1
|
Ghahri S, Park BD. Bio-crosslinking of oxidized hardwood kraft lignin as fully bio-based adhesives for wood bonding. Int J Biol Macromol 2025; 309:142907. [PMID: 40220819 DOI: 10.1016/j.ijbiomac.2025.142907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/11/2025] [Accepted: 04/05/2025] [Indexed: 04/14/2025]
Abstract
Lignin's low reactivity and crosslinking challenges limit its applications. To address this, many synthetic crosslinkers have been used, but they often involve hazardous chemicals, raising environmental concerns. In particular, it is also true for hardwood kraft lignin (HKL) being burned or wasted in kraft pulping mills. This study reports the successful chitosan bio-crosslinking of oxidized HKL with sodium periodate rather than toxic and environmentally harmful crosslinkers. Both low oxidation (LO) and high oxidation (HO) levels enhance the reactivity of HKL by introducing aldehyde groups, thereby facilitating the formation of imine and amide bonds with chitosan, leading to higher glass transition temperature (Tg), higher viscosity, and greater adhesion strength. The results indicate that the crosslinking of acetone soluble HKL (ASHKL) at LO level with chitosan exhibits excellent dry adhesion strength (1.15 ± 0.2 MPa) for plywood, which meet the required adhesion level of Korean Standard (0.6 MPa) and European Norm 314-2 (1 MPa). These results reveal that chitosan is an outstanding polysaccharide-based crosslinker for the bio-crosslinking of HKL owing to its sustainability, biocompatibility, functional properties, and capability to form covalent bonds.
Collapse
Affiliation(s)
- Saman Ghahri
- Department of Wood and Paper Science, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Byung-Dae Park
- Department of Wood and Paper Science, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
2
|
Xiao T, Song J, Jia W, Sun Y, Guo Y, Fatehi P, Shi H. Cracking aryl ether bonds of lignin by γ-valerolactone (GVL) in coordination with acid lithium bromide molten salt system. Int J Biol Macromol 2025; 309:142643. [PMID: 40187460 DOI: 10.1016/j.ijbiomac.2025.142643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 03/20/2025] [Accepted: 03/27/2025] [Indexed: 04/07/2025]
Abstract
The chemical bond cleavage of lignin is a research focus for achieving depolymerized lignin for such applications as adhesives, fuels, fertilizers, etc. The depolymerization of an industrially available sustainable material, i.e., industrial alkali lignin, in LiBr·3H2O/HBr-γ-valerolactone (GVL) was systematically investigated in this study. It was observed that using 3/1 mL/g of HBr/lignin and 8/1 mL/g of GVL/lignin at 110 °C for 90 min, i.e., optimized conditions, resulted in lignin derivatives with an Mw of 1889 g/mol and Mn of 895 g/mol. The characteristics of the products were studied using FTIR, NMR, SEM, and DLS techniques. The results confirmed that the Hibbert-ketone end group was formed, while the structure of the aromatic ring was not changed on the depolymerized lignin. After the depolymerization process, the hydroxyl content in lignin increased from 1.91 mmol/g to 2.96 mmol/g. The product derived from the LiBr·3H2O/HBr-GVL depolymerization system displayed a spherical particle morphology. The addition of GVL to lignin depolymerization processes improved the bonding between lignin and inorganic molten salts, thereby promoting the acid-catalyzed cleavage of aryl ether bonds in lignin. Current research supports the conclusion that LiBr·3H2O/HBr-GVL lignin depolymerization is a sustainable and effective chemical pathway for generating depolymerized lignin.
