1
|
Ning T, Cao P, Yang J, Xu T, Yu D, Li T, Wang T, Hu C, Liu X, Shi X, Xu G. Constructing Built-In Electric Field in Hierarchical-Flower Heterostructure for High-Performance Serum Metabolic Assay. Anal Chem 2025. [PMID: 40393779 DOI: 10.1021/acs.analchem.5c01100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
Laser desorption ionization mass spectrometry (LDI-MS) is a critical platform for high-throughput nontargeted metabolomics analysis in clinical diagnosis. However, traditional organic matrices inherently suffer from background interference in the low-mass range and exhibit low sensitivity for small molecule detections. Heterostructure has been regarded as an effective structure for high charge carrier mobility and tunable band gaps, which can enhance ion transfer efficiency and photothermal conversion during the LDI-MS process. In this work, Fe3O4/MoS2 nanoparticles with hierarchical-flower heterostructure were facilely synthesized as a novel matrix of LDI-MS to enhance the detection of serum metabolic profilings (SMPs), which was further applied for the early diagnosis of lung cancer. The heterostructure of Fe3O4/MoS2 can construct a built-in electric field to inhibit electron-hole recombination. Additionally, its abundant defect structures synergistically accelerate interfacial charge transfer, thereby promoting desorption and ionization processes. As a result, the newly developed Fe3O4/MoS2 nanomatrix demonstrated exceptional performance in LDI-MS, significantly surpassing the conventional matrices by at least 1 order of magnitude. Subsequently, information-rich SMPs were successfully obtained from merely 1 μL of serum. More than 90% of the metabolic features exhibited RSDs below 30% in quality control samples, highlighting the high reproducibility of our method for clinical applications. Furthermore, hundreds of lung cancer patients and healthy controls can be clearly distinguished based on their SMPs by using appropriate machine learning models. Finally, two key metabolites associated with lung cancer were identified as potential biomarkers, which showed promising diagnostic capability with an AUC value of 0.824 in the validation set. Taken together, Fe3O4/MoS2 nanoparticles emerge as a promising nanomatrix with superior LDI efficiency and the developed LDI-MS platform proves to be a powerful tool for serum metabolic profiling, offering significant potential for lung cancer diagnosis.
Collapse
Affiliation(s)
- Tao Ning
- State Key Laboratory of Medical Proteomics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Penglong Cao
- The First Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Jun Yang
- State Key Laboratory of Medical Proteomics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianrun Xu
- State Key Laboratory of Medical Proteomics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Di Yu
- State Key Laboratory of Medical Proteomics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting Li
- State Key Laboratory of Medical Proteomics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting Wang
- State Key Laboratory of Medical Proteomics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
| | - Chunxiu Hu
- State Key Laboratory of Medical Proteomics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyu Liu
- State Key Laboratory of Medical Proteomics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xianzhe Shi
- State Key Laboratory of Medical Proteomics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guowang Xu
- State Key Laboratory of Medical Proteomics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Lu T, Zheng W, Lei Y, Hu F, Li M, Guo LH. Distinctively Different Effects of Perfluorobutanoic Acid and Perfluorononanoic Acid on Zebrafish Sex Differentiation and Androgen Receptor Activity. ENVIRONMENT & HEALTH (WASHINGTON, D.C.) 2025; 3:482-492. [PMID: 40400555 PMCID: PMC12090007 DOI: 10.1021/envhealth.4c00240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/31/2024] [Accepted: 01/03/2025] [Indexed: 05/23/2025]
Abstract
With the prohibition of perfluorooctanoic acid (PFOA), the emergence of alternative perfluoroalkyl substances such as perfluorobutanonic acid (PFBA) and perfluorononanoic acid (PFNA) in various environmental matrices has led to concerns about their adverse effects on humans and biota. This study aims to investigate the reproductive and developmental toxicity of PFBA and PFNA by combined in vivo, in vitro, and in silico approaches. Examination of juvenile zebrafish exposed to PFBA at environmental concentrations by histopathology, sex hormone, and gene expression revealed accelerated development of zebrafish toward males, while exposure to PFNA during sex differentiation resulted in feminization. In accordance with the in vivo results, PFBA activated the androgen receptor (AR) signaling pathway, but PFNA inhibited it in both prostate cancer cell proliferation and luciferase reporter gene assays. Similarly, the differential binding mode of the two chemicals to AR was shown in the molecular docking analysis, with PFBA exhibiting higher potency for the agonist conformation and PFNA favoring the antagonistic conformation. Together, these results suggest that, while PFNA exhibited similar effects on sex differentiation and AR activity as PFOA, PFBA showed distinctive effects and deserves particular attention and further investigation.
