1
|
Chan A, Tajkhorshid E, Luthey-Schulten Z, Sener M. Modeling Diffusive Motion of Ferredoxin and Plastocyanin on the PSI Domain of Procholorococcus marinus MIT9313. J Phys Chem B 2025; 129:52-70. [PMID: 39723618 DOI: 10.1021/acs.jpcb.4c05001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Diffusion of mobile charge carriers, such as ferredoxin and plastocyanin, often constitutes a rate-determining step in photosynthetic energy conversion. The diffusion time scales typically exceed that of other primary bioenergetic processes and remain beyond the reach of direct simulation at the molecular level. We characterize the diffusive kinetics of ferredoxin and plastocyanin upon the photosystem I-rich domain of Prochlorococcus, the most abundant phototroph on Earth by mass. A modeling approach for ferredoxin and plastocyanin diffusion is presented that uses ensembles of coarse-grained molecular dynamics simulations in Martini 2.2P with GROMACS 2021.2. The simulation ensembles are used to construct the diffusion coefficient and drift for ferredoxin and plastocyanin as spatial functions in the photosystem I domain of the MIT9313 ecotype. Four separate models are constructed, corresponding to ferredoxin and plastocyanin in reduced and oxidized states. A single scaling constant of 0.7 is found to be sufficient to adjust the diffusion coefficient obtained from the Martini simulation ensemble to match the in vitro values for both ferredoxin and plastocyanin. A comparison of Martini versions (2.2P, 2.2, 3) is presented with respect to diffusion scaling. The diffusion coefficient and drift together quantify the inhomogeneity of diffusive behavior. Notably, a funnel-like convergence toward the corresponding putative binding positions is observed for both ferredoxin and plastocyanin, even without such a priori foreknowledge supplied in the simulation protocol. The approach presented here is of relevance for studying diffusion kinetics in photosynthetic and other bioenergetic processes.
Collapse
Affiliation(s)
- Aaron Chan
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana─Champaign, Urbana, Illinois 61801-3028, United States
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana─Champaign, Urbana, Illinois 61801-3028, United States
| | - Emad Tajkhorshid
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana─Champaign, Urbana, Illinois 61801-3028, United States
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana─Champaign, Urbana, Illinois 61801-3028, United States
- Department of Biochemistry, University of Illinois Urbana─Champaign, Urbana, Illinois 61801-3028, United States
- Department of Chemistry, University of Illinois Urbana─Champaign, Urbana, Illinois 61801-3028, United States
| | - Zaida Luthey-Schulten
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana─Champaign, Urbana, Illinois 61801-3028, United States
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana─Champaign, Urbana, Illinois 61801-3028, United States
- Department of Chemistry, University of Illinois Urbana─Champaign, Urbana, Illinois 61801-3028, United States
| | - Melih Sener
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana─Champaign, Urbana, Illinois 61801-3028, United States
- School of Molecular Sciences, Biodesign Institute, Arizona State University, Tempe, Arizona 85281, United States
| |
Collapse
|
2
|
Becker JW, Pollak S, Berta-Thompson JW, Becker KW, Braakman R, Dooley KD, Hackl T, Coe A, Arellano A, LeGault KN, Berube PM, Biller SJ, Cubillos-Ruiz A, Van Mooy BAS, Chisholm SW. Novel isolates expand the physiological diversity of Prochlorococcus and illuminate its macroevolution. mBio 2024; 15:e0349723. [PMID: 39422514 PMCID: PMC11559063 DOI: 10.1128/mbio.03497-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 09/17/2024] [Indexed: 10/19/2024] Open
Abstract
Prochlorococcus is a diverse picocyanobacterial genus and the most abundant phototroph on Earth. Its photosynthetic diversity divides it into high-light (HL)- or low-light (LL)-adapted groups representing broad phylogenetic grades-each composed of several monophyletic clades. Here, we physiologically characterize four new Prochlorococcus strains isolated from below the deep chlorophyll maximum in the North Pacific Ocean. We combine these physiological properties with genomic analyses to explore the evolution of photosynthetic antennae and discuss potential macroevolutionary implications. The isolates belong to deeply branching low-light-adapted clades that have no other cultivated representatives and display some unusual characteristics. For example, despite its otherwise low-light-adapted physiological characteristics, strain MIT1223 has low chl b2 content similar to high-light-adapted strains. Isolate genomes revealed that each strain contains a unique arsenal of pigment biosynthesis and binding alleles that have been horizontally acquired, contributing to the observed physiological diversity. Comparative genomic analysis of all picocyanobacteria reveals that Pcb, the major pigment carrying protein in Prochlorococcus, greatly increased in copy number and diversity per genome along a branch that coincides with the loss of facultative particle attachment. Collectively, these observations support a recently developed macroevolutionary model, in which niche-constructing radiations allowed ancestral lineages of picocyanobacteria to transition from a particle-attached to planktonic lifestyle and broadly colonize the euphotic zone.IMPORTANCEThe marine cyanobacterium, Prochlorococcus, is among the Earth's most