1
|
Li X, Fan D, Li Y, Yuan J, Sun W, Zhu Q, Qi L, Wu X, Cai J, Gong T, Zhao N, Su J, Liu Z, Chen H. NKX2-5/LHX1 and UHRF1 Establishing a Positive Feedback Regulatory Circuitry Drives Esophageal Squamous Cell Carcinoma through Epigenetic Dysregulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413508. [PMID: 40307990 PMCID: PMC12120717 DOI: 10.1002/advs.202413508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 04/06/2025] [Indexed: 05/02/2025]
Abstract
DNA methylation regulators play critical roles in modulating oncogenic driver genes in cancers. However, the precise mechanisms through which these DNA methylation regulators influence oncogenesis and clinical therapy have yet to be fully elucidated. This study reveals that hypermethylation of under-methylated regions (UMRs) within gene bodies is involved in the activation of oncogenic homeobox genes, particularly NKX2-5 and LHX1, in esophageal squamous cell carcinoma (ESCC). Mechanistically, NKX2-5 and LHX1 synergistically bind to the promoter region of UHRF1, thereby augmenting its transcription. In turn, UHRF1 orchestrates the recruitment of DNMT1/DNMT3A, alongside NKX2-5 and LHX1, to the UMRs of these genes, thereby increasing DNA methylation levels and their expression. This intricate interplay forms a positive transcriptional feedback loop between NKX2-5/LHX1 and UHRF1, thus promoting the overexpression of all three genes and ultimately facilitating tumor growth. Notably, concurrent inhibition of UHRF1 and DNMTs impedes tumor growth by suppressing NKX2-5 and LHX1 expression. Overall, this study identifies a positive feedback regulatory circuitry underlying the UMR hypermethylation-mediated activation of oncogenic drivers in ESCC and proposes a promising therapeutic strategy for ESCC patients.
Collapse
Affiliation(s)
- Xukun Li
- The State Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
- Shenzhen Key Laboratory of Epigenetics and Precision Medicine for CancersNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen HospitalChinese Academic of Medical Sciences and Peking Union Medical CollegeShenzhen518116P. R. China
- Central LaboratoryNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen HospitalChinese Academic of Medical Sciences and Peking Union Medical CollegeShenzhen518116P. R. China
| | - Dandan Fan
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Eye HospitalWenzhou Medical UniversityWenzhouZhejiang325101P. R. China
| | - Yong Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
| | - Jian Yuan
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Eye HospitalWenzhou Medical UniversityWenzhouZhejiang325101P. R. China
| | - Wanyuan Sun
- The State Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
| | - Qinghao Zhu
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Eye HospitalWenzhou Medical UniversityWenzhouZhejiang325101P. R. China
| | - Ling Qi
- Department of Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
| | - Xueling Wu
- The State Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
| | - Jiahui Cai
- The State Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
| | - Tongyang Gong
- The State Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
| | - Ning Zhao
- The State Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
| | - Jianzhong Su
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Eye HospitalWenzhou Medical UniversityWenzhouZhejiang325101P. R. China
| | - Zhihua Liu
- The State Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
| | - Hongyan Chen
- The State Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
| |
Collapse
|
2
|
Wasson CW, Perez Barreiro E, Del Galdo F, Riobo-Del Galdo NA. Lysine Demethylase 1 Has Demethylase-Dependent and Non-Canonical Functions in Myofibroblast Activation in Systemic Sclerosis. Cells 2025; 14:433. [PMID: 40136682 PMCID: PMC11941053 DOI: 10.3390/cells14060433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/28/2025] [Accepted: 03/11/2025] [Indexed: 03/27/2025] Open
Abstract
Systemic sclerosis (SSc) is an autoimmune disease of unknown aetiology characterised by vasculopathy with progressive fibrosis of the skin and internal organs. Tissue fibrosis is driven by activated fibroblasts (myofibroblasts) with exacerbated contractile and secretory properties. We previously reported that the long non-coding RNA HOTAIR is a key driver of SSc fibroblast activation. HOTAIR interacts with the chromatin modifiers, the polycomb repressor complex (PRC2) and coREST complex, promoting expression of pro-fibrotic genes. In this study, we show that acute activation of dermal fibroblasts from healthy subjects or SSc patients with transforming growth factor-β and other fibrotic stimuli requires the activity of the lysine-specific demethylase 1 (LSD1) subunit of the co-REST complex. Unexpectedly, LSD1 catalytic activity plays a minor role in fibrotic gene expression in HOTAIR-overexpressing fibroblasts and in maintenance of the stable myofibroblast phenotype of SSc fibroblasts. However, silencing of LSD1 in SSc fibroblasts has a profound effect on pro-fibrotic gene expression, supporting a non-canonical scaffolding function. Our study shows for the first time an essential non-canonical role for LSD1 in pro-fibrotic gene expression in SSc; however, given that this function is insensitive to LSD1 inhibitors, the therapeutic opportunities will depend on future identification of a targetable mediator.
