1
|
Giedrojć W, Pluskota WE, Wachowska U. Fusarium graminearum in Wheat-Management Strategies in Central Europe. Pathogens 2025; 14:265. [PMID: 40137750 PMCID: PMC11945457 DOI: 10.3390/pathogens14030265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/03/2025] [Accepted: 03/06/2025] [Indexed: 03/29/2025] Open
Abstract
The main aim of this study was to discuss and compare the threats associated with F. graminearum in wheat production in Poland and in other Central European countries. Wheat is one of the most widely cultivated crops in the world, and pathogens causing Fusarium head blight (FHB) pose the greatest threat to wheat production. Our knowledge of FHB has to be regularly expanded in order to explore the impacts of climate change, new wheat cultivars, and new fungicides on the prevalence of this disease. The pathogen's resistance to fungicides was analyzed in a global context due to the relative scarcity of studies examining this problem in Central Europe (excluding Germany). This is an interesting research perspective because, despite a relatively large number of Polish studies on FHB, F. graminearum genotypes and the pathogen's resistance to fungicides remain insufficiently investigated. The hemibiotrophic pathogen Fusarium graminearum causes particularly high losses in wheat cultivation due to its ability to produce mycotoxins that are dangerous to human health (mainly deoxynivalenol, DON), colonize plant residues in soil in the saprotrophic phase, and produce spores that infect the stem base and spikes throughout the growing season. The infection process is highly dynamic, and it is facilitated by DON. The synthesis of DON (trichothecene) is encoded by Tri genes located in four loci. In Poland, the F. graminearum population is mainly composed of the 15ADON genotype, and the spread of FHB cannot effectively be managed with fungicides during epidemic years. Dynamic gene flows in field populations enable the pathogen to rapidly adapt to environmental changes and overcome wheat resistance to FHB. The emergence of fungicide-resistant F. graminearum strains significantly compromises the quality of wheat crops, but the associated mechanisms have not been sufficiently investigated to date. In addition, although some biopreparations are promising and effective in small-scale field trials, very few have been commercialized. Extensive research into pathogen populations, the development of new resistant wheat varieties, and the use of effective fungicides and biopreparations are required to produce wheat grain that is free of mycotoxins.
Collapse
Affiliation(s)
- Weronika Giedrojć
- Department of Entomology, Phytopathology and Molecular Diagnostics, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, ul. Prawocheńskiego 17, 10-722 Olsztyn, Poland;
| | - Wioletta E. Pluskota
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, ul. Michała Oczapowskiego 1A, 10-719 Olsztyn, Poland;
| | - Urszula Wachowska
- Department of Entomology, Phytopathology and Molecular Diagnostics, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, ul. Prawocheńskiego 17, 10-722 Olsztyn, Poland;
| |
Collapse
|
2
|
Shi H, Ding G, Wang Y, Wang J, Wang X, Wang D, Lu P. Genome-wide identification of long non-coding RNA for Botrytis cinerea during infection to tomato (Solanum lycopersicum) leaves. BMC Genomics 2025; 26:7. [PMID: 39762752 PMCID: PMC11702200 DOI: 10.1186/s12864-024-11171-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Long non-coding RNA (lncRNA) plays important roles in animals and plants. In filamentous fungi, however, their biological function in infection stage has been poorly studied. Here, we investigated the landscape and regulation of lncRNA in the filamentous plant pathogenic fungus Botrytis cinerea by strand-specific RNA-seq of multiple infection stages. In total, 1837 lncRNAs have been identified in B. cinerea. A large number of lncRNAs were found to be antisense to mRNAs, forming 743 sense-antisense pairs, of which 55 antisense lncRNAs and their respective sense transcripts were induced in parallel as the infection stage. Although small RNAs were produced from these overlapping loci, antisense lncRNAs appeared not to be involved in gene silencing pathways. In addition, we found the alternative splicing events occurred in lncRNA. These results highlight the developmental stage-specific nature and functional potential of lncRNA expression in the infection stage and provide fundamental resources for studying infection stage-induced lncRNAs.
