we present the identification of a novel chemical class exhibiting selective and potent inhibition of the NLRP3 inflammasome. Through a comprehensive structure-activity relationship (SAR) campaign, we optimized the lead molecule, compound A, for in vivo applications. Extensive in vitro and in vivo characterization of compound A confirmed the high selectivity and potency positioning compound A as a promising clinical candidate for diseases associated with aberrant NLRP3 activity. This research contributes to the ongoing efforts in developing targeted therapies for conditions involving NLRP3-mediated inflammation, opening avenues for further preclinical and clinical investigations.
Collapse
Affiliation(s)
- Rosalie Matico
- Janssen Research & Development, LLC, Discovery Technologies and Molecular Pharmacology (DTMP), Spring House, PA, 19044, USA
| | - Karolien Grauwen
- Janssen Interventional Oncology, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Dhruv Chauhan
- Janssen Interventional Oncology, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Xiaodi Yu
- Janssen Research & Development, LLC, Discovery Technologies and Molecular Pharmacology (DTMP), Spring House, PA, 19044, USA
| | - Irini Abdiaj
- Janssen Research & Development, LLC, Global Discovery Chemistry (GDC), C. Río Jarama, 75, 45007, Toledo, Spain
| | - Suraj Adhikary
- Janssen Research & Development, LLC, Discovery Technologies and Molecular Pharmacology (DTMP), Spring House, PA, 19044, USA
| | - Ine Adriaensen
- Janssen Research & Development, LLC, In Vivo Sciences (IVS), Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Garcia Molina Aranzazu
- Janssen Research & Development, LLC, Global Discovery Chemistry (GDC), C. Río Jarama, 75, 45007, Toledo, Spain
| | - Jesus Alcázar
- Janssen Research & Development, LLC, Global Discovery Chemistry (GDC), C. Río Jarama, 75, 45007, Toledo, Spain
| | - Michela Bassi
- Janssen Research & Development, LLC, Global Discovery Chemistry (GDC), Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Ellen Brisse
- Janssen Interventional Oncology, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Santiago Cañellas
- Janssen Research & Development, LLC, Global Discovery Chemistry (GDC), C. Río Jarama, 75, 45007, Toledo, Spain
| | - Shubhra Chaudhuri
- Janssen Research & Development, LLC, Preclinical Sciences and Translational Safety (PSTS), Spring House, PA, 19044, USA
| | - Francisca Delgado
- Janssen Research & Development, LLC, Global Discovery Chemistry (GDC), C. Río Jarama, 75, 45007, Toledo, Spain
| | - Alejandro Diéguez-Vázquez
- Janssen Research & Development, LLC, Global Discovery Chemistry (GDC), C. Río Jarama, 75, 45007, Toledo, Spain
| | - Marc Du Jardin
- Janssen Research & Development, LLC, Discovery Pharmaceutics, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Victoria Eastham
- Janssen Research & Development, LLC, Discovery Technologies and Molecular Pharmacology (DTMP), Spring House, PA, 19044, USA
| | - Michael Finley
- Janssen Research & Development, LLC, Discovery Technologies and Molecular Pharmacology (DTMP), Spring House, PA, 19044, USA
| | - Tom Jacobs
- Janssen Research & Development, LLC, Preclinical Sciences and Translational Safety (PSTS), Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Ken Keustermans
- Charles River Laboratories, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Robert Kuhn
- Janssen Interventional Oncology, Spring House, PA, 19044, USA
| | - Josep Llaveria
- Janssen Research & Development, LLC, Global Discovery Chemistry (GDC), C. Río Jarama, 75, 45007, Toledo, Spain
| | - Jos Leenaerts
- Janssen Research & Development, LLC, Global Discovery Chemistry (GDC), Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Maria Lourdes Linares
- Janssen Research & Development, LLC, Global Discovery Chemistry (GDC), C. Río Jarama, 75, 45007, Toledo, Spain
| | - Maria Luz Martín
- Janssen Research & Development, LLC, Global Discovery Chemistry (GDC), C. Río Jarama, 75, 45007, Toledo, Spain
| | - Rosa Martín-Pérez
- Janssen Interventional Oncology, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Carlos Martínez
- Janssen Research & Development, LLC, Global Discovery Chemistry (GDC), C. Río Jarama, 75, 45007, Toledo, Spain
| | - Robyn Miller
- Janssen Research & Development, LLC, Discovery Technologies and Molecular Pharmacology (DTMP), Spring House, PA, 19044, USA
| | - Frances M Muñoz
- Janssen Research & Development, LLC, Discovery Technologies and Molecular Pharmacology (DTMP), Spring House, PA, 19044, USA
| | - Michael E Muratore
- Janssen Research & Development, LLC, Global Discovery Chemistry (GDC), Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Amber Nooyens