Collapse
Affiliation(s)
- Tingyu Lu
- School
of Environment, Hangzhou Institute for Advanced Study, University of the Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
- College
of Life Science, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Wei Zheng
- College
of Life Science, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Yuyang Lei
- College
of Life Science, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Fanglin Hu
- College
of Life Science, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Minjie Li
- College
of Energy Environment and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Liang-Hong Guo
- School
of Environment, Hangzhou Institute for Advanced Study, University of the Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
- College
of Energy Environment and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China
| |
Collapse
|
3
|
Dong C, Yu S, Deng S, Xia Z, Rigoberto FC, Sultan M, Xu X, Jin B, Guan Q, Sun Z, Xia Y. Pesticide exposure induces risks of gestational anemia by maternal gut microbiota: A prospective cohort study. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138465. [PMID: 40339373 DOI: 10.1016/j.jhazmat.2025.138465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 04/15/2025] [Accepted: 04/30/2025] [Indexed: 05/10/2025]
Abstract
Gut microbiota regulates host hematopoiesis, with notable alterations observed in individuals with gestational anemia (GA). Pregnancy-induced susceptibility to environmental stressors, including widespread pesticide residuals, may disrupt gut microbiota, further contributing to the development of GA. This study sought to investigate population-level associations between pesticide exposure and GA, with a focus on the mediating role of gut microbiota. Pregnant women were prospectively recruited with blood and stool samples collected in the second trimester. Red blood cell (RBC) count and hemoglobin (Hb) were assessed in the second and third trimesters. GA was diagnosed in 22.7 % of participants during the second trimester and 29.8 % during the third trimester. Robust associations were found between serum pesticides, such as atrazine and clomazone, and an increased risk of GA and reduced Hb and RBC count, both at a single time point and longitudinally. Pesticide exposure was linked to altered microbial Shannon index, with 24 significant associations identified between pesticides and individual taxa, nearly half of which involved Roseburia. Furthermore, both Shannon index and the Firmicutes/Bacteroidetes (F/B) ratio were negatively associated with RBC count. A total of 20 taxa showed associations with GA and hematological parameters. Finally, mediation analysis demonstrated that Shannon index and Roseburia mediated the relationships of pesticide exposure with RBC count and GA, respectively. These findings not only highlight the anemia-inducing effects of pesticides, but also inform microbiota-based interventions for managing GA and maternal health.
Collapse
Affiliation(s)
- Chao Dong
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Shumin Yu
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Siting Deng
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Ziye Xia
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Flores Carpintero Rigoberto
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Mazhar Sultan
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xiaoyu Xu
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Bowen Jin
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Quanquan Guan
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Zhibin Sun
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing 210029, China.
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
4
|
Li P, Zhu B, Liu Y, Huang K, Fu J, Zhang H, Fu J, Jiang G. Enhancing the Utilization of Nontarget Screening to Holistically Identify Chemical Exposure Fingerprints in Human Blood Biomonitoring and Epidemiological Study. ENVIRONMENT & HEALTH (WASHINGTON, D.C.) 2025; 3:334-337. [PMID: 40270533 PMCID: PMC12012660 DOI: 10.1021/envhealth.4c00256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 12/25/2024] [Indexed: 04/25/2025]
Affiliation(s)
- Pengyang Li
- School
of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Bao Zhu
- School
of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yin Liu
- School
of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Kai Huang
- School
of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Jie Fu
- School
of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Haiyan Zhang
- School
of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Jianjie Fu
- School
of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- Hubei
Key Laboratory of Environmental and Health Effects of Persistent Toxic
Substances, School of Environment and Health, Jianghan University, 430056 Wuhan, China
| | - Guibin Jiang
- School
of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- Hubei
Key Laboratory of Environmental and Health Effects of Persistent Toxic
Substances, School of Environment and Health, Jianghan University, 430056 Wuhan, China
| |
Collapse
|
5
|
Chen M, Zhang T, Wang S. Prompting large language models to extract chemical‒disease relation precisely and comprehensively at the document level: an evaluation study. PLoS One 2025; 20:e0320123. [PMID: 40198724 PMCID: PMC11978106 DOI: 10.1371/journal.pone.0320123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 02/13/2025] [Indexed: 04/10/2025] Open
Abstract
Given the scarcity of annotated data, current deep learning methods face challenges in the field of document-level chemical-disease relation extraction, making it difficult to achieve precise relation extraction capable of identifying relation types and comprehensive extraction tasks that identify relation-related factors. This study tests the abilities of three large language models (LLMs), GPT3.5, GPT4.0, and Claude-opus, to perform precise and comprehensive extraction in document-level chemical-disease relation extraction on a self-constructed dataset. Firstly, based on the task characteristics, this study designs six workflows for precise extraction and five workflows for comprehensive extraction using prompting engineering strategies. The characteristics of the extraction process are analyzed through the performance differences under different workflows. Secondly, this study analyzes the content bias in LLMs extraction by examining the extraction effectiveness of different workflows on different types of content. Finally, this study analyzes the error characteristics of extracting incorrect examples by the LLMs. The experimental results show that: (1) The LLMs demonstrate good extraction capabilities, achieving the highest F1 scores of 87% and 73% respectively in the tasks of precise extraction and comprehensive extraction; (2) In the extraction process, the LLMs exhibit a certain degree of stubbornness, with limited effectiveness of prompting engineering strategies; (3) In terms of extraction content, the LLMs show a content bias, with stronger abilities to identify positive relations such as induction and acceleration; (4) The essence of extraction errors lies in the LLMs' misunderstanding of the implicit meanings in biomedical texts. This study provides practical workflows for precise and comprehensive extraction of document-level chemical-disease relations and also indicates that optimizing training data is the key to building more efficient and accurate extraction methods in the future.