Collapse
Affiliation(s)
- Christopher W. Wasson
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Faculty of Medicine and Health, University of Leeds, Leeds LS2 9JT, UK; (C.W.W.); (F.D.G.)
| | - Esther Perez Barreiro
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK;
| | - Francesco Del Galdo
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Faculty of Medicine and Health, University of Leeds, Leeds LS2 9JT, UK; (C.W.W.); (F.D.G.)
- Scleroderma Programme, NIHR Leeds Musculoskeletal Biomedical Research Centre, Leeds LS7 4SA, UK
| | - Natalia A. Riobo-Del Galdo
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK;
- Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
3
|
Song Y, Yu B. Leveraging non-enzymatic functions of LSD1 for novel therapeutics. Trends Pharmacol Sci 2025; 46:204-219. [PMID: 39966067 DOI: 10.1016/j.tips.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/28/2024] [Accepted: 01/17/2025] [Indexed: 02/20/2025]
Abstract
Lysine-specific demethylase 1 (LSD1) is a key enzyme that removes the methylation marks from lysines in the histone tails of nucleosomes. Emerging evidence suggests that LSD1 exhibits both enzyme-dependent and independent functions across various diseases. However, most LSD1-targeted therapies in clinical trials focus on its classic demethylase activity. Only one allosteric inhibitor (SP-2577) and two nonproteolysis-targeting chimera (PROTAC) LSD1 degraders (BEA-17 and UM171), which target its enzyme-independent functions, have entered clinical assessment. Given the limited exploration of therapeutic strategies targeting the non-enzymatic functions of LSD1, in this opinion, we summarize current insights into its biological roles and structural characteristics. We also highlight potential therapeutic interventions targeting the non-enzymatic functions of LSD1, including allosteric inhibitors, protein-protein interaction (PPI) inhibitors, and small-molecule degraders, and discuss challenges and future directions in drug discovery targeting these functions.
Collapse
Affiliation(s)
- Yihui Song
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Bin Yu
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou 450001, China; College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
4
|
Kota SB, Kota SK. Lysine-specific demethylase 1a is obligatory for gene regulation during kidney development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.25.640014. [PMID: 40060432 PMCID: PMC11888273 DOI: 10.1101/2025.02.25.640014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Histone methyltransferases and demethylases play crucial roles in gene regulation and are vital for proper functioning of multiple tissues. Lysine-specific histone demethylase 1A (Kdm1a), is responsible for the demethylation of specific lysines, namely K4 and K9, on histone H3. In this study, we investigated the functions of Kdm1a during mouse kidney development upon targeted deletion in renal progenitor cells. Loss of Kdm1a in Six2-positive nephron progenitors resulted in significant reduction in renal mass, tissue structural changes and impaired function. To further understand the molecular function of Kdm1a during kidney development, we conducted multi-omics analyses that included transcriptome profiling, Chromatin immunoprecipitation (ChIP) sequencing, and methylome assessments. These omic analyses identified Kdm1a as a critical gene regulator required for sustained expression of several nephron segment marker genes, as well as vast number of solute carrier (Slc) genes and a few imprinted genes. Absence of Kdm1a in kidneys led to an increase in global H3K9 methylation peaks, which correlated with the transcriptional downregulation of numerous genes. Among these were markers of nephron progenitors and presumptive tubular precursors. We also observed that specific gene bodies exhibited altered DNA methylation patterns at intragenic differentially methylated regions (DMRs) upon Kdm1a deletion, while the overall global levels of DNA methylation remained unchanged. Our data point to a key regulatory role for Kdm1a in the renal progenitor epigenome, influencing kidney specific gene expression in the developing nephrons. Together the study highlights an indispensable role for Kdm1a for proper development of mouse kidneys, and its absence leading to significant developmental and functional impairment.
