1
|
Haas G, Seiler M, Nguyen J, Troxler L, Pennarun S, Lefebvre E, Benamrouche Y, Loizeau L, Reinbolt C, Liang M, Lin X, Li W, Xia Z, Marques JT, Imler JL. Regulation of detoxifying enzymes expression and restriction of picorna-like virus infection by natural polysaccharide extracts in Drosophila cells. Virology 2025; 607:110513. [PMID: 40163969 DOI: 10.1016/j.virol.2025.110513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/11/2025] [Accepted: 03/24/2025] [Indexed: 04/02/2025]
Abstract
The world is currently witnessing a rise in viral infections, while the availability of antiviral drugs remains limited. Traditional Chinese medicine (TCM) has historically served as a valuable source of novel compounds for disease treatment. In this study, we assessed the antiviral potential of various TCM compounds using Drosophila melanogaster as a model organism. Our findings reveal that natural polysaccharide extracts, prepared from 10 commonly used medicinal herbs or fungi, exhibit antiviral activity against two picorna-like viruses. Importantly, the antiviral effect is not directly attributable to the compound itself but is instead mediated by cellular responses induced by treatment with the extract. We observed that the polysaccharide extract triggers a broad transcriptional response, which partially overlaps with NF-κB pathway activation in Drosophila. However, the antiviral activity of the extract was independent of classical innate immune pathways, such as RNA interference or NF-κB signaling. Instead, the extract appears to uniquely stimulate detoxification pathways, including upregulation of cytochrome P450 and glutathione S-transferase genes, which correlates with its antiviral effects.
Collapse
Affiliation(s)
- Gabrielle Haas
- Université de Strasbourg, CNRS UPR9022, 67084, Strasbourg, France
| | - Mélodie Seiler
- Université de Strasbourg, CNRS UPR9022, 67084, Strasbourg, France
| | - Jenny Nguyen
- Université de Strasbourg, CNRS UPR9022, 67084, Strasbourg, France
| | - Laurent Troxler
- Université de Strasbourg, CNRS UPR9022, 67084, Strasbourg, France
| | - Samuel Pennarun
- Université de Strasbourg, CNRS UPR9022, 67084, Strasbourg, France
| | - Elise Lefebvre
- Université de Strasbourg, CNRS UPR9022, 67084, Strasbourg, France
| | | | - Loriane Loizeau
- Université de Strasbourg, CNRS UPR9022, 67084, Strasbourg, France
| | - Cody Reinbolt
- Université de Strasbourg, CNRS UPR9022, 67084, Strasbourg, France
| | - Ming Liang
- Infinitus (China) Company Ltd., Guangzhou, China
| | | | - Wenzhi Li
- Infinitus (China) Company Ltd., Guangzhou, China
| | - Zumeng Xia
- Infinitus (China) Company Ltd., Guangzhou, China
| | - Joao T Marques
- Université de Strasbourg, INSERM U1257, CNRS UPR9022, 67084, Strasbourg, France; Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, Brazil
| | - Jean-Luc Imler
- Université de Strasbourg, CNRS UPR9022, 67084, Strasbourg, France.
| |
Collapse
|
2
|
Dixon LK. Advances in African swine fever virus molecular biology and host interactions contributing to new tools for control. J Virol 2025:e0093224. [PMID: 40340396 DOI: 10.1128/jvi.00932-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2025] Open
Abstract
African swine fever virus (ASFV) causes a frequently fatal hemorrhagic disease in domestic pigs and wild boar. The spread from Africa to Georgia in 2007 initiated a pandemic affecting many European and most Asian countries. This has had a very high socio-economic impact and threatens global food security. The virus is a large, complex, cytoplasmic DNA virus, the only member of the Asfarviridae family and codes for 170-190 proteins. Many of these have unknown functions and do not resemble other viruses or host proteins. This complexity has hindered the development of vaccines and other tools for control. The intensity of research has increased since the spread of ASFV in Europe and Asia, leading to rapid advances in knowledge. This review summarizes recent research, including the determination by cryogenic electron microscopy of the virus capsid structure and virion proteome. Novel information on the virus replication cycle, including mechanisms of virus entry into cells and the identification of host endosomal proteins important for entry, is summarized. Multiple, novel virus immune evasion proteins and their targets in the type I interferon response and inflammation pathways have been identified. The potential for the application of this knowledge to developing novel control tools, including modified live vaccines and other interventions targeting critical virus processes or host interactions, is discussed.