Collapse
Affiliation(s)
- Haojie Shi
- The Key Lab for Biology of Crop Pathogens and Insect Pests and Their Ecological Regulation of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, 311300, China
| | - Guijuan Ding
- The Key Lab for Biology of Crop Pathogens and Insect Pests and Their Ecological Regulation of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, 311300, China
| | - Yun Wang
- The Key Lab for Biology of Crop Pathogens and Insect Pests and Their Ecological Regulation of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, 311300, China
| | - Jiaqi Wang
- The Key Lab for Biology of Crop Pathogens and Insect Pests and Their Ecological Regulation of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, 311300, China
| | - Xiaoli Wang
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, College of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Dan Wang
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, 311300, China.
| | - Ping Lu
- The Key Lab for Biology of Crop Pathogens and Insect Pests and Their Ecological Regulation of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, 311300, China.
| |
Collapse
|
3
|
Fu Z, Chen Y, Cai G, Peng H, Wang X, Li P, Gu A, Li Y, Ma D. An Antisense Long Non-Coding RNA, LncRsn, Is Involved in Sexual Reproduction and Full Virulence in Fusarium graminearum. J Fungi (Basel) 2024; 10:692. [PMID: 39452644 PMCID: PMC11508260 DOI: 10.3390/jof10100692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/28/2024] [Accepted: 09/29/2024] [Indexed: 10/26/2024] Open
Abstract
Fusarium head blight (FHB), primarily caused by Fusarium graminearum, is a devastating crop disease that leads to significant declines in wheat yield and quality worldwide. Long non-coding RNAs (lncRNAs) are found to play significant functions in various biological processes, but their regulatory functions in the sexual reproduction and pathogenicity of F. graminearum have not been studied extensively. This study identified an antisense lncRNA, named lncRsn, located in the transcription initiation site region between the 5'-flanking gene FgSna and the 3'-flanking gene FgPta. A deletion mutant of lncRsn (ΔlncRsn) was constructed through homologous recombination. ΔlncRsn exhibited huge reductions in pathogen and sexual reproduction. Additionally, the deletion of lncRsn disrupted the biosynthesis of deoxynivalenol (DON) and impaired the formation of infection structures. RT-qPCR analysis reveals that lncRsn may negatively regulate the transcription of the target gene FgSna. This study found that lncRsn plays an important role in sexual and asexual reproduction, pathogenicity, virulence, osmotic stress, and cell wall integrity (CWI) in F. graminearum. Further characterization of pathogenesis-related genes and the reaction between lncRsn and protein-coding genes will aid in developing novel approaches for controlling F. graminearum diseases.
Collapse
Affiliation(s)
- Zhizhen Fu
- Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, College of Agriculture, Yangtze University, Jingzhou 434025, China; (Z.F.); (Y.C.); (H.P.); (X.W.); (P.L.)
| | - Yanjie Chen
- Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, College of Agriculture, Yangtze University, Jingzhou 434025, China; (Z.F.); (Y.C.); (H.P.); (X.W.); (P.L.)
| | - Gaolei Cai
- Shiyan Academy of Agricultural Sciences, Shiyan 442000, China;
| | - Huijuan Peng
- Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, College of Agriculture, Yangtze University, Jingzhou 434025, China; (Z.F.); (Y.C.); (H.P.); (X.W.); (P.L.)
| | - Xiaoyu Wang
- Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, College of Agriculture, Yangtze University, Jingzhou 434025, China; (Z.F.); (Y.C.); (H.P.); (X.W.); (P.L.)
| | - Ping Li
- Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, College of Agriculture, Yangtze University, Jingzhou 434025, China; (Z.F.); (Y.C.); (H.P.); (X.W.); (P.L.)
| | - Aiguo Gu
- Jiangsu Product Quality Testing & Inspection Institute, 5 Guanghua Street, Nanjing 210007, China;
| | - Yanli Li
- Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, College of Agriculture, Yangtze University, Jingzhou 434025, China; (Z.F.); (Y.C.); (H.P.); (X.W.); (P.L.)