Collapse
Affiliation(s)
- Savithri Balasubramanian Kota
- Nephrology Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA; Current affiliation: Bayer U.S. LLC
| | - Satya K. Kota
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Harvard University, Boston, USA
| |
Collapse
|
5
|
Elder E, Lemieux A, Legault LM, Caron M, Bertrand-Lehouillier V, Dupas T, Raynal NM, Bourque G, Sinnett D, Gévry N, McGraw S. Rescuing DNMT1 fails to fully reverse the molecular and functional repercussions of its loss in mouse embryonic stem cells. Nucleic Acids Res 2025; 53:gkaf130. [PMID: 39997223 PMCID: PMC11851107 DOI: 10.1093/nar/gkaf130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 12/27/2024] [Accepted: 02/11/2025] [Indexed: 02/26/2025] Open
Abstract
Epigenetic mechanisms are crucial for developmental programming and can be disrupted by environmental stressors, increasing susceptibility to disease. This has sparked interest in therapies for restoring epigenetic balance, but it remains uncertain whether disordered epigenetic mechanisms can be fully corrected. Disruption of DNA methyltransferase 1 (DNMT1), responsible for DNA methylation maintenance, has particularly devastating biological consequences. Therefore, here we explored if rescuing DNMT1 activity is sufficient to reverse the effects of its loss utilizing mouse embryonic stem cells. However, only partial reversal could be achieved. Extensive changes in DNA methylation, histone modifications, and gene expression were detected, along with transposable element derepression and genomic instability. Reduction of cellular size, complexity, and proliferation rate were observed, as well as lasting effects in germ layer lineages and embryoid bodies. Interestingly, by analyzing the impact on imprinted regions, we uncovered 20 regions exhibiting imprinted-like signatures. Notably, while many permanent effects persisted throughout Dnmt1 inactivation and rescue, others arose from the rescue intervention. Lastly, rescuing DNMT1 after differentiation initiation worsened outcomes, reinforcing the need for early intervention. Our findings highlight the far-reaching functions of DNMT1 and provide valuable perspectives on the repercussions of epigenetic perturbations during early development and the challenges of rescue interventions.
Collapse
Affiliation(s)
- Elizabeth Elder
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, Quebec, H3T 1J4, Canada
- Azrieli Research Centre of Sainte-Justine University Hospital, Montreal, Quebec, H3T 1C5, Canada
| | - Anthony Lemieux
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, Quebec, H3T 1J4, Canada
- Azrieli Research Centre of Sainte-Justine University Hospital, Montreal, Quebec, H3T 1C5, Canada
| | - Lisa-Marie Legault
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, Quebec, H3T 1J4, Canada
- Azrieli Research Centre of Sainte-Justine University Hospital, Montreal, Quebec, H3T 1C5, Canada
| | - Maxime Caron
- University of Montreal Hospital Research Centre, Montreal, Quebec, H2X 0A9, Canada
| | - Virginie Bertrand-Lehouillier
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, Quebec, H3T 1J4, Canada
- Azrieli Research Centre of Sainte-Justine University Hospital, Montreal, Quebec, H3T 1C5, Canada
| | - Thomas Dupas
- Azrieli Research Centre of Sainte-Justine University Hospital, Montreal, Quebec, H3T 1C5, Canada
- Department of Obstetrics and Gynecology, University of Montreal, Montreal, Quebec, H3T 1J4, Canada
| | - Noël J-M Raynal
- Azrieli Research Centre of Sainte-Justine University Hospital, Montreal, Quebec, H3T 1C5, Canada
- Department of Pharmacology and Physiology, University of Montreal, Montreal, Quebec, H3T 1J4, Canada
| | - Guillaume Bourque
- Department of Human Genetics, McGill University, Montreal, Quebec, H3A 1Y2, Canada
- McGill Genome Centre, Montreal, Quebec, H3A 0G1, Canada
| | - Daniel Sinnett