Collapse
Affiliation(s)
- Linda K Dixon
- The Pirbright Institute, Pirbright, Woking, Surrey, United Kingdom
| |
Collapse
|
3
|
Cai S, Ye J, Zhang Q, Guan T, Zhang G, Zheng Z. Preparation of a new monoclonal antibody against D205R protein of African swine fever virus and identification of its linear antigenic epitope. Int J Biol Macromol 2025; 308:142116. [PMID: 40112994 DOI: 10.1016/j.ijbiomac.2025.142116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 03/04/2025] [Accepted: 03/12/2025] [Indexed: 03/22/2025]
Abstract
African swine fever virus (ASFV), a highly contagious virus with a double-stranded DNA genome, is notorious for causing severe hemorrhagic fever in pigs, often leading to mortality rates as high as 100 %. First identified in Kenya in 1921, the virus has since spread globally, with a significant outbreak in China in 2018, causing extensive economic losses in the swine industry. The D205R protein (pD205R) of ASFV, classified as a non-structural protein, plays a role in the transcription of viral genes and is associated with ASFV RNA polymerase. However, the specific function of this protein remains unclear. To gain a deeper insight into the structure, function, and mechanisms of interaction between pD205R and the host, we successfully expressed the pD205R protein and generated a monoclonal antibody (mAb), designated 3G6G1, targeting this protein. The mAb 3G6G1 can be utilized for indirect immunofluorescence (IFA) and Western blotting (WB) detection of ASFV strains. Through the evaluation of the reactivity of antibodies against a series of truncated pD205R fragments, we identified the epitope recognized by mAb 3G6G1 as residing within the amino acid sequence 96 VLSKKNI 102. Bioinformatics analysis indicated that this antigenic epitope possesses a high antigenic index and is highly conserved. These findings will establish a foundation for further research into the function of the D205R protein and its role in the interaction between ASFV and its host.
Collapse
Affiliation(s)
- Siqi Cai
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong, China
| | - Jinyuan Ye
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, China; Wen's Food Group, Yunfu 527400, China
| | - Qian Zhang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong, China
| | - Tong Guan
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China; Research Center for African Swine Fever Prevention and Control, South China Agricultural University, Guangzhou, China
| | - Guihong Zhang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China; Research Center for African Swine Fever Prevention and Control, South China Agricultural University, Guangzhou, China.
| | - Zezhong Zheng
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong, China; Wen's Food Group, Yunfu 527400, China.
| |
Collapse
|
4
|
Zhu G, Xi F, Zeng W, Zhao Y, Cao W, Liu C, Yang F, Ru Y, Xiao S, Zhang S, Liu H, Tian H, Yang F, Lu B, Sun S, Song H, Sun B, Zhao X, Tang L, Li K, He J, Guo J, Zhu Y, Zhu Z, Sun F, Zheng H. Structural basis of RNA polymerase complexes in African swine fever virus. Nat Commun 2025; 16:501. [PMID: 39779680 PMCID: PMC11711665 DOI: 10.1038/s41467-024-55683-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
African swine fever virus is highly contagious and causes a fatal infectious disease in pigs, resulting in a significant global impact on pork supply. The African swine fever virus RNA polymerase serves as a crucial multifunctional protein complex responsible for genome transcription and regulation. Therefore, it is essential to investigate its structural and functional characteristics for the prevention and control of African swine fever. Here, we determine the structures of endogenous African swine fever virus RNA polymerase in both nucleic acid-free and elongation states. The African swine fever virus RNA polymerase shares similarities with the core of typical RNA polymerases, but possesses a distinct subunit M1249L. Notably, the dynamic binding mode of M1249L with RNA polymerase, along with the C-terminal tail insertion of M1249L in the active center of DNA-RNA scaffold binding, suggests the potential of M1249L to regulate RNA polymerase activity within cells. These results are important for understanding the transcription cycle of the African swine fever virus and for developing antiviral strategies.