Collapse
Affiliation(s)
- Mei Chen
- Key Laboratory of Ethnic Language Intelligent Analysis and Security Governance of MOE, Minzu University of China, Beijing 100081, China
- School of Information Engineering, Minzu University of China, Beijing 100081, China
| | - Tingting Zhang
- Key Laboratory of Ethnic Language Intelligent Analysis and Security Governance of MOE, Minzu University of China, Beijing 100081, China
- School of Information Engineering, Minzu University of China, Beijing 100081, China
| | - Shibin Wang
- Key Laboratory of Ethnic Language Intelligent Analysis and Security Governance of MOE, Minzu University of China, Beijing 100081, China
- School of Information Engineering, Minzu University of China, Beijing 100081, China
| |
Collapse
|
6
|
You M, Zhou L, Wu F, Zhang L, Zhu SX, Zhang HX. Probiotics for the treatment of hyperlipidemia: Focus on gut-liver axis and lipid metabolism. Pharmacol Res 2025; 214:107694. [PMID: 40068270 DOI: 10.1016/j.phrs.2025.107694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/19/2025] [Accepted: 03/07/2025] [Indexed: 03/23/2025]
Abstract
Hyperlipidemia, a metabolic disorder marked by dysregulated lipid metabolism, is a key contributor to the onset and progression of various chronic diseases. Maintaining normal lipid metabolism is critical for health, as disruptions lead to dyslipidemia. The gut and liver play central roles in lipid homeostasis, with their bidirectional communication, known as the gut-liver axis, modulated by bile acids (BAs), gut microbiota, and their metabolites. BAs are essential for regulating their own synthesis, lipid metabolism, and anti-inflammatory responses, primarily through the farnesoid X receptor (FXR) and Takeda G protein-coupled receptor 5 (TGR5). Available evidence suggests that high-fat diet-induced the gut microbiota dysbiosis can induce "leaky gut," allowing toxic microbial metabolites to enter the liver via portal circulation, triggering liver inflammation and lipid metabolism disturbances, ultimately leading to hyperlipidemia. Extensive studies have highlighted the roles of probiotics and Traditional Chinese Medicine (TCM) in restoring gut-liver axis balance and modulating lipid metabolism through regulating the levels of lipopolysaccharides, short-chain fatty acids, and BAs. However, the therapeutic potential of probiotics and TCM for hyperlipidemia remains unclear. Here, firstly, we explore the intricate interplay among gut microbiota and metabolites, lipid metabolism, gut-liver axis, and hyperlipidemia. Secondly, we summarize the mechanisms by which probiotics and TCM can alleviate hyperlipidemia by altering the composition of gut microbiota and regulating lipid metabolism via the gut-liver axis. Finally, we emphasize that more clinical trials of probiotics and TCM are necessary to examine their effects on lipid metabolism and hyperlipidemia.
Collapse
Affiliation(s)
- Min You
- School of Medicine, Jianghan University, Wuhan, Hubei, China; Institute of Acupuncture and Moxibustion, Jianghan University, Wuhan, Hubei, China
| | - Li Zhou
- School of Medicine, Jianghan University, Wuhan, Hubei, China; Institute of Acupuncture and Moxibustion, Jianghan University, Wuhan, Hubei, China
| | - Fan Wu
- School of Medicine, Jianghan University, Wuhan, Hubei, China; Institute of Acupuncture and Moxibustion, Jianghan University, Wuhan, Hubei, China
| | - Lei Zhang
- School of Medicine, Jianghan University, Wuhan, Hubei, China; Institute of Acupuncture and Moxibustion, Jianghan University, Wuhan, Hubei, China
| | - Shu-Xiu Zhu
- School of Medicine, Jianghan University, Wuhan, Hubei, China; Institute of Acupuncture and Moxibustion, Jianghan University, Wuhan, Hubei, China.
| | - Hong-Xing Zhang
- School of Medicine, Jianghan University, Wuhan, Hubei, China; Institute of Acupuncture and Moxibustion, Jianghan University, Wuhan, Hubei, China.
| |
Collapse
|
7
|
Yuan KY, Gu YH, Pei YH, Yu SY, Li TZ, Feng T, Liu Y, Tian J, Miao X, Xiong J, Hu M, Yuan BF. Comprehensive analysis of transplacental transfer of environmental pollutants detected in paired maternal and cord serums. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:136970. [PMID: 39740555 DOI: 10.1016/j.jhazmat.2024.136970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/19/2024] [Accepted: 12/21/2024] [Indexed: 01/02/2025]
Abstract
Prenatal exposure to hazardous environmental pollutants is a critical global concern due to their confirmed presence in umbilical cord blood, indicating the ability of pollutants to cross the placental barrier and expose the fetus to harmful compounds. However, the transplacental transfer efficiencies (TTEs) of many pollutants remain underexplored. Herein, we developed a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method to quantitatively analyze 91 environmental pollutants, including 13 bisphenols (BPs), 18 organophosphorus flame retardants (OPFRs), 7 brominated and other flame retardants (BFRs), 34 phthalates (PAEs), and 19 per- and polyfluoroalkyl substances (PFASs), in paired maternal and cord serums. 38 pollutants were detected in serums, including 5 BPs, 13 OPFRs, 2 BFRs, 4 PAEs, and 14 PFASs. Among the detected pollutants, bisphenol A (BPA) exists in the highest concentration (GM: 10.92 ng/mL in maternal serums and 12.66 ng/mL in cord serums), followed by tris(1,3-dichloro-2-propyl) phosphate (TDCIPP), perfluorooctanoic acid (PFOA), and 4,4'-(1,3-phenylenediisopropylidene) bisphenol (BPM). The exposure concentrations of the same type of pollutants were highly correlated between maternal and cord serums. Perfluorohexanoic acid (PFHxA) had the highest TTE value (5.526), while perfluorooctane sulfonic acid (PFOS) had the lowest (0.206). TTEs of PFOS and perfluorononanoic acid (PFNA) were higher for female newborns, whereas TTEs of perfluorohexadecanoic acid (PFHxDA) and perfluorodecane sulfonic acid (PFDS) were higher for male newborns. Moreover, the expression levels of the transplacental transporters ABCA1, ABCC2, ABCC3, ABCC4, ABCG1, SLCO3A1, and SLC22A3 were associated with the transplacental transfer of triphenyl phosphate (TPHP), TDCIPP, di-n-propyl phthalate (DPRP), perfluoroundecanoic acid (PFUnDA), perfluorotridecanoic acid (PFTrDA), and PFOS. Further research is essential to unveil the mechanisms involved in the transplacental transfer of environmental pollutants, ultimately boosting our comprehension of their impact on fetal health and birth outcomes.