Collapse
Affiliation(s)
- Tianyuan Xiao
- The Key Laboratory of High Value Utilization of Botanical Resources of China Light Industry, Liaoning Key Lab of Lignocellulose Chemistry and Biomaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, Liaoning, 116034, China; College of Light Industry and Textile, Qiqihar University, Qiqihar, Heilongjiang 161000, China
| | - Jiahui Song
- The Key Laboratory of High Value Utilization of Botanical Resources of China Light Industry, Liaoning Key Lab of Lignocellulose Chemistry and Biomaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, Liaoning, 116034, China
| | - Wenchao Jia
- The Key Laboratory of High Value Utilization of Botanical Resources of China Light Industry, Liaoning Key Lab of Lignocellulose Chemistry and Biomaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, Liaoning, 116034, China
| | - Yanning Sun
- The Key Laboratory of High Value Utilization of Botanical Resources of China Light Industry, Liaoning Key Lab of Lignocellulose Chemistry and Biomaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, Liaoning, 116034, China
| | - Yanzhu Guo
- The Key Laboratory of High Value Utilization of Botanical Resources of China Light Industry, Liaoning Key Lab of Lignocellulose Chemistry and Biomaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, Liaoning, 116034, China
| | - Pedram Fatehi
- Chemical Engineering Department, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada
| | - Haiqiang Shi
- The Key Laboratory of High Value Utilization of Botanical Resources of China Light Industry, Liaoning Key Lab of Lignocellulose Chemistry and Biomaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, Liaoning, 116034, China.
| |
Collapse
|
3
|
Sun Z, Zhou W, Wen H, Li Y, Yang W, Xu X, Shi J, Duan X, Zhao G. Efficient cleavage of CO bond of lignin by synergistic electrocatalysis using a polyoxometalate catalyst with bimetallic sites. Int J Biol Macromol 2025; 307:142102. [PMID: 40089229 DOI: 10.1016/j.ijbiomac.2025.142102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/18/2025] [Accepted: 03/12/2025] [Indexed: 03/17/2025]
Abstract
This study reported a low-cost and highly efficient Dexter-Silverton polyoxometalate (POM)/Ni foam composite (NiCo-POM/NF) with bimetallic sites for acetophenone production. With this novel composite as an electrocatalyst, β-O-4 in 2-phenoxy-1-phenylethanol (PPE), a typical β-O-4 model, can be selectively oxidized to aromatic chemicals with excellent yields (62 %-74 %) by controlled-potential electrolysis. A PPE conversion of 99.3 % and an acetophenone yield of 36.0 % were achieved from the electrochemical oxidation of PPE at 1.24 V vs. RHE in a deep eutectic solvent (DES). Moreover, real lignin can be effectively cleaved to yield the main products guaiacol and vanillin with the help of the proposed catalyst. In short, the Ni catalyst has excellent catalytic effect on the conversion of the lignin model compound and lignin. The incorporation of Co in POM strengthened adsorption on the substrate and added high-valence active sites, thus significantly improving the oxidation performance of the catalyst. In the bimetallic electrocatalyst with multiple active sites, Co3+/Co2+ served as an electron transfer mediator (ETM), while the Mo6+ acted as an electron donor for CO oxidative cleavage of PPE. This work provides an effective strategy for catalyst design as well as electrocatalytic valorization of biomass.
Collapse
Affiliation(s)
- Zhong Sun
- School of Chemical Engineering, Northeast Electric Power University, Jilin, Jilin 132012, China.
| | - Wenlong Zhou
- School of Chemical Engineering, Northeast Electric Power University, Jilin, Jilin 132012, China
| | - Hongliang Wen
- School of Chemical Engineering, Northeast Electric Power University, Jilin, Jilin 132012, China
| | - Yanxin Li
- School of Chemical Engineering, Northeast Electric Power University, Jilin, Jilin 132012, China
| | - Wei Yang
- School of Chemical Engineering, Northeast Electric Power University, Jilin, Jilin 132012, China
| | - Xiaohui Xu
- School of Chemical Engineering, Northeast Electric Power University, Jilin, Jilin 132012, China
| | - Junyou Shi
- School of Chemical Engineering, Northeast Electric Power University, Jilin, Jilin 132012, China.
| | - Xixin Duan
- Key Laboratory of Wooden Materials Science and Engineering, Beihua University, Jilin, Jilin 132013, China.
| | - Guangzhen Zhao
- School of Mechanical and Electronic Engineering, Suzhou University, Suzhou, Anhui 234099, China.