abundant organisms, and much of its genetic and physiological diversity remains uncharacterized. Although field studies help reveal the scope of diversity, cultured isolates allow us to link genomic potential to physiological processes, illuminate eco-evolutionary feedbacks, and test theories arising from comparative genomics of wild cells. Here, we report the isolation and characterization of novel low-light (LL)-adapted Prochlorococcus strains that fill in multiple evolutionary gaps. These new strains are the first cultivated representatives of the LLVII and LLVIII paraphyletic grades of Prochlorococcus, which are broadly distributed in the lower regions of the ocean euphotic zone. Each of these grades is a unique, highly diverse section of the Prochlorococcus tree that separates distinct ecological groups: the LLVII grade branches between monophyletic clades that have facultatively particle-associated and constitutively planktonic lifestyles, whereas the LLVIII grade lies along the branch that leads to all high-light (HL)-adapted clades. Characterizing strains and genomes from these grades yields insights into the large-scale evolution of Prochlorococcus. The new LLVII and LLVIII strains are adapted to growth at very low irradiance levels and possess unique light-harvesting gene signatures and pigmentation. The LLVII strains represent the most basal Prochlorococcus group with a major expansion in photosynthetic antenna genes. Furthermore, a strain from the LLVIII grade challenges the paradigm that all LL-adapted Prochlorococcus exhibit high ratios of chl b:a2. These findings provide insights into the photophysiological evolution of Prochlorococcus and redefine what it means to be a low- vs high-light-adapted Prochlorococcus cell.
Collapse
Affiliation(s)
- Jamie W. Becker
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Shaul Pollak
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Jessie W. Berta-Thompson
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Kevin W. Becker
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - Rogier Braakman
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Keven D. Dooley
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Thomas Hackl
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Allison Coe
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Aldo Arellano
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Kristen N. LeGault
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Paul M. Berube
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Steven J. Biller
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Andrés Cubillos-Ruiz
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Benjamin A. S. Van Mooy
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - Sallie W. Chisholm
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
3
|
Norris V. Hypothesis: bacteria live on the edge of phase transitions with a cell cycle regulated by a water-clock. Theory Biosci 2024; 143:253-277. [PMID: 39505803 DOI: 10.1007/s12064-024-00427-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 10/15/2024] [Indexed: 11/08/2024]
Abstract
A fundamental problem in biology is how cells obtain the reproducible, coherent phenotypes needed for natural selection to act or, put differently, how cells manage to limit their exploration of the vastness of phenotype space. A subset of this problem is how they regulate their cell cycle. Bacteria, like eukaryotic cells, are highly structured and contain scores of hyperstructures or assemblies of molecules and macromolecules. The existence and functioning of certain of these hyperstructures depend on phase transitions. Here, I propose a conceptual framework to facilitate the development of water-clock hypotheses in which cells use water to generate phenotypes by living 'on the edge of phase transitions'. I give an example of such a hypothesis in the case of the bacterial cell cycle and show how it offers a relatively novel 'view from here' that brings together a range of different findings about hyperstructures, phase transitions and water and that can be integrated with other hypotheses about differentiation, metabolism and the origins of life.
Collapse
Affiliation(s)
- Vic Norris
- CBSA UR 4312, University of Rouen Normandy, 76821, Rouen, Mont Saint Aignan, France.
| |
Collapse
|
4
|
Pirnia A, Maqdisi R, Mittal S, Sener M, Singharoy A. Perspective on Integrative Simulations of Bioenergetic Domains. J Phys Chem B 2024; 128:3302-3319. [PMID: 38562105 DOI: 10.1021/acs.jpcb.3c07335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Bioenergetic processes in cells, such as photosynthesis or respiration, integrate many time and length scales, which makes the simulation of energy conversion with a mere single level of theory impossible. Just like the myriad of experimental techniques required to examine each level of organization, an array of overlapping computational techniques is necessary to model energy conversion. Here, a perspective is presented on recent efforts for modeling bioenergetic phenomena with a focus on molecular dynamics simulations and its variants as a primary method. An overview of the various classical, quantum mechanical, enhanced sampling, coarse-grained, Brownian dynamics, and Monte Carlo methods is presented. Example applications discussed include multiscale simulations of membrane-wide electron transport, rate kinetics of ATP turnover from electrochemical gradients, and finally, integrative modeling of the chromatophore, a photosynthetic pseudo-organelle.