Collapse
Affiliation(s)
- Ke-Yu Yuan
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Yao-Hua Gu
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; School of Nursing, Wuhan University, Wuhan 430071, China
| | - Yi-Hao Pei
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Si-Yu Yu
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Tian-Zhou Li
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Tian Feng
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yu Liu
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jianbo Tian
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Xiaoping Miao
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Jun Xiong
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Min Hu
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Bi-Feng Yuan
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China; Hubei Provincial Center for Disease Control and Prevention & NHC Specialty Laboratory of Food Safety Risk Assessment and Standard Development, Wuhan 430079, China; Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
8
|
Zhang J, Jiang W, Tao F, Ding G, Li F, Tian Y, Tao S. Children-specific environmental protection strategies are needed in China. ECO-ENVIRONMENT & HEALTH 2025; 4:100132. [PMID: 40017903 PMCID: PMC11867267 DOI: 10.1016/j.eehl.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/20/2024] [Accepted: 01/06/2025] [Indexed: 03/01/2025]
Abstract
China, home to over 250 million children, has witnessed remarkable economic development in recent decades, successfully addressing many issues related to basic hygiene and sanitation in children, thereby altering the childhood disease spectrum. However, the emergence of environment-related disorders among children has become a significant concern. Despite the rapid accumulation of scientific knowledge on the adverse effects of environmental pollution on child health, the availability of children-specific protective strategies and actions remains alarmingly low. This commentary synthesizes the information and viewpoints presented and discussed by experts at the International Forum on Children's Environmental Health in China. It summarizes the strategies and actions proposed to reduce adverse environmental exposure and protect children's short- and long-term health and a call for more children-centered evidence-action transformation. The following four specific actions were proposed: (1) strengthen health education in parents, caregivers, and children, and personal protection for children; (2) monitor child exposure and environment-related health status; (3) set up child-specific interventions and regulations; and (4) conduct more research on environment exposures and child health.
Collapse
Affiliation(s)
- Jun Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wen Jiang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Fangbiao Tao
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Guodong Ding
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Fei Li
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Ying Tian
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shu Tao
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
9
|
Hou M, Tang S, Zhang F, Fu S, Ding H, Cha Y, Ma X, Shi Y, Cai Y. Chemical exposure in females of childbearing age associated with sex hormones: Evidence from an untargeted exposomic approach. ENVIRONMENT INTERNATIONAL 2025; 197:109362. [PMID: 40054345 DOI: 10.1016/j.envint.2025.109362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 03/01/2025] [Accepted: 03/01/2025] [Indexed: 03/25/2025]
Abstract
Exposure to organic chemicals can cause reproductive hormones disturbance in women. However, there is very limited evidence regarding real-world chemical exposures in reproductive-aged women and their joint effects on sex hormone levels. Here, we applied non-targeted screening workflow based on High-Performance Liquid Chromatography-High-Resolution Mass Spectrometry to investigate the serum chemical exposome of 156 women of childbearing age from Jinan, China. A total of 185 exogenous chemicals from 19 categories were identified in at least 80% of serum samples with confidence levels 1-3, 84 of which have never been reported in humans, and 9 of those showed active effects on multiple biological targets in ToxCast program. A combination of grouped weighted quantile sum regression (GWQS), weighted quantile sum regression (WQS), quantile g calculation (q g-comp), and Bayesian kernel machine regression (BKMR) models indicated significant associations of chemical mixture exposure with progesterone (P4), testosterone (T), and luteinizing hormone (LH)/follicle-stimulating hormone (FSH) ratios, and 7, 4, and 8 priority contributors were identified, respectively, such as fipronil sulfone for P4, dicyclohexyl phthalate for T, and 3-hydroxybenzyl alcohol for LH/FSH. Three chemicals closely related to androgen synthesis and metabolism were proposed. Restricted cubic spline curves showed that 10 of the 28 priority compound-hormone pairs displayed significant non-monotonic exposure-response relationships. This study provides more information on the chemical exposome in Chinese women of childbearing age and has important implications for understanding the effect of chemical co-exposure on sex hormone homeostasis in women.
Collapse
Affiliation(s)
- Minmin Hou
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Song Tang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Feng Zhang
- Environmental Science Research & Design Institute of Zhejiang Province and Key Laboratory of Environmental Pollution Control Technology of Zhejiang Province, Hangzhou, Zhejiang 310007, China
| | - Shanji Fu
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan, Shandong 250012, China.
| | - Hao Ding
- Environmental Science Research & Design Institute of Zhejiang Province and Key Laboratory of Environmental Pollution Control Technology of Zhejiang Province, Hangzhou, Zhejiang 310007, China
| | - Yu'e Cha
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Xiao Ma
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Yali Shi
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yaqi Cai
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Guan P, Wang Y, Chen T, Yang J, Wang X, Xu G, Liu X. Novel Method for Simultaneously Untargeted Metabolome and Targeted Exposome Analysis in One Injection. Anal Chem 2025; 97:3996-4004. [PMID: 39937451 DOI: 10.1021/acs.analchem.4c05565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Serum endogenous metabolites and coexisting exogenous compounds are closely related to human health. Metabolomics often uses high-resolution mass spectrometry (HRMS), but current exposomics studies typically rely on triple quadrupole tandem mass spectrometry due to lower concentrations in the body. As a result, metabolome-exposome-wide association studies (mEWAS) require a combination of untargeted metabolomics and several targeted exposomics methods to measure more exposures, leading to increased time and sample consumption. In this study, a novel method was proposed by leveraging the advantages of recently introduced Zeno MRMHR technology; it allows for the simultaneous acquisition of the metabolome in HRMS and the exposome in multiple reaction monitoring (MRM) modes in one injection. The signal responses for exogenous compounds in MRM were comparable to those of metabolites in HRMS. This method was rigorously validated, and all exogenous standards had relative standard deviations (RSDs) below 20% for intraday and interday repeatability. Over 90% of metabolic features exhibited RSDs below 20% in these assessments. The method also had a broad quantification range, with lower limits of quantification (LLOQ) from 0.1 to 25 ng/mL and higher limits of quantification (HLOQ) from 2.5 to 1000 ng/mL. This approach was demonstratively applied to a type 2 diabetes mellitus cohort to identify serum risk factors and study the metabolome-exposome association. To our knowledge, this study is the first implementation of a unified method for the simultaneous analysis of endogenous metabolites in the untargeted mode and 210 exogenous compounds in the targeted mode in one injection, offering a novel tool for mEWAS research.
