1
|
Collins BM, Cullen PJ. Separation of powers: A key feature underlying the neuroprotective role of Retromer in age-related neurodegenerative disease? Curr Opin Cell Biol 2025; 94:102516. [PMID: 40253888 DOI: 10.1016/j.ceb.2025.102516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/14/2025] [Accepted: 03/19/2025] [Indexed: 04/22/2025]
Abstract
The retromer complex was discovered in Saccharomyces cerevisiae as a multiprotein, pentameric assembly essential for recycling of integral membrane cargo proteins through the endosomal network [1,2]. We now understand how retromer is assembled, its membrane architecture, and how it selects proteins for recycling [3-6]. Conserved across eukaryotes, analyses have revealed retromer's role in organism development, and homeostasis and has linked retromer defects with age-related Alzheimer's disease and Parkinson's disease and other neurological disorders [3,5,7]. Indeed, stabilizing retromer function is now actively considered a therapeutic strategy [8]. Here, we reflect on its structural and functional evolution rather than overviewing retromer biology (see, e.g. [5,7]). Specifically, we clarify the organization of the human retromer to provide greater focus for future research, especially within the context of retromer's function in neuroprotection.
Collapse
Affiliation(s)
- Brett M Collins
- The University of Queensland, Institute for Molecular Bioscience, St Lucia, Queensland, 4072, Australia.
| | - Peter J Cullen
- School of Biochemistry, Biomedical Sciences Building, Faculty of Health Sciences, University of Bristol, Bristol BS8 1TD, UK.
| |
Collapse
|
2
|
Tang Y, Tang S, Chen Y, Zhang J, Yu X, Mao P, Wang W, Yu J, Wang F, Zeng C. SNX17 knockdown improves post-ischemic angiogenesis via blocking lysosomal dependent VEGFR degradation. Life Sci 2025; 377:123739. [PMID: 40412610 DOI: 10.1016/j.lfs.2025.123739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 05/10/2025] [Accepted: 05/19/2025] [Indexed: 05/27/2025]
Abstract
The treatment options for critical limb ischemia (CLI) are limited, and existing methods are often ineffective in restoring microvascular blood supply. We recently explored the association of sorting nexin 17 (SNX17) with angiogenesis. Knockdown of SNX17 promotes angiogenesis and increased blood flow in hindlimb from hindlimb ischemia mice, accompanied with a higher limb salvage rate. This phenomenon can be attributed to the critical role of SNX17 in the degradation of some angiogenic factor receptors, including vascular endothelial growth factor receptor (VEGFR). The linkage between VEGFR and SNX17 facilitates its trafficking to lysosomal degradation. In the absence of SNX17, VEGFR accumulates in early endosomes, leading to prolonged and intensified activation, and consequently promoting angiogenesis. The current study shows that SNX17 plays an important role in angiogenesis by regulating the stability of angiogenic factor receptors, such as VEGFR, and presents a new strategy for facilitating tissue repair in ischemic environments.
Collapse
Affiliation(s)
- Yang Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China; Department of Cardiology, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, China
| | - Shiqi Tang
- Department of Cardiology, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yue Chen
- Department of Cardiology, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, China
| | - Junkai Zhang
- Department of Cardiology, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, China; Department of Cardiology, Sichuan Armed Police Hospital, Sichuan, China
| | - Xueling Yu
- Department of Cardiology, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, China
| | - Pingyuan Mao
- School of Clinical Medicine, Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Wei Wang
- Department of Cardiology, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, China
| | - Junyi Yu
- Department of Cardiology, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, China
| | - Feng Wang
- Department of Cardiology, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, China.
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, China; State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Third Military Medical University, Chongqing, China; Center of Chongqing College, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Chongqing, China; Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China.
| |
Collapse
|
3
|
Kour D, Bowen CA, Srivastava U, Nguyen HM, Kumari R, Kumar P, Brandelli AD, Bitarafan S, Tobin BR, Wood L, Seyfried NT, Wulff H, Rangaraju S. Identification of novel Kv1.3 channel-interacting proteins using proximity labelling in T-cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.16.633279. [PMID: 39868101 PMCID: PMC11760797 DOI: 10.1101/2025.01.16.633279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Potassium channels regulate membrane potential, calcium flux, cellular activation and effector functions of adaptive and innate immune cells. The voltage-activated Kv1.3 channel is an important regulator of T cell-mediated autoimmunity and microglia-mediated neuroinflammation. Kv1.3 channels, via protein-protein interactions, are localized with key immune proteins and pathways, enabling functional coupling between K+ efflux and immune mechanisms. To gain insights into proteins and pathways that interact with Kv1.3 channels, we applied a proximity-labeling proteomics approach to characterize protein interactors of the Kv1.3 channel in activated T-cells. Biotin ligase TurboID was fused to either N or C termini of Kv1.3, stably expressed in Jurkat T cells and biotinylated proteins in proximity to Kv1.3 were enriched and quantified by mass spectrometry. We identified over 1,800 Kv1.3 interactors including known interactors (beta-integrins, Stat1) although majority were novel. We found that the N-terminus of Kv1.3 preferentially interacts with protein synthesis and protein trafficking machinery, while the C-terminus interacts with immune signaling and cell junction proteins. T-cell Kv1.3 interactors included 335 cell surface, T-cell receptor complex, mitochondrial, calcium and cytokine-mediated signaling pathway and lymphocyte migration proteins. 178 Kv1.3 interactors in T-cells also represent genetic risk factors of T cell-mediated autoimmunity, including STIM1, which was further validated using co-immunoprecipitation. Our studies reveal novel proteins and molecular pathways that interact with Kv1.3 channels in adaptive (T-cell) and innate immune (microglia), providing a foundation for how Kv1.3 channels may regulate immune mechanisms in autoimmune and neurological diseases.