Collapse
Affiliation(s)
- Adam Pirnia
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1004, United States
| | - Ranel Maqdisi
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1004, United States
| | - Sumit Mittal
- VIT Bhopal University, Sehore 466114, Madhya Pradesh, India
| | - Melih Sener
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1004, United States
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Abhishek Singharoy
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1004, United States
| |
Collapse
|
5
|
Cai L, Li H, Deng J, Zhou R, Zeng Q. Biological interactions with Prochlorococcus: implications for the marine carbon cycle. Trends Microbiol 2024; 32:280-291. [PMID: 37722980 DOI: 10.1016/j.tim.2023.08.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/20/2023]
Abstract
The unicellular picocyanobacterium Prochlorococcus is the most abundant photoautotroph and contributes substantially to global CO2 fixation. In the vast euphotic zones of the open ocean, Prochlorococcus converts CO2 into organic compounds and supports diverse organisms, forming an intricate network of interactions that regulate the magnitude of carbon cycling and storage in the ocean. An understanding of the biological interactions with Prochlorococcus is critical for accurately estimating the contributions of Prochlorococcus and interacting organisms to the marine carbon cycle. This review synthesizes the primary production contributed by Prochlorococcus in the global ocean. We outline recent progress on the interactions of Prochlorococcus with heterotrophic bacteria, phages, and grazers that multifacetedly determine Prochlorococcus carbon production and fate. We discuss that climate change might affect the biological interactions with Prochlorococcus and thus the marine carbon cycle.
Collapse
Affiliation(s)
- Lanlan Cai
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Haofu Li
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China; HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Shenzhen, China
| | - Junwei Deng
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Ruiqian Zhou
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Qinglu Zeng
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China; HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Shenzhen, China; Center for Ocean Research in Hong Kong and Macau, The Hong Kong University of Science and Technology, Hong Kong, China.
| |
Collapse
|
6
|
Chan YF, Chung CC, Gong GC, Lin IJ, Hsu CW. Seasonal Patterns of Picocyanobacterial Community Structure in the Kuroshio Current. BIOLOGY 2023; 12:1424. [PMID: 37998023 PMCID: PMC10669657 DOI: 10.3390/biology12111424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/03/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023]
Abstract
The nutrient-scarce, warm, and high-salinity Kuroshio current has a profound impact on both the marine ecology of the northwestern Pacific Ocean and the global climate. This study aims to reveal the seasonal dynamics of picoplankton in the subtropical Kuroshio current. Our results showed that one of the picocyanobacteria, Synechococcus, mainly distributed in the surface water layer regardless of seasonal changes, and the cell abundance ranged from 104 to 105 cells mL-1. In contrast, the maximum concentration of the other picocyanobacteria, Prochlorococcus, was maintained at more than 105 cells mL-1 throughout the year. In the summer and the autumn, Prochlorococcus were mainly concentrated at the water layer near the bottom of the euphotic zone. They were evenly distributed in the euphotic zone in the spring and winter. The stirring effect caused by the monsoon determined their distribution in the water column. In addition, the results of 16S rRNA gene diversity analysis showed that the seasonal changes in the relative abundance of Synechococcus and Prochlorococcus in the surface water of each station accounted for 20 to 40% of the total reads. The clade II of Synechococcus and the High-light II of Prochlorococcus were the dominant strains in the waters all year round. Regarding other picoplankton, Proteobacteria and Actinobacteria occupied 45% and 10% of the total picoplankton in the four seasons. These data should be helpful for elucidating the impacts of global climate changes on marine ecology and biogeochemical cycles in the Western Boundary Currents in the future.
Collapse
Affiliation(s)
- Ya-Fan Chan
- Department of Microbiology, Soochow University, Taipei 11101, Taiwan;
| | - Chih-Ching Chung
- Institute of Marine Environment and Ecology, National Taiwan Ocean University, 2 Pei-Ning Road, Keelung 20224, Taiwan; (G.-C.G.); (I.-J.L.); (C.-W.H.)
- Center of Excellence for the Oceans, National Taiwan Ocean University, 2 Pei-Ning Road, Keelung 20224, Taiwan
| | - Gwo-Ching Gong
- Institute of Marine Environment and Ecology, National Taiwan Ocean University, 2 Pei-Ning Road, Keelung 20224, Taiwan; (G.-C.G.); (I.-J.L.); (C.-W.H.)