- Janssen Interventional Oncology, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Laura Perez-Benito
- Janssen Research & Development, LLC, Therapeutic Discovery, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Mathieu Perrier
- Janssen Research & Development, LLC, Global Discovery Chemistry (GDC), Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Beth Pietrak
- Janssen Research & Development, LLC, Discovery Technologies and Molecular Pharmacology (DTMP), Spring House, PA, 19044, USA
| | - Jef Serré
- Janssen Interventional Oncology, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Sujata Sharma
- Janssen Research & Development, LLC, Discovery Technologies and Molecular Pharmacology (DTMP), Spring House, PA, 19044, USA
| | - Marijke Somers
- Janssen Research & Development, LLC, Drug Metabolism and Phamacokinetcs (DMPK), Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Javier Suarez
- Janssen Research & Development, LLC, Discovery Technologies and Molecular Pharmacology (DTMP), Spring House, PA, 19044, USA
| | - Gary Tresadern
- Janssen Research & Development, LLC, Therapeutic Discovery, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Andres A Trabanco
- Janssen Research & Development, LLC, Global Discovery Chemistry (GDC), C. Río Jarama, 75, 45007, Toledo, Spain
| | - Dries Van den Bulck
- Janssen Research & Development, LLC, Discovery Technologies and Molecular Pharmacology (DTMP), Spring House, PA, 19044, USA
| | - Michiel Van Gool
- Janssen Research & Development, LLC, Global Discovery Chemistry (GDC), Turnhoutseweg 30, 2340, Beerse, Belgium
| | | | - Teena Varghese
- Janssen Research & Development, LLC, Discovery Technologies and Molecular Pharmacology (DTMP), Spring House, PA, 19044, USA
| | - Juan Antonio Vega
- Janssen Research & Development, LLC, Global Discovery Chemistry (GDC), C. Río Jarama, 75, 45007, Toledo, Spain
| | - Sameh A Youssef
- Janssen Research & Development, LLC, Preclinical Sciences and Translational Safety (PSTS), Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Matthew J Edwards
- Janssen Interventional Oncology, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Daniel Oehlrich
- Janssen Research & Development, LLC, Global Discovery Chemistry (GDC), Turnhoutseweg 30, 2340, Beerse, Belgium
| | | |
Collapse
|
9
|
Alarcón-Vila C, Hurtado-Navarro L, Mateo SV, Peñín-Franch A, Martínez CM, Molina-López C, Baños MC, Gómez AI, Gómez-Román J, Baroja-Mazo A, Arostegui JI, Palmou-Fontana N, Martínez-García JJ, Pelegrin P. The inflammasome adaptor protein ASC promotes amyloid deposition in cryopyrin-associated periodic syndromes. EMBO Mol Med 2025; 17:41-53. [PMID: 39639164 PMCID: PMC11731034 DOI: 10.1038/s44321-024-00176-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 12/07/2024] Open
Abstract
In this Correspondence, P. Pelegrin and colleagues found that the deposition of amyloid in tissues in Cryopyrin-Associated Periodic Syndrome were promoted by the extracellular presence of the inflammasome adaptor protein ASC, opening exciting new directions in clinical practice to obtain a novel therapy towards secondary amyloidosis in inflammasomopathies.
Collapse
Affiliation(s)
- Cristina Alarcón-Vila
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Laura Hurtado-Navarro
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Sandra V Mateo
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Alejandro Peñín-Franch
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Carlos M Martínez
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Cristina Molina-López
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - María C Baños
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Ana I Gómez
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Javier Gómez-Román
- Anatomical Pathology Service, Marqués de Valdecilla University Hospital-IDIVAL, University of Cantabria, Santander, Spain
| | - Alberto Baroja-Mazo
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Juan I Arostegui
- Department of Immunology, Hospital Clínic, Barcelona, Spain
- Biomedical Research Institute August Pi i Sunyer, Barcelona, Spain
- School of Medicine, University of Barcelona, Barcelona, Spain
| | - Natalia Palmou-Fontana
- Rheumatology Service, Immunopathology Group, Marqués de Valdecilla University Hospital-IDIVAL, Santander, Spain
| | - Juan J Martínez-García
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB), Murcia, Spain.
- Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, Murcia, Spain.
| | - Pablo Pelegrin
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB), Murcia, Spain.
- Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, Murcia, Spain.
| |
Collapse
|