Collapse
Affiliation(s)
- Pengwei Guan
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian, China, University of Chinese Academy of Sciences, Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuting Wang
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian, China, University of Chinese Academy of Sciences, Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tiantian Chen
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian, China, University of Chinese Academy of Sciences, Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Yang
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian, China, University of Chinese Academy of Sciences, Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaolin Wang
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian, China, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guowang Xu
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian, China, University of Chinese Academy of Sciences, Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyu Liu
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian, China, University of Chinese Academy of Sciences, Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
11
|
Lei Y, Lei TH, Lu C, Zhang X, Wang F. Wildfire Smoke: Health Effects, Mechanisms, and Mitigation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:21097-21119. [PMID: 39516728 DOI: 10.1021/acs.est.4c06653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Wildfires are becoming more frequent and intense on a global scale, raising concerns about their acute and long-term effects on human health. We conducted a systematic review of the current epidemiological evidence on wildfire health risks and a meta-analysis to investigate the association between wildfire smoke exposure and various health outcomes. We discovered that wildfire smoke increases the risk of premature deaths and respiratory morbidity in the general population. Meta-analysis of cause-specific mortality and morbidity revealed that wildfire smoke had the strongest associations with cardiovascular mortality (RR: 1.018, 95% CI: 1.014-1.021), asthma hospitalization (RR: 1.054, 95% CI: 1.026-1.082), and asthma emergency department visits (RR: 1.117, 95% CI: 1.035-1.204) in the general population. Subgroup analyses of age found that adults and elderly adults were more susceptible to the cardiopulmonary effects of wildfire smoke. Next, we systematically addressed the toxicological mechanisms of wildfire smoke, including direct toxicity, oxidative stress, inflammatory reactions, immune dysregulation, genotoxicity and mutations, skin allergies, inflammation, and others. We discuss wildfire smoke risk mitigation strategies including public health interventions, regulatory measures, and personal actions. We conclude by highlighting current research limitations and future directions for wildfire research, such as elucidating the complex interactions of wildfire smoke components on human health, developing personalized risk assessment tools, and improving resilience and adaptation strategies to mitigate the health effects of wildfires in changing climate.
Collapse
Affiliation(s)
- Ying Lei
- Centre for Molecular Biosciences and Non-Communicable Diseases, School of Safety Science and Technology, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Tze-Huan Lei
- Centre for Molecular Biosciences and Non-Communicable Diseases, School of Safety Science and Technology, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Chan Lu
- XiangYa School of Public Health, Central South University, Changsha 410008, China
| | - Xue Zhang
- Centre for Molecular Biosciences and Non-Communicable Diseases, School of Safety Science and Technology, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Faming Wang
- Centre for Molecular Biosciences and Non-Communicable Diseases, School of Safety Science and Technology, Xi'an University of Science and Technology, Xi'an 710054, China
- Division of Animal and Human Health Engineering, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 30, Leuven 3001, Belgium
| |
Collapse
|
12
|
Lu L, Yan X, Kang G, Qi D, Tang N, Zhu R, Lv C, Bu Y, Zhang H, Zhang S. Unraveling drivers of per- and polyfluoroalkyl substances (PFASs) occurrence and removal in leachate: Insights from disposal methods, geo-climate, and biodegradation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176444. [PMID: 39341254 DOI: 10.1016/j.scitotenv.2024.176444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/19/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024]
Abstract
Leachate is a substantial reservoir of per- and polyfluoroalkyl substances (PFASs) within the environment. However, comprehensive information on the occurrence and fate of PFASs in leachate, particularly in semi-arid and moderate-elevation regions where PFASs may aggregate, is lacking. Here, 13 legacy PFASs were investigated in leachate from landfills and an incineration plant in such area. PFASs concentrations ranged from 6063 to 43,161 ng·L-1 in raw leachate, influenced by leachate origin, climate, wastewater disposal, and especially bacterial communities. Bacteroidetes and Firmicutes were enriched in raw leachate, while Proteobacteria dominated during leachate treatment processes, possibly due to PFASs selection pressure. In addition, top 20 biomarkers indicated the potential of these bacterial indicators for PFASs detection. Tracing analysis also suggested that PFASs in groundwater may have originated from leachate and effluent from wastewater treatment plants. PFASs levels in groundwater showed a significant correlation with the presence of Brevundimonas, Leptothrix, Malikia, and Sphaerotilus. The pathogenic bacterium Brevundimonas suggested potential human health risks, while Leptothrix, Malikia, and Sphaerotilus may serve as indicators of groundwater contamination. This study is believed to provide insights into how to prevent and control PFASs-related environmental pollution.