- Center of Excellence for the Oceans, National Taiwan Ocean University, 2 Pei-Ning Road, Keelung 20224, Taiwan
| | - I-Jung Lin
- Institute of Marine Environment and Ecology, National Taiwan Ocean University, 2 Pei-Ning Road, Keelung 20224, Taiwan; (G.-C.G.); (I.-J.L.); (C.-W.H.)
| | - Ching-Wei Hsu
- Institute of Marine Environment and Ecology, National Taiwan Ocean University, 2 Pei-Ning Road, Keelung 20224, Taiwan; (G.-C.G.); (I.-J.L.); (C.-W.H.)
| |
Collapse
|
7
|
Norris V, Kayser C, Muskhelishvili G, Konto-Ghiorghi Y. The roles of nucleoid-associated proteins and topoisomerases in chromosome structure, strand segregation, and the generation of phenotypic heterogeneity in bacteria. FEMS Microbiol Rev 2023; 47:fuac049. [PMID: 36549664 DOI: 10.1093/femsre/fuac049] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/06/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
How to adapt to a changing environment is a fundamental, recurrent problem confronting cells. One solution is for cells to organize their constituents into a limited number of spatially extended, functionally relevant, macromolecular assemblies or hyperstructures, and then to segregate these hyperstructures asymmetrically into daughter cells. This asymmetric segregation becomes a particularly powerful way of generating a coherent phenotypic diversity when the segregation of certain hyperstructures is with only one of the parental DNA strands and when this pattern of segregation continues over successive generations. Candidate hyperstructures for such asymmetric segregation in prokaryotes include those containing the nucleoid-associated proteins (NAPs) and the topoisomerases. Another solution to the problem of creating a coherent phenotypic diversity is by creating a growth-environment-dependent gradient of supercoiling generated along the replication origin-to-terminus axis of the bacterial chromosome. This gradient is modulated by transcription, NAPs, and topoisomerases. Here, we focus primarily on two topoisomerases, TopoIV and DNA gyrase in Escherichia coli, on three of its NAPs (H-NS, HU, and IHF), and on the single-stranded binding protein, SSB. We propose that the combination of supercoiling-gradient-dependent and strand-segregation-dependent topoisomerase activities result in significant differences in the supercoiling of daughter chromosomes, and hence in the phenotypes of daughter cells.
Collapse
Affiliation(s)
- Vic Norris
- University of Rouen, Laboratory of Bacterial Communication and Anti-infection Strategies, EA 4312, 76821 Mont Saint Aignan, France
| | - Clara Kayser
- University of Rouen, Laboratory of Bacterial Communication and Anti-infection Strategies, EA 4312, 76821 Mont Saint Aignan, France
| | - Georgi Muskhelishvili
- Agricultural University of Georgia, School of Natural Sciences, 0159 Tbilisi, Georgia
| | - Yoan Konto-Ghiorghi
- University of Rouen, Laboratory of Bacterial Communication and Anti-infection Strategies, EA 4312, 76821 Mont Saint Aignan, France
| |
Collapse
|
8
|
Zhao LS, Li CY, Chen XL, Wang Q, Zhang YZ, Liu LN. Native architecture and acclimation of photosynthetic membranes in a fast-growing cyanobacterium. PLANT PHYSIOLOGY 2022; 190:1883-1895. [PMID: 35947692 PMCID: PMC9614513 DOI: 10.1093/plphys/kiac372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Efficient solar energy conversion is ensured by the organization, physical association, and physiological coordination of various protein complexes in photosynthetic membranes. Here, we visualize the native architecture and interactions of photosynthetic complexes within the thylakoid membranes from a fast-growing cyanobacterium Synechococcus elongatus UTEX 2973 (Syn2973) using high-resolution atomic force microscopy. In the Syn2973 thylakoid membranes, both photosystem I (PSI)-enriched domains and crystalline photosystem II (PSII) dimer arrays were observed, providing favorable membrane environments for photosynthetic electron transport. The high light (HL)-adapted thylakoid membranes accommodated a large amount of PSI complexes, without the incorporation of iron-stress-induced protein A (IsiA) assemblies and formation of IsiA-PSI supercomplexes. In the iron deficiency (Fe-)-treated thylakoid membranes, in contrast, IsiA proteins densely associated with PSI, forming the IsiA-PSI supercomplexes with varying assembly structures. Moreover, type-I NADH dehydrogenase-like complexes (NDH-1) were upregulated under the HL and Fe- conditions and established close association with PSI complexes to facilitate cyclic electron transport. Our study provides insight into the structural heterogeneity and plasticity of the photosynthetic apparatus in the context of their native membranes in Syn2973 under environmental stress. Advanced understanding of the photosynthetic membrane organization and adaptation will provide a framework for uncovering the molecular mechanisms of efficient light harvesting and energy conversion.
Collapse
Affiliation(s)
| | - Chun-Yang Li
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, and Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Qiang Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
- Academy for Advanced Interdisciplinary Studies, Henan University, 475004 Kaifeng, China
| | - Yu-Zhong Zhang
- State Key Laboratory of Microbial Technology, and Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Lu-Ning Liu
- Author of correspondence: (L.-N.L.), (L.-S.Z.)
| |
Collapse
|
9
|
MacGregor-Chatwin C, Nürnberg DJ, Jackson PJ, Vasilev C, Hitchcock A, Ho MY, Shen G, Gisriel CJ, Wood WH, Mahbub M, Selinger VM, Johnson MP, Dickman MJ, Rutherford AW, Bryant DA, Hunter CN. Changes in supramolecular organization of cyanobacterial thylakoid membrane complexes in response to far-red light photoacclimation. SCIENCE ADVANCES 2022; 8:eabj4437. [PMID: 35138895 PMCID: PMC8827656 DOI: 10.1126/sciadv.abj4437] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Cyanobacteria are ubiquitous in nature and have developed numerous strategies that allow them to live in a diverse range of environments. Certain cyanobacteria synthesize chlorophylls d and f to acclimate to niches enriched in far-red light (FRL) and incorporate paralogous photosynthetic proteins into their photosynthetic apparatus in a process called FRL-induced photoacclimation (FaRLiP). We characterized the macromolecular changes involved in FRL-driven photosynthesis and used atomic force microscopy to examine the supramolecular organization of photosystem I associated with FaRLiP in three cyanobacterial species. Mass spectrometry showed the changes in the proteome of Chroococcidiopsis thermalis PCC 7203 that accompany FaRLiP. Fluorescence lifetime imaging microscopy and electron microscopy reveal an altered cellular distribution of photosystem complexes and illustrate the cell-to-cell variability of the FaRLiP response.
Collapse
Affiliation(s)
| | - Dennis J. Nürnberg
- Department of Life Sciences, Imperial College London, London, UK
- Physics Department, Freie Universität Berlin, Berlin, Germany
| | - Philip J. Jackson
- School of Biosciences, University of Sheffield, Sheffield, UK
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK
| | | | | | - Ming-Yang Ho
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Gaozhong Shen
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Christopher J. Gisriel
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ, USA
| | | | - Moontaha Mahbub
- Department of Life Sciences, Imperial College London, London, UK
| | | | | | - Mark J. Dickman
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK
| | | | - Donald A. Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - C. Neil Hunter
- School of Biosciences, University of Sheffield, Sheffield, UK
| |
Collapse
|
10
|
Semchonok DA, Mondal J, Cooper CJ, Schlum K, Li M, Amin M, Sorzano CO, Ramírez-Aportela E, Kastritis PL, Boekema EJ, Guskov A, Bruce BD. Cryo-EM structure of a tetrameric photosystem I from Chroococcidiopsis TS-821, a thermophilic, unicellular, non-heterocyst-forming cyanobacterium. PLANT COMMUNICATIONS 2022; 3:100248. [PMID: 35059628 PMCID: PMC8760143 DOI: 10.1016/j.xplc.2021.100248] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/03/2021] [Accepted: 10/08/2021] [Indexed: 05/19/2023]
Abstract
Photosystem I (PSI) is one of two photosystems involved in oxygenic photosynthesis. PSI of cyanobacteria exists in monomeric, trimeric, and tetrameric forms, in contrast to the strictly monomeric form of PSI in plants and algae. The tetrameric organization raises questions about its structural, physiological, and evolutionary significance. Here we report the ∼3.72 Å resolution cryo-electron microscopy structure of tetrameric PSI from the thermophilic, unicellular cyanobacterium Chroococcidiopsis sp. TS-821. The structure resolves 44 subunits and 448 cofactor molecules. We conclude that the tetramer is arranged via two different interfaces resulting from a dimer-of-dimers organization. The localization of chlorophyll molecules permits an excitation energy pathway within and between adjacent monomers. Bioinformatics analysis reveals conserved regions in the PsaL subunit that correlate with the oligomeric state. Tetrameric PSI may function as a key evolutionary step between the trimeric and monomeric forms of PSI organization in photosynthetic organisms.
Collapse
Affiliation(s)
- Dmitry A. Semchonok
- Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Jyotirmoy Mondal
- Biochemistry & Cellular and Molecular Biology Department, University of Tennessee, Knoxville, TN, USA
| | - Connor J. Cooper
- Program in Genome Science and