| |
Collapse
|
4
|
Han J, Zhang M, Wang Y, Liu Z, Shi X, He Y, Zhu J, Yi X. Cold Plasma Treatment Facilitated the Conversion of Lignin-Derived Aldehyde for Pseudomonas putida. Appl Biochem Biotechnol 2025; 197:1329-1343. [PMID: 39570516 DOI: 10.1007/s12010-024-05082-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2024] [Indexed: 11/22/2024]
Abstract
Syringaldehyde derived from lignin is one of the essential intermediates for the production of basic chemicals. However, it was poorly understood for the direct microbial conversion of syringaldehyde. Here, this study tried to use cold plasma technique to enhance syringaldehyde conversion for the bacterium Pseudomonas putida. It illustrated that cell growth and syringaldehyde conversion were separately increased by 1.49 times at 3 h and 1.60 times at 6 h for 35 s, 1.16 and 3.44 times for 140 W, and 1.63 and 4.02 times for 105 Pa for P. putida through single factor assays of cold plasma treatment. To be sure, cell growth and syringaldehyde conversion were enhanced by 1.14 and 5.54 times at 3 h under the optimum parameters (35 s, 140 W, and 105 Pa) for P. putida. Furthermore, genome re-sequencing further discovered single-nucleotide polymorphisms of P. putida, such as PP_2589 (A428V), PP_5651 (V82F), and PP_0545 (W335R), and thus indicated that the potential genetic changes derived from cold plasma treatment would be responsible for the acceleration of syringaldehyde conversion. This work would provide a robust strain catalyst and the potential candidate mutation sites for genetic manipulation for microbial bioconversion of the value-added and lignin-based biochemicals.
Collapse
Affiliation(s)
- Jianqi Han
- National-Local Joint Engineering Research Center for Biomass Refining and High-Quality Utilization, Institute of Urban and Rural Mining, Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
| | - Meng Zhang
- National-Local Joint Engineering Research Center for Biomass Refining and High-Quality Utilization, Institute of Urban and Rural Mining, Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
| | - Yilong Wang
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Zhidan Liu
- National-Local Joint Engineering Research Center for Biomass Refining and High-Quality Utilization, Institute of Urban and Rural Mining, Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
| | - Xiaohui Shi
- National-Local Joint Engineering Research Center for Biomass Refining and High-Quality Utilization, Institute of Urban and Rural Mining, Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
| | - Yucai He
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou, 213164, Jiangsu, China.
| | - Jie Zhu
- National-Local Joint Engineering Research Center for Biomass Refining and High-Quality Utilization, Institute of Urban and Rural Mining, Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China.
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou, 213164, Jiangsu, China.
| | - Xia Yi
- National-Local Joint Engineering Research Center for Biomass Refining and High-Quality Utilization, Institute of Urban and Rural Mining, Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China.
| |
Collapse
|
5
|
Wolf ME, Hinchen DJ, McGeehan JE, Eltis LD. Characterization of a cytochrome P450 that catalyzes the O-demethylation of lignin-derived benzoates. J Biol Chem 2024; 300:107809. [PMID: 39307304 PMCID: PMC11530827 DOI: 10.1016/j.jbc.2024.107809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 10/20/2024] Open
Abstract
Cytochromes P450 (P450s) are a superfamily of heme-containing enzymes possessing a broad range of monooxygenase activities. One such activity is O-demethylation, an essential and rate-determining step in emerging strategies to valorize lignin that employ carbon-carbon bond cleavage. We recently identified PbdA, a P450 from Rhodococcus jostii RHA1, and PbdB, its cognate reductase, which catalyze the O-demethylation of para-methoxylated benzoates (p-MBAs) to initiate growth of RHA1 on these compounds. PbdA had the highest affinity (Kd = 3.8 ± 0.6 μM) and apparent specificity (kcat/KM = 20,000 ± 3000 M-1 s-1) for p-MBA. The enzyme also O-demethylated two related lignin-derived aromatic compounds with remarkable efficiency: veratrate and isovanillate. PbdA also catalyzed the hydroxylation and dehydrogenation of p-ethylbenzoate even though RHA1 did not grow on this compound. Atomic-resolution structures of PbdA in complex with p-MBA, p-ethylbenzoate, and veratrate revealed a cluster of three residues that form hydrogen bonds with the substrates' carboxylate: Ser87, Ser237, and Arg84. Substitution of these residues resulted in lower affinity and O-demethylation activity on p-MBA as well as increased affinity for the acetyl analog, p-methoxyacetophenone. The S87A and S237A variants of PbdA also catalyzed the O-demethylation of an aldehyde analog of p-MBA, p-methoxy-benzaldehyde, while the R84M variant did not, despite binding this compound with high affinity. These results suggest that Ser87, Ser237, and Arg84 are not only important determinants of specificity but also help to orientate that substrate correctly in the active site. This study facilitates the design of biocatalysts for lignin valorization.