Collapse
Affiliation(s)
- Leilei Lu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Xiaofei Yan
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Guodong Kang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Dan Qi
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Na Tang
- Hohhot Environmental Information Automatic Monitoring Center, Hohhot 010000, China
| | - Rui Zhu
- Inner Mongolia Autonomous Region Ecological Environment Comprehensive Administrative Law Enforcement Corps, Hohhot 010000, China
| | - Changwei Lv
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010000, China
| | - Yuanqing Bu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Houhu Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China.
| | - Shenghu Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China.
| |
Collapse
|
13
|
Zheng J, Liu S, Yang J, Zheng S, Sun B. Per- and polyfluoroalkyl substances (PFAS) and cancer: Detection methodologies, epidemiological insights, potential carcinogenic mechanisms, and future perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176158. [PMID: 39255941 DOI: 10.1016/j.scitotenv.2024.176158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/01/2024] [Accepted: 09/07/2024] [Indexed: 09/12/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS), known as "forever chemicals," are synthetic chemicals which have been used since the 1940s. Given their remarkable thermostability and chemical stability, PFAS have been widely utilized in commercial products, including textiles, surfactants, food packages, nonstick coatings, and fire-fighting foams. Thus, PFAS are widely distributed worldwide and have been detected in human urine, blood, breast milk, tissues and other substances. Growing concerns over the risks of PFAS, including their toxicity and carcinogenicity, have attracted people's attention. Recent reviews have predominantly emphasized advancements in the detection, adsorption, and degradation of PFAS through their chemical structures and toxic properties; however, further examination of the literature is needed to determine the link between PFAS exposure and cancer risk. Here, we introduced different PFAS detection methods based on sensors and liquid chromatography-mass spectrometry (LC-MS). Then, we discussed epidemiological investigations on PFAS levels and cancer risks in recent years, as well as the mechanisms underlying the carcinogenesis. Finally, we proposed the "4C principles" for ongoing exploration and refinement in this field. This review highlights PFAS-cancer associations to fill knowledge gaps and provide evidence-based strategies for future research.
Collapse
Affiliation(s)
- Jie Zheng
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| | - Sheng Liu
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT 06510, USA
| | - Junjie Yang
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | - Shujian Zheng
- Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA.
| | - Boshi Sun
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China; Division of Surgical Oncology, Department of Surgery, Yale School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
14
|
Wang X, Lv Y, Qiang X, Liang S, Li R, Zhan J, Liu J. Perfluorooctanoic acid (PFOA) and its alternative perfluorobutanoic acid (PFBA) alter hepatic bile acid profiles via different pathways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175312. [PMID: 39122034 DOI: 10.1016/j.scitotenv.2024.175312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/28/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024]
Abstract
The disruption of per- and polyfluoroalkyl substances (PFASs) on bile acid (BA) homeostasis has raised public concerns, making the evaluation of their effects and underlying mechanisms a high priority. Although the use of perfluorooctanoic acid (PFOA) has been restricted, it remains a widespread legacy PFAS in the environment. Concurrently, the use of its prevalent short-chain alternative, perfluorobutanoic acid (PFBA), is increasing, yet the toxicity assessment of PFBA remains inadequate. In this study, C57BL/6N mice were exposed to PFOA and PFBA (0.4 or 10 mg/kg body weight) by gavage for 28 days. The results showed that both PFOA and PFBA significantly increased hepatic weight, although PFBA exhibited lower bioaccumulation than PFOA in the liver. Targeted metabolomics revealed that PFOA significantly decreased total BA levels and altered their composition. Conversely, PFBA, without significantly altering total BA levels, notably changed their composition, such as increasing the proportion of cholic acid. Further investigations using in vivo and in vitro assays suggested that PFOA inhibited the expression of Cyp7A1, a key BA synthetase, potentially via PPARα activation, thereby reducing BA levels. In contrast, PFBA enhanced Cyp7A1 expression, associated with the inhibition of intestinal Farnesoid X receptor-fibroblast growth factor 15 (FXR-FGF15) pathway. This study evaluated the differences in the BA-interfering effects of PFOA and PFBA and shed light on the potential mechanisms, which will provide new insights into the health risks of legacy PFASs and their alternatives.
Collapse
Affiliation(s)
- Xiaoyuan Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Yinchuan Lv
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Xin Qiang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Shumin Liang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Ruosi Li
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Jing Zhan
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China.
| | - Jiaying Liu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
15
|
Eguchi A, Sakurai K, Yamamoto M, Mori C. Elucidation of endogenous and exogenous chemicals in maternal serum using high-resolution mass spectrometry. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117256. [PMID: 39490107 DOI: 10.1016/j.ecoenv.2024.117256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
The increasing exposure to environmental chemicals calls for comprehensive non-targeted analysis to detect unrecognized substances in human samples. We examined human serum samples to classify compounds as endogenous or exogenous using public databases and to explore the relationships between exposure markers and metabolic patterns. Serum samples from 84 pregnant women at 32 weeks gestation were analyzed using LC-QToFMS. Using the PubChemLite for Exposomics database, we annotated and classified 106 compounds (51 endogenous, 55 exogenous). The compound patterns were analyzed using three dimensional reduction methods: Principal Component Analysis (PCA), regularized Generalized Canonical Correlation Analysis (rGCCA), and Uniform Manifold Approximation and Projection (UMAP). OPTICS clustering applied to these methods revealed two distinct clusters, with 89 % of significant compounds overlapping between clusters. The detected exogenous compounds included dietary substances, phthalates, nitrogenous compounds, and parabens. Pathway enrichment analysis showed that chemical exposure was linked to changes in amino acid metabolism, protein and mineral transport, and energy metabolism. While we found associations between exposure and metabolite changes, we could not establish causality. Our approach of analyzing both exogenous and endogenous chemicals from the same dataset using PubChemLite database presents a new method for exposome research, despite limitations in sample size and peak annotation accuracy. These findings contribute to understanding multiple chemical exposures and their metabolic effects in human biomonitoring.