| | - Dongfang Ma
- Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, College of Agriculture, Yangtze University, Jingzhou 434025, China; (Z.F.); (Y.C.); (H.P.); (X.W.); (P.L.)
| |
Collapse
|
4
|
Nie D, Zhu X, Liu M, Cheng M, Fan K, Zhao Z, Huang Q, Zhang X, Han Z. Molecularly imprinted polymer-based electrochemical sensor for rapid detection of masked deoxynivalenol with Mn-doped CeO 2 nanozyme as signal amplifier. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135366. [PMID: 39088943 DOI: 10.1016/j.jhazmat.2024.135366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/16/2024] [Accepted: 07/27/2024] [Indexed: 08/03/2024]
Abstract
Deoxynivalenol-3-glucoside (D3G), the masked form of the important mycotoxin deoxynivalenol (DON), displays potential toxicity but is difficult to control owing to the lack of rapid detection methods. Herein, an innovative molecularly imprinted polymer (MIP)-based electrochemical sensor was developed for the rapid detection of D3G. MIP, an efficient recognition element for D3G, was electropolymerized using o-phenylenediamine based on a surface functional monomer-directing strategy for the first time. CeO2, which contains both Ce3+ and Ce4+ oxidation states, was introduced as a nanozyme to catalyze H2O2 reduction, while Mn doping generated more oxygen vacancies and considerably improved the catalytic activity. Mn-CeO2 also served as a promising substrate material because of its large surface area and excellent conductivity. Under optimal conditions, a good linear relationship was observed for D3G detection over the concentration range of 0.01-50 ng/mL. The proposed sensor could detect D3G down to 0.003 ng/mL with excellent selectivity, even distinguishing its precursor DON in complex samples. The sensor exhibited acceptable stability with high reproducibility and accuracy, and could successfully determine D3G in grain samples. To the best of our knowledge, this is the first electrochemical sensing platform for rapid D3G detection that can easily be expanded to other masked mycotoxins.
Collapse
Affiliation(s)
- Dongxia Nie
- Institute for Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, 1000 Jingqi Road, Shanghai 201403, China
| | - Xueting Zhu
- Institute for Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, 1000 Jingqi Road, Shanghai 201403, China
| | - Minghui Liu
- Institute for Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, 1000 Jingqi Road, Shanghai 201403, China
| | - Meng Cheng
- Institute for Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, 1000 Jingqi Road, Shanghai 201403, China
| | - Kai Fan
- Institute for Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, 1000 Jingqi Road, Shanghai 201403, China
| | - Zhihui Zhao
- Institute for Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, 1000 Jingqi Road, Shanghai 201403, China
| | - Qingwen Huang
- Institute for Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, 1000 Jingqi Road, Shanghai 201403, China
| | - Xiaolin Zhang
- COFCO Nutrition and Health Research Institute, Future Science and Technology Park, South Road No.4 Beiqijia, ChangPing, Beijing 102209, China
| | - Zheng Han
- Institute for Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, 1000 Jingqi Road, Shanghai 201403, China.
| |
Collapse
|
5
|
Zou J, Du Y, Xing X, Huang P, Wang Z, Liu H, Wang Q, Xu J. Hyphal editing of the conserved premature stop codon in CHE1 is stimulated by oxidative stress in Fusarium graminearum. STRESS BIOLOGY 2024; 4:30. [PMID: 38864932 PMCID: PMC11169179 DOI: 10.1007/s44154-024-00174-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/10/2024] [Indexed: 06/13/2024]
Abstract
Although genome-wide A-to-I editing mediated by adenosine-deaminase-acting-on-tRNA (ADAT) occurs during sexual reproduction in the presence of stage-specific cofactors, RNA editing is not known to occur during vegetative growth in filamentous fungi. Here we identified 33 A-to-I RNA editing events in vegetative hyphae of Fusarium graminearum and functionally characterized one conserved hyphal-editing site. Similar to ADAT-mediated editing during sexual reproduction, majority of hyphal-editing sites are in coding sequences and nonsynonymous, and have strong preference for U at -1 position and hairpin loops. Editing at TA437G, one of the hyphal-specific editing sites, is a premature stop codon correction (PSC) event that enables CHE1 gene to encode a full-length zinc fingertranscription factor. Manual annotations showed that this PSC site is conserved in CHE1 orthologs from closely-related Fusarium species. Whereas the che1 deletion and CHE1TAA (G438 to A) mutants had no detectable phenotype, the CHE1TGG (A437 to G) mutant was defective in hyphal growth, conidiation, sexual reproduction, and plant infection. However, the CHE1TGG mutant was increased in tolerance against oxidative stress and editing of TA437G in CHE1 was stimulated by H2O2 treatment in F. graminearum. These results indicate that fixation of the premature stop codon in CHE1 has a fitness cost on normal hyphal growth and reproduction but provides a benefit to tolerance against oxidative stress. Taken together, A-to-I editing events, although rare (not genome-wide), occur during vegetative growth and editing in CHE1 plays a role in response to oxidative stress in F. graminearum and likely in other fungal pathogens.
