1
|
Xia J, Yang S, Li J, Meng Y, Niu J, Chen H, Zhang Z, Liao W. Normative structural connectome constrains spreading transient brain activity in generalized epilepsy. BMC Med 2025; 23:258. [PMID: 40317018 PMCID: PMC12046745 DOI: 10.1186/s12916-025-04099-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 04/24/2025] [Indexed: 05/04/2025] Open
Abstract
BACKGROUND Genetic generalized epilepsy is characterized by transient episodes of spontaneous abnormal neural activity in anatomically distributed brain regions that ultimately propagate to wider areas. However, the connectome-based mechanisms shaping these abnormalities remain largely unknown. We aimed to investigate how the normative structural connectome constrains abnormal brain activity spread in genetic generalized epilepsy with generalized tonic-clonic seizure (GGE-GTCS). METHODS Abnormal transient activity patterns between individuals with GGE-GTCS (n = 97) and healthy controls (n = 141) were estimated from the amplitude of low-frequency fluctuations measured by resting-state functional MRI. The normative structural connectome was derived from diffusion-weighted images acquired in an independent cohort of healthy adults (n = 326). Structural neighborhood analysis was applied to assess the degree of constraints between activity vulnerability and structural connectome. Dominance analysis was used to determine the potential molecular underpinnings of these constraints. Furthermore, a network-based diffusion model was utilized to simulate the spread of pathology and identify potential disease epicenters. RESULTS Brain activity abnormalities among patients with GGE-GTCS were primarily located in the temporal, cingulate, prefrontal, and parietal cortices. The collective abnormality of structurally connected neighbors significantly predicted regional activity abnormality, indicating that white matter network architecture constrains aberrant activity patterns. Molecular fingerprints, particularly laminar differentiation and neurotransmitter receptor profiles, constituted key predictors of these connectome-constrained activity abnormalities. Network-based diffusion modeling effectively replicated transient pathological activity spreading patterns, identifying the limbic-temporal, dorsolateral prefrontal, and occipital cortices as putative disease epicenters. These results were robust across different clinical factors and individual patients. CONCLUSIONS Our findings suggest that the structural connectome shapes the spatial patterning of brain activity abnormalities, advancing our understanding of the network-level mechanisms underlying vulnerability to abnormal brain activity onset and propagation in GGE-GTCS.
Collapse
Affiliation(s)
- Jie Xia
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China
| | - Siqi Yang
- School of Cybersecurity, Chengdu University of Information Technology, Chengdu, 610225, People's Republic of China
| | - Jiao Li
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China
| | - Yao Meng
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China
| | - Jinpeng Niu
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China
| | - Zhiqiang Zhang
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, People's Republic of China
| | - Wei Liao
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China.
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China.
| |
Collapse
|
2
|
Xia J, Liu C, Li J, Meng Y, Yang S, Chen H, Liao W. Decomposing cortical activity through neuronal tracing connectome-eigenmodes in marmosets. Nat Commun 2024; 15:2289. [PMID: 38480767 PMCID: PMC10937940 DOI: 10.1038/s41467-024-46651-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 03/06/2024] [Indexed: 03/17/2024] Open
Abstract
Deciphering the complex relationship between neuroanatomical connections and functional activity in primate brains remains a daunting task, especially regarding the influence of monosynaptic connectivity on cortical activity. Here, we investigate the anatomical-functional relationship and decompose the neuronal-tracing connectome of marmoset brains into a series of eigenmodes using graph signal processing. These cellular connectome eigenmodes effectively constrain the cortical activity derived from resting-state functional MRI, and uncover a patterned cellular-functional decoupling. This pattern reveals a spatial gradient from coupled dorsal-posterior to decoupled ventral-anterior cortices, and recapitulates micro-structural profiles and macro-scale hierarchical cortical organization. Notably, these marmoset-derived eigenmodes may facilitate the inference of spontaneous cortical activity and functional connectivity of homologous areas in humans, highlighting the potential generalizing of the connectomic constraints across species. Collectively, our findings illuminate how neuronal-tracing connectome eigenmodes constrain cortical activity and improve our understanding of the brain's anatomical-functional relationship.
Collapse
Affiliation(s)
- Jie Xia
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China
| | - Cirong Liu
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, P.R. China
| | - Jiao Li
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China
| | - Yao Meng
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China
| | - Siqi Yang
- School of Cybersecurity, Chengdu University of Information Technology, Chengdu, 610225, P.R. China
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China.
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China.
| | - Wei Liao
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China.
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China.
| |
Collapse
|