Collapse
Affiliation(s)
- Akifumi Eguchi
- Chiba University, Center for Preventive Medical Sciences, Inage-ku Yayoi-cho 1-33, Chiba, Japan.
| | - Kenichi Sakurai
- Chiba University, Center for Preventive Medical Sciences, Inage-ku Yayoi-cho 1-33, Chiba, Japan
| | - Midori Yamamoto
- Chiba University, Center for Preventive Medical Sciences, Inage-ku Yayoi-cho 1-33, Chiba, Japan
| | - Chisato Mori
- Chiba University, Center for Preventive Medical Sciences, Inage-ku Yayoi-cho 1-33, Chiba, Japan; Chiba University, Department of Bioenvironmental Medicine, Graduate School of Medicine, Chuo-ku Inohana 1-8-1, Chiba, Japan
| |
Collapse
|
16
|
Liu C, Ruan F, Chen Z, Han J, Ding X, Han C, Ye L, Yang C, Yu Y, Zuo Z, He C. Phenanthrene-induced hyperuricemia with intestinal barrier damage and the protective role of theabrownin: Modulation by gut microbiota-mediated bile acid metabolism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:174923. [PMID: 39047823 DOI: 10.1016/j.scitotenv.2024.174923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/24/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
Hyperuricemia is prevalent globally and potentially linked to environmental pollution. As a typical persistent organic pollutant, phenanthrene (Phe) poses threats to human health through biomagnification. Although studies have reported Phe-induced toxicities to multiple organs, its impact on uric acid (UA) metabolism remains unclear. In this study, data mining on NHANES 2001-2016 indicated a positive correlation between Phe exposure and the occurrence of hyperuricemia in population. Subsequently, adolescent Balb/c male mice were orally exposed to Phe at a dosage of 10 mg/kg bw every second day for 7 weeks, resulting in dysfunction of intestinal UA excretion and disruption of the intestinal barrier. Utilizing intestinal organoids, 16S rRNA sequencing of gut microbiota, and targeted metabolomic analysis, we further revealed that an imbalance in bile acid metabolism derived from gut microbiota might mediate the intestinal barrier damage. Additionally, the tea extract theabrownin (TB) effectively improved Phe-induced hyperuricemia and intestinal dysfunction at a dose of 320 mg/kg bw per day. In conclusion, this study demonstrates that Phe exposure is positively associated with hyperuricemia and intestinal damage, which provides new insights into the toxic effects induced by Phe. Furthermore, the present study proposes that supplementation with TB would be a healthy and effective improvement strategy for patients with hyperuricemia and intestinal injury caused by environmental factors.
Collapse
Affiliation(s)
- Changqian Liu
- State Key Laboratory of Cellular Stress Biology, Department of Thoracic Surgery, Xiang'an Hospital of Xiamen University, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Fengkai Ruan
- State Key Laboratory of Cellular Stress Biology, Department of Thoracic Surgery, Xiang'an Hospital of Xiamen University, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Zhiyuan Chen
- State Key Laboratory of Cellular Stress Biology, Department of Thoracic Surgery, Xiang'an Hospital of Xiamen University, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Jianrong Han
- State Key Laboratory of Cellular Stress Biology, Department of Thoracic Surgery, Xiang'an Hospital of Xiamen University, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Xiaoyan Ding
- State Key Laboratory of Cellular Stress Biology, Department of Thoracic Surgery, Xiang'an Hospital of Xiamen University, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Changshun Han
- State Key Laboratory of Cellular Stress Biology, Department of Thoracic Surgery, Xiang'an Hospital of Xiamen University, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Lingxiao Ye
- State Key Laboratory of Cellular Stress Biology, Department of Thoracic Surgery, Xiang'an Hospital of Xiamen University, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Chunyan Yang
- State Key Laboratory of Cellular Stress Biology, Department of Thoracic Surgery, Xiang'an Hospital of Xiamen University, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yi Yu
- Department of Nephrology, Fujian Clinical Research Center for Chronic Glomerular Disease, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361005, China
| | - Zhenghong Zuo
- State Key Laboratory of Cellular Stress Biology, Department of Thoracic Surgery, Xiang'an Hospital of Xiamen University, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; Department of Endocrinology, Xiang'an Hospital of Xiamen University, School of Medicine, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Chengyong He
- State Key Laboratory of Cellular Stress Biology, Department of Thoracic Surgery, Xiang'an Hospital of Xiamen University, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; Department of Endocrinology, Xiang'an Hospital of Xiamen University, School of Medicine, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
17
|
Zhang L, Du J, Guo Q, Xu X, Li H, Zhong N, Zhang J, Li G, Shao B. Serum levels of per- and poly-fluoroalkyl substances among middle-aged and elderly populations in Beijing and their association with dyslipidemia. Food Chem Toxicol 2024; 193:115066. [PMID: 39433243 DOI: 10.1016/j.fct.2024.115066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/23/2024]
Abstract
Per- and poly-fluoroalkyl substances (PFAS), ubiquitous environmental pollutants, have been reported as possible contributors to human dyslipidemia. However, evidence for emerging PFAS remains scarce. Using a nested case-control study (n = 357) in a middle-aged and elderly population from Beijing, we investigated the serum concentrations of eight traditional and fourteen emerging PFAS and their potential links with dyslipidemia. Perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) were found to be the dominant PFAS. Serum levels of perfluorohexanesulfonic acid (PFHxS) and 6:2 chlorinated polyfluoroalkyl ether sulfonate (6:2 Cl-PFESA/F53B) were associated with higher risk of elevated low-density lipoprotein cholesterol (LDL-C) with odds ratios (OR) of 3.88 (95% CI: 1.44-10.51) and 2.71 (95% CI: 1.11-6.57), respectively. These compounds also positively correlated with high total cholesterol (TC). PFOA, perfluorodecanoic acid (PFDA), and 6:2 Fluorotelomer phosphate monoester (6:2 PAP) were linked to increased risk of high triglycerides (TG) with OR of 2.79 (95% CI: 1.30-6.01), 2.41 (95% CI: 1.27-4.60), and 1.53 (95% CI: 1.05-2.22), respectively. Conversely, perfluorooctane sulfonamidoacetic acid (FOSAA) was negatively associated with high TG levels. These findings indicate that both traditional and emerging PFAS may induce dyslipidemia, emphasizing the potentially serious impact of emerging PFAS on human health.