Collapse
Affiliation(s)
- Dilpreet Kour
- Department of Neurology, School of Medicine, Yale University, New Haven (CT), USA
| | - Christine A. Bowen
- Center for Neurodegenerative Diseases, Emory University, Atlanta (GA), USA
- Department of Biochemistry, Emory University, Atlanta (GA), USA
| | - Upasna Srivastava
- Department of Neurology, School of Medicine, Yale University, New Haven (CT), USA
| | - Hai M. Nguyen
- Department of Pharmacology, University of California – Davis, Davis (CA), USA
| | - Rashmi Kumari
- Department of Neurology, School of Medicine, Yale University, New Haven (CT), USA
| | - Prateek Kumar
- Department of Neurology, School of Medicine, Yale University, New Haven (CT), USA
| | - Amanda D. Brandelli
- Department of Neurology, School of Medicine, Yale University, New Haven (CT), USA
| | - Sara Bitarafan
- Parker H. Petit Institute for Bioengineering, Georgia Institute of Technology, Atlanta (GA), USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta (GA), USA
| | - Brendan R Tobin
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta (GA), USA
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta (GA), USA
| | - Levi Wood
- Parker H. Petit Institute for Bioengineering, Georgia Institute of Technology, Atlanta (GA), USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta (GA), USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta (GA), USA
| | - Nicholas T. Seyfried
- Center for Neurodegenerative Diseases, Emory University, Atlanta (GA), USA
- Department of Biochemistry, Emory University, Atlanta (GA), USA
| | - Heike Wulff
- Department of Pharmacology, University of California – Davis, Davis (CA), USA
| | - Srikant Rangaraju
- Department of Neurology, School of Medicine, Yale University, New Haven (CT), USA
| |
Collapse
|
4
|
Martín-González A, Méndez-Guzmán I, Zabala-Zearreta M, Quintanilla A, García-López A, Martínez-Lombardía E, Albesa-Jové D, Acosta JC, Lucas M. Selective cargo and membrane recognition by SNX17 regulates its interaction with Retriever. EMBO Rep 2025; 26:470-493. [PMID: 39653850 PMCID: PMC11772769 DOI: 10.1038/s44319-024-00340-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 11/09/2024] [Accepted: 11/15/2024] [Indexed: 01/29/2025] Open
Abstract
The Retriever complex recycles a wide range of transmembrane proteins from endosomes to the plasma membrane. The cargo adapter protein SNX17 has been implicated in recruiting the Retriever complex to endosomal membranes, yet the details of this interaction have remained elusive. Through biophysical and structural model-guided mutagenesis studies with recombinant proteins and liposomes, we have gained a deeper understanding of this process. Here, we demonstrate a direct interaction between SNX17 and Retriever, specifically between the C-terminal region of SNX17 and the interface of the Retriever subunits VPS35L and VPS26C. This interaction is enhanced upon the binding of SNX17 to its cargo in solution, due to the disruption of an intramolecular autoinhibitory interaction between the C-terminal region of SNX17 and the cargo binding pocket. In addition, SNX17 binding to membranes containing phosphatidylinositol-3-phosphate also promotes Retriever recruitment in a cargo-independent manner. Therefore, this work provides evidence of the dual activation mechanisms by which SNX17 modulates Retriever recruitment to the proximity of cargo and membranes, offering significant insights into the regulatory mechanisms of protein recycling at endosomes.
Collapse
Affiliation(s)
- Aurora Martín-González
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, 39011, Spain
| | - Iván Méndez-Guzmán
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, 39011, Spain
| | - Maialen Zabala-Zearreta
- Instituto Biofisika (CSIC, UPV/EHU), Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB) and Departamento de Bioquímica y Biología Molecular, University of the Basque Country, 48940, Leioa, Spain
| | - Andrea Quintanilla
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, 39011, Spain
| | - Arturo García-López
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, 39011, Spain
| | - Eva Martínez-Lombardía
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, 39011, Spain
| | - David Albesa-Jové
- Instituto Biofisika (CSIC, UPV/EHU), Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB) and Departamento de Bioquímica y Biología Molecular, University of the Basque Country, 48940, Leioa, Spain
- Ikerbasque, Basque Foundation for Science, 48013, Bilbao, Spain
| | - Juan Carlos Acosta
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, 39011, Spain
| | - María Lucas
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, 39011, Spain.
| |
Collapse
|