Collapse
Affiliation(s)
- Megan E Wolf
- Department of Microbiology and Immunology, Life Sciences Institute and Bioproducts Institute, The University of British Columbia, Vancouver, Canada
| | - Daniel J Hinchen
- Centre for Enzyme Innovation, School of Biological Sciences, University of Portsmouth, Portsmouth, UK
| | - John E McGeehan
- Centre for Enzyme Innovation, School of Biological Sciences, University of Portsmouth, Portsmouth, UK
| | - Lindsay D Eltis
- Department of Microbiology and Immunology, Life Sciences Institute and Bioproducts Institute, The University of British Columbia, Vancouver, Canada.
| |
Collapse
|
6
|
Palumbo CT, Ouellette ET, Zhu J, Román-Leshkov Y, Stahl SS, Beckham GT. Accessing monomers from lignin through carbon-carbon bond cleavage. Nat Rev Chem 2024; 8:799-816. [PMID: 39367248 DOI: 10.1038/s41570-024-00652-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2024] [Indexed: 10/06/2024]
Abstract
Lignin, the heterogeneous aromatic macromolecule found in the cell walls of vascular plants, is an abundant feedstock for the production of biochemicals and biofuels. Many valorization schemes rely on lignin depolymerization, with decades of research focused on accessing monomers through C-O bond cleavage, given the abundance of β-O-4 bonds in lignin and the large number of available C-O bond cleavage strategies. Monomer yields are, however, invariably lower than desired, owing to the presence of recalcitrant C-C bonds whose selective cleavage remains a major challenge in catalysis. In this Review, we highlight lignin C-C cleavage reactions, including those of linkages arising from biosynthesis (β-1, β-5, β-β and 5-5) and industrial processing (5-CH2-5 and α-5). We examine multiple approaches to C-C cleavage, including homogeneous and heterogeneous catalysis, photocatalysis and biocatalysis, to identify promising strategies for further research and provide guidelines for definitive measurements of lignin C-C bond cleavage.
Collapse
Affiliation(s)
- Chad T Palumbo
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA
| | - Erik T Ouellette
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA
| | - Jie Zhu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yuriy Román-Leshkov
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Shannon S Stahl
- Department of Chemistry. Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA.
| | - Gregg T Beckham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA.
- Center for Bioenergy Innovation, Oak Ridge, TN, USA.
| |
Collapse
|
7
|
Wan Z, Zhang H, Niu M, Guo Y, Li H. Production of vanillin via oxidation depolymerization of lignin over Fe- and Mn-modified TS-1 zeolites. Int J Biol Macromol 2024; 272:132922. [PMID: 38844292 DOI: 10.1016/j.ijbiomac.2024.132922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/10/2024] [Accepted: 06/03/2024] [Indexed: 06/16/2024]
Abstract
Converting lignin into specific aromatic chemicals for utilization through depolymerization of lignin is an effective way to achieve high-value applications. There are many depolymerization methods that can do this, but there are problems such as harsh reaction conditions, low depolymerization efficiency and uncontrollable target products that need to be solved. This study reports a novel system for the oxidative depolymerization of alkali lignin using Fe- and Mn- modified TS-1 as a catalyst to assist in the highly selective production of vanillin. We also proposed a possible reaction pathway for the oxidative depolymerization of alkali lignin to produce vanillin catalyzed by Fe-Mn/TS-1 catalyst. The catalytic effects of TS-1, Fe/TS-1, and Fe-Mn/TS-1 catalysts on the oxidative depolymerization of lignin to produce phenolic monomers and vanillin were investigated. The results show that the modified catalysts can effectively improve the efficiency of linkage bond breaking in lignin, especially the β-O-4 bond, in which the inter-band transitions of Fe and Mn play an important role. The synergistic effect of the bimetallic-loaded catalyst (Fe-Mn/TS-1) could catalyze the oxidative depolymerization of lignin more efficiently than the monometallic-loaded catalyst (Fe/TS-1). This lignin oxidative depolymerization system produced 40.59 wt% bio-oil including 12.24 wt% phenolic monomers and 16.17 wt% re-lignin after the addition of Fe-Mn/TS-1 catalyst, owning the highest phenolic monomer yield. Surprisingly, this lignin oxidative depolymerization system exhibited high yield for vanillin (8.36 wt%) production. These results demonstrated that the Fe-Mn/TS-1 catalytic system has potential to produce vanillin from lignin under mild conditions.