Collapse
Affiliation(s)
- Lan Zhang
- School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing, 100013, China
| | - Jing Du
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing, 100013, China
| | - Qiaozhen Guo
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing, 100013, China
| | - Xin Xu
- School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing, 100013, China
| | - Hong Li
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing, 100013, China
| | - Nannan Zhong
- Department of Medical Science and Technology, Guiyang Healthcare Vocational University, Guiyang, China.
| | - Jing Zhang
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing, 100013, China
| | - Gang Li
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing, 100013, China.
| | - Bing Shao
- School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing, 100013, China; Food Laboratory of Zhongyuan, Luohe, 450007, China.
| |
Collapse
|
18
|
Zhang S, Mi P, Luan J, Sun M, Zhao X, Feng X. Fluorene-9-bisphenol acts on the gut-brain axis by regulating oxytocin signaling to disturb social behaviors in zebrafish. ENVIRONMENTAL RESEARCH 2024; 255:119169. [PMID: 38763277 DOI: 10.1016/j.envres.2024.119169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/21/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
Previous studies have identified the exposure to ubiquitous environmental endocrine disruptors may be a risk factor of neurological disorders. However, the effects of fluorene-9-bisphenol (BHPF) in environmental exposure concentrations associated with these disorders are poorly understood. In this study, classic light-dark and social behavior tests were performed on zebrafish larvae and adults exposed BHPF exposure to evaluate social behavioral disorders and the microbiota-gut-brain axis was assessed to reveal the potential mechanisms underlying the behavioral abnormalities observed. Our results demonstrated that zebrafish larvae exposed to an environmentally relevant concentration (0.1 nM) of BHPF for 7 days showed a diminished response to external environmental factors (light or dark). Zebrafish larvae exposed to BHPF for 7 days or adults exposed to BHPF for 30 days at 1 μM displayed significant behavioral inhibition and altered social behaviors, including social recognition, social preference, and social fear contagion, indicating autism-like behaviors were induced by the exposure. BHPF exposure reduced the distribution of Nissl bodies in midbrain neurons and significantly reduced 5-hydroxytryptamine signaling. Oxytocin (OXT) levels and expression of its receptor oxtra in the gut and brain were down-regulated by BHPF exposure. In addition, the expression levels of genes related to the excitation-inhibitory balance of synaptic transmission changed. Microbiomics revealed increased community diversity and altered abundance of some microflora, such as an elevation in Bacillota and Bacteroidota and a decline in Mycoplasmatota in zebrafish guts, which might contribute to the abnormal neural circuits and autism-like behaviors induced by BHPF. Finally, the rescue effect of exogenous OXT on social behavioral defects induced by BHPF exposure was verified in zebrafish, highlighting the crucial role of OXT signaling through gut-brain axis in the regulatory mechanisms of social behaviors affected by BHPF. This study contributes to understanding the effects of environmental BHPF exposure on neuropsychiatric disorders and attracts public attention to the health risks posed by chemicals in aquatic organisms. The potential mental disorders should be considered in the safety assessments of environmental pollutants.
Collapse
Affiliation(s)
- Shuhui Zhang
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education. Nankai University, Tianjin, 300071, China
| | - Ping Mi
- Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Jialu Luan
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education. Nankai University, Tianjin, 300071, China
| | - Mingzhu Sun
- The Institute of Robotics and Automatic Information Systems, Nankai University, Tianjin, 300071, China
| | - Xin Zhao
- The Institute of Robotics and Automatic Information Systems, Nankai University, Tianjin, 300071, China.
| | - Xizeng Feng
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education. Nankai University, Tianjin, 300071, China.
| |
Collapse
|
19
|
Fan Z, Jia W. High-confidence structural annotation of substances via multi-layer molecular network reveals the system-wide constituent alternations in milk interfered with diphenylolpropane. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134334. [PMID: 38642498 DOI: 10.1016/j.jhazmat.2024.134334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/22/2024]
Abstract
The spectral database-based mass spectrometry (MS) matching strategy is versatile for structural annotating in ingredient fluctuation profiling mediated by external interferences. However, the systematic variability of MS pool attributable to aliasing peaks and inadequacy of present spectral database resulted in a substantial metabolic feature depletion. An amended procedure termed multiple-charges overlap peaks extraction algorithm (MCOP) was proposed involving identifying collision-trigged dissociation precursor ions through iteratively matching mass features of fragmentations to expand the spectral reference library. We showcased the versatility and utility of established strategy in an investigation centered on the stimulation of milk mediated by diphenylolpropane (BPA). MCOP enabled efficient unknown annotations at metabolite-lipid-protein level, which elevated the accuracy of substance annotation to 85.3% after manual validation. Arginase and α-amylase (|r| > 0.75, p < 0.05) were first identified as the crucial issues via graph neural network-based virtual screening in the abnormal metabolism of urea triggered by BPA, resulting in the accumulation of arginine (original: 1.7 μg kg-1 1.7 times) and maltodextrin (original: 6.9 μg kg-1 2.9 times) and thus, exciting the potential dietary risks. Conclusively, MCOP demonstrated generalisation and scalability and substantially advanced the discovery of unknown metabolites for complex matrix samples, thus deciphering dark matter in multi-omics.
Collapse
Affiliation(s)
- Zibian Fan
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, China.
| |
Collapse
|