Collapse
Grants
- the Fundamental Research Funds for the Central Universities (awarded to H.-X. Zheng and F. Yang), the Open Competition Program of Top Ten Critical Priorities of Agricultural Science and Technology Innovation for the 14th Five-Year Plan of Guangdong Province (2024KJ14, awarded to H.-X. Zheng), the China Agriculture Research System of Ministry of Finance and Ministry of Agriculture and Rural Affairs (CARS-35, awarded to H.-X. Zheng), the Project of National Center of Technology Innovation for Pigs (NCTIP-XD/C03, awarded to H.-X. Zheng), the Major Science and Technology Project of Gansu Province (22ZD6NA001 and 22ZD6NA012, awarded to H.-X. Zheng), and the Innovation Program of Chinese Academy of Agricultural Sciences (CAAS-CSLPDCP-202302 and CAAS-ASTIP-2024-LVRI, awarded to H.-X. Zheng)
- the Joint Research Foundation of Gansu Province (24JRRA813, awarded to G.-L. Zhu)
- the National Key R&D Program of China (2021YFD1800100, awarded to Z.-X. Zhu),the Innovation Group of Gansu Province (23JRRA1515, awarded to J.-J. He; 23JRRA546, awarded to Z.-X. Zhu)
Collapse
Affiliation(s)
- Guoliang Zhu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- African Swine Fever Regional Laboratory of China, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Fei Xi
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Wuxia Zeng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- African Swine Fever Regional Laboratory of China, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yifei Zhao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Weijun Cao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- African Swine Fever Regional Laboratory of China, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Chen Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Fan Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- African Swine Fever Regional Laboratory of China, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yi Ru
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- African Swine Fever Regional Laboratory of China, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Shuqi Xiao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Shilei Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- African Swine Fever Regional Laboratory of China, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Huanan Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- African Swine Fever Regional Laboratory of China, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Hong Tian
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- African Swine Fever Regional Laboratory of China, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Fayu Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- African Swine Fever Regional Laboratory of China, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Biao Lu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Shukai Sun
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Haiyang Song
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Bozhang Sun
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiaoyi Zhao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Lijie Tang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Kangli Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jijun He
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jianhong Guo
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- African Swine Fever Regional Laboratory of China, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yun Zhu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
| | - Zixiang Zhu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.
- African Swine Fever Regional Laboratory of China, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.
| | - Fei Sun
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
| | - Haixue Zheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.
- African Swine Fever Regional Laboratory of China, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China.
| |
Collapse
|
5
|
Zhao D, Wang N, Feng X, Zhang Z, Xu K, Zheng T, Yang Y, Li X, Ou X, Zhao R, Rao Z, Bu Z, Chen Y, Wang X. Transcription regulation of African swine fever virus: dual role of M1249L. Nat Commun 2024; 15:10058. [PMID: 39567541 PMCID: PMC11579359 DOI: 10.1038/s41467-024-54461-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 11/12/2024] [Indexed: 11/22/2024] Open
Abstract
African swine fever virus (ASFV), which poses significant risks to the global economy, encodes a unique host-independent transcription system. This system comprises an eight-subunit RNA polymerase (vRNAP), temporally expressed transcription factors and transcript associated proteins, facilitating cross-species transmission via intermediate host. The protein composition of the virion and the presence of transcription factors in virus genome suggest existence of distinct transcription systems during viral infection. However, the precise mechanisms of transcription regulation remain elusive. Through analyses of dynamic transcriptome, vRNAP-associated components and cell-based assay, the critical role of M1249L in viral transcription regulation has been highlighted. Atomic-resolution structures of vRNAP-M1249L supercomplex, exhibiting a variety of conformations, have uncovered the dual functions of M1249L. During early transcription, M1249L could serve as multiple temporary transcription factors with C-terminal domain acting as a switcher for activation/inactivation, while during late transcription it aids in the packaging of the transcription machinery. The structural and functional characteristics of M1249L underscore its vital roles in ASFV transcription, packaging, and capsid assembly, presenting novel opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Dongming Zhao
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Nan Wang
- National Laboratory of Biomacromolecules, Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xiaoying Feng
- National Laboratory of Biomacromolecules, Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhenjiang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Kongen Xu
- National Laboratory of Biomacromolecules, Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tao Zheng
- National Laboratory of Biomacromolecules, Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yunge Yang
- National Laboratory of Biomacromolecules, Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xuemei Li
- National Laboratory of Biomacromolecules, Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xianjin Ou
- National Laboratory of Biomacromolecules, Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Rui Zhao
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zihe Rao
- National Laboratory of Biomacromolecules, Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| | - Zhigao Bu
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
| | - Yutao Chen
- National Laboratory of Biomacromolecules, Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| | - Xiangxi Wang
- National Laboratory of Biomacromolecules, Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
6
|
Chen S, Wang T, Luo R, Lu Z, Lan J, Sun Y, Fu Q, Qiu HJ. Genetic Variations of African Swine Fever Virus: Major Challenges and Prospects. Viruses 2024; 16:913. [PMID: 38932205 PMCID: PMC11209373 DOI: 10.3390/v16060913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/26/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
African swine fever (ASF) is a contagious viral disease affecting pigs and wild boars. It typically presents as a hemorrhagic fever but can also manifest in various forms, ranging from acute to asymptomatic. ASF has spread extensively globally, significantly impacting the swine industry. The complex and highly variable character of the ASFV genome makes vaccine development and disease surveillance extremely difficult. The overall trend in ASFV evolution is towards decreased virulence and increased transmissibility. Factors such as gene mutation, viral recombination, and the strain-specificity of virulence-associated genes facilitate viral variations. This review deeply discusses the influence of these factors on viral immune evasion, pathogenicity, and the ensuing complexities encountered in vaccine development, disease detection, and surveillance. The ultimate goal of this review is to thoroughly explore the genetic evolution patterns and variation mechanisms of ASFV, providing a theoretical foundation for advancement in vaccine and diagnostic technologies.