Collapse
Affiliation(s)
- Zhouyuanye Wan
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Hongjie Zhang
- China National Pulp and Paper Research Institute Co. Ltd., Beijing 100102, China
| | - Meihong Niu
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yanzhu Guo
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Haiming Li
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
8
|
Wolf ME, Lalande AT, Newman BL, Bleem AC, Palumbo CT, Beckham GT, Eltis LD. The catabolism of lignin-derived p-methoxylated aromatic compounds by Rhodococcus jostii RHA1. Appl Environ Microbiol 2024; 90:e0215523. [PMID: 38380926 PMCID: PMC10952524 DOI: 10.1128/aem.02155-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/23/2024] [Indexed: 02/22/2024] Open
Abstract
Emergent strategies to valorize lignin, an abundant but underutilized aromatic biopolymer, include tandem processes that integrate chemical depolymerization and biological catalysis. To date, aromatic monomers from C-O bond cleavage of lignin have been converted to bioproducts, but the presence of recalcitrant C-C bonds in lignin limits the product yield. A promising chemocatalytic strategy that overcomes this limitation involves phenol methyl protection and autoxidation. Incorporating this into a tandem process requires microbial cell factories able to transform the p-methoxylated products in the resulting methylated lignin stream. In this study, we assessed the ability of Rhodococcus jostii RHA1 to catabolize the major aromatic products in a methylated lignin stream and elucidated the pathways responsible for this catabolism. RHA1 grew on a methylated pine lignin stream, catabolizing the major aromatic monomers: p-methoxybenzoate (p-MBA), veratrate, and veratraldehyde. Bioinformatic analyses suggested that a cytochrome P450, PbdA, and its cognate reductase, PbdB, are involved in p-MBA catabolism. Gene deletion studies established that both pbdA and pbdB are essential for growth on p-MBA and several derivatives. Furthermore, a deletion mutant of a candidate p-hydroxybenzoate (p-HBA) hydroxylase, ΔpobA, did not grow on p-HBA. Veratraldehyde and veratrate catabolism required both vanillin dehydrogenase (Vdh) and vanillate O-demethylase (VanAB), revealing previously unknown roles of these enzymes. Finally, a ΔpcaL strain grew on neither p-MBA nor veratrate, indicating they are catabolized through the β-ketoadipate pathway. This study expands our understanding of the bacterial catabolism of aromatic compounds and facilitates the development of biocatalysts for lignin valorization.IMPORTANCELignin, an abundant aromatic polymer found in plant biomass, is a promising renewable replacement for fossil fuels as a feedstock for the chemical industry. Strategies for upgrading lignin include processes that couple the catalytic fractionation of biomass and biocatalytic transformation of the resulting aromatic compounds with a microbial cell factory. Engineering microbial cell factories for this biocatalysis requires characterization of bacterial pathways involved in catabolizing lignin-derived aromatic compounds. This study identifies new pathways for lignin-derived aromatic degradation in Rhodococcus, a genus of bacteria well suited for biocatalysis. Additionally, we describe previously unknown activities of characterized enzymes on lignin-derived compounds, expanding their utility. This work advances the development of strategies to replace fossil fuel-based feedstocks with sustainable alternatives.
Collapse
Affiliation(s)
- Megan E. Wolf
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, Canada
| | - Anne T. Lalande
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, Canada
| | - Brianne L. Newman
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, Canada
| | - Alissa C. Bleem
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA
| | - Chad T. Palumbo
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA
| | - Gregg T. Beckham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA
| | - Lindsay D. Eltis
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, Canada
| |
Collapse
|