- Azrieli Research Centre of Sainte-Justine University Hospital, Montreal, Quebec, H3T 1C5, Canada
- Department of Pediatrics, University of Montreal, Montreal, Quebec, H3T 1C5, Canada
| | - Nicolas Gévry
- Department of Biology, University of Sherbrooke, Sherbrooke, Quebec, J1K 2R1, Canada
| | - Serge McGraw
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, Quebec, H3T 1J4, Canada
- Azrieli Research Centre of Sainte-Justine University Hospital, Montreal, Quebec, H3T 1C5, Canada
- Department of Obstetrics and Gynecology, University of Montreal, Montreal, Quebec, H3T 1J4, Canada
| |
Collapse
|
6
|
Malla S, Martinez-Gamero C, Kumari K, Achour C, Mermelekas G, Martinez-Delgado D, Coego A, Guallar D, Roman AC, Aguilo F. Cooperative role of LSD1 and CHD7 in regulating differentiation of mouse embryonic stem cells. Sci Rep 2024; 14:28495. [PMID: 39557885 PMCID: PMC11574112 DOI: 10.1038/s41598-024-78920-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/05/2024] [Indexed: 11/20/2024] Open
Abstract
Lysine-specific histone demethylase 1 (LSD1) is a histone demethylase that plays a critical role in epigenetic regulation by removing the methyl group from mono- and di-methylated lysine 4 on histone H3 (H3K4me1/2), acting as a repressor of gene expression. Recently, catalytically independent functions of LSD1, serving as a scaffold for assembling chromatin-regulator and transcription factor complexes, have been identified. Herein, we show for the first time that LSD1 interacts with chromodomain-helicase-DNA-binding protein 7 (CHD7) in mouse embryonic stem cells (ESCs). To further investigate the CHD7-LSD1 crosstalk, we engineered Chd7 and Chd7/Lsd1 knockout (KO) mouse ESCs. We show that CHD7 is dispensable for ESC self-renewal and survival, while Chd7 KO ESCs can differentiate towards embryoid bodies (EBs) with defective expression of ectodermal markers. Intriguingly, Chd7/Lsd1 double KO mouse ESCs exhibit proliferation defects similar to Lsd1 KO ESCs and have lost the capacity to differentiate properly. Furthermore, the increased co-occupancy of H3K4me1 and CHD7 on chromatin following Lsd1 deletion suggests that LSD1 is required for facilitating the proper binding of CHD7 to chromatin and regulating differentiation. Collectively, our results suggest that LSD1 and CHD7 work in concert to modulate gene expression and influence proper cell fate determination.
Collapse
Affiliation(s)
- Sandhya Malla
- Department of Molecular Biology, Umeå University, 901 85, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, 901 85, Umeå, Sweden
| | - Carlos Martinez-Gamero
- Department of Molecular Biology, Umeå University, 901 85, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, 901 85, Umeå, Sweden
| | - Kanchan Kumari
- Department of Molecular Biology, Umeå University, 901 85, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, 901 85, Umeå, Sweden
| | - Cyrinne Achour
- Department of Molecular Biology, Umeå University, 901 85, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, 901 85, Umeå, Sweden
| | - Georgios Mermelekas
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, 171 21, Solna, Sweden
| | - David Martinez-Delgado
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela (USC)-Health Research Institute (IDIS), Santiago de Compostela, Spain
| | - Alba Coego
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela (USC)-Health Research Institute (IDIS), Santiago de Compostela, Spain
| | - Diana Guallar
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela (USC)-Health Research Institute (IDIS), Santiago de Compostela, Spain
| | - Angel-Carlos Roman
- Department of Biochemistry, Molecular Biology and Genetics, University of Extremadura, Badajoz, Spain
| | - Francesca Aguilo
- Department of Molecular Biology, Umeå University, 901 85, Umeå, Sweden.
- Wallenberg Centre for Molecular Medicine, Umeå University, 901 85, Umeå, Sweden.
| |
Collapse
|