Collapse
Affiliation(s)
- Shengmei Chen
- College of Life Science and Engineering, Foshan University, Foshan 528231, China
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Tao Wang
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Rui Luo
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Zhanhao Lu
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Jing Lan
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
- College of Animal Sciences, Yangtze University, Jingzhou 434023, China
| | - Yuan Sun
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Qiang Fu
- College of Life Science and Engineering, Foshan University, Foshan 528231, China
| | - Hua-Ji Qiu
- College of Life Science and Engineering, Foshan University, Foshan 528231, China
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
- College of Animal Sciences, Yangtze University, Jingzhou 434023, China
| |
Collapse
|
7
|
Cackett G, Sýkora M, Portugal R, Dulson C, Dixon L, Werner F. Transcription termination and readthrough in African swine fever virus. Front Immunol 2024; 15:1350267. [PMID: 38545109 PMCID: PMC10965686 DOI: 10.3389/fimmu.2024.1350267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/30/2024] [Indexed: 04/13/2024] Open
Abstract
Introduction African swine fever virus (ASFV) is a nucleocytoplasmic large DNA virus (NCLDV) that encodes its own host-like RNA polymerase (RNAP) and factors required to produce mature mRNA. The formation of accurate mRNA 3' ends by ASFV RNAP depends on transcription termination, likely enabled by a combination of sequence motifs and transcription factors, although these are poorly understood. The termination of any RNAP is rarely 100% efficient, and the transcriptional "readthrough" at terminators can generate long mRNAs which may interfere with the expression of downstream genes. ASFV transcriptome analyses reveal a landscape of heterogeneous mRNA 3' termini, likely a combination of bona fide termination sites and the result of mRNA degradation and processing. While short-read sequencing (SRS) like 3' RNA-seq indicates an accumulation of mRNA 3' ends at specific sites, it cannot inform about which promoters and transcription start sites (TSSs) directed their synthesis, i.e., information about the complete and unprocessed mRNAs at nucleotide resolution. Methods Here, we report a rigorous analysis of full-length ASFV transcripts using long-read sequencing (LRS). We systematically compared transcription termination sites predicted from SRS 3' RNA-seq with 3' ends mapped by LRS during early and late infection. Results Using in-vitro transcription assays, we show that recombinant ASFV RNAP terminates transcription at polyT stretches in the non-template strand, similar to the archaeal RNAP or eukaryotic RNAPIII, unaided by secondary RNA structures or predicted viral termination factors. Our results cement this T-rich motif (U-rich in the RNA) as a universal transcription termination signal in ASFV. Many genes share the usage of the same terminators, while genes can also use a range of terminators to generate transcript isoforms varying enormously in length. A key factor in the latter phenomenon is the highly abundant terminator readthrough we observed, which is more prevalent during late compared with early infection. Discussion This indicates that ASFV mRNAs under the control of late gene promoters utilize different termination mechanisms and factors to early promoters and/or that cellular factors influence the viral transcriptome landscape differently during the late stages of infection.
Collapse
Affiliation(s)
- Gwenny Cackett
- Institute for Structural and Molecular Biology, University College London, London, United Kingdom
| | - Michal Sýkora
- Institute for Structural and Molecular Biology, University College London, London, United Kingdom
| | | | - Christopher Dulson
- Institute for Structural and Molecular Biology, University College London, London, United Kingdom
| | - Linda Dixon
- Pirbright Institute, Pirbright, Surrey, United Kingdom
| | - Finn Werner
- Institute for Structural and Molecular Biology, University College London, London, United Kingdom
| |
Collapse
|