Collapse
Affiliation(s)
- Jingwen Zou
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yanfei Du
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiaoxing Xing
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Panpan Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zeyi Wang
- Dept. of Botany and Plant Pathology, Purdue University, West Lafayette, 47907, IN, USA
| | - Huiquan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qinhu Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - JinRong Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China.
- Dept. of Botany and Plant Pathology, Purdue University, West Lafayette, 47907, IN, USA.
| |
Collapse
|
6
|
Niu G, Yang Q, Liao Y, Sun D, Tang Z, Wang G, Xu M, Wang C, Kang J. Advances in Understanding Fusarium graminearum: Genes Involved in the Regulation of Sexual Development, Pathogenesis, and Deoxynivalenol Biosynthesis. Genes (Basel) 2024; 15:475. [PMID: 38674409 PMCID: PMC11050156 DOI: 10.3390/genes15040475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
The wheat head blight disease caused by Fusarium graminearum is a major concern for food security and the health of both humans and animals. As a pathogenic microorganism, F. graminearum produces virulence factors during infection to increase pathogenicity, including various macromolecular and small molecular compounds. Among these virulence factors, secreted proteins and deoxynivalenol (DON) are important weapons for the expansion and colonization of F. graminearum. Besides the presence of virulence factors, sexual reproduction is also crucial for the infection process of F. graminearum and is indispensable for the emergence and spread of wheat head blight. Over the last ten years, there have been notable breakthroughs in researching the virulence factors and sexual reproduction of F. graminearum. This review aims to analyze the research progress of sexual reproduction, secreted proteins, and DON of F. graminearum, emphasizing the regulation of sexual reproduction and DON synthesis. We also discuss the application of new gene engineering technologies in the prevention and control of wheat head blight.
Collapse
Affiliation(s)
- Gang Niu
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (G.N.); (Q.Y.); (Y.L.); (D.S.); (Z.T.); (G.W.); (M.X.)
| | - Qing Yang
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (G.N.); (Q.Y.); (Y.L.); (D.S.); (Z.T.); (G.W.); (M.X.)
| | - Yihui Liao
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (G.N.); (Q.Y.); (Y.L.); (D.S.); (Z.T.); (G.W.); (M.X.)
| | - Daiyuan Sun
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (G.N.); (Q.Y.); (Y.L.); (D.S.); (Z.T.); (G.W.); (M.X.)
| | - Zhe Tang
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (G.N.); (Q.Y.); (Y.L.); (D.S.); (Z.T.); (G.W.); (M.X.)
| | - Guanghui Wang
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (G.N.); (Q.Y.); (Y.L.); (D.S.); (Z.T.); (G.W.); (M.X.)
| | - Ming Xu
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (G.N.); (Q.Y.); (Y.L.); (D.S.); (Z.T.); (G.W.); (M.X.)
| | - Chenfang Wang
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (G.N.); (Q.Y.); (Y.L.); (D.S.); (Z.T.); (G.W.); (M.X.)
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Jiangang Kang
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (G.N.); (Q.Y.); (Y.L.); (D.S.); (Z.T.); (G.W.); (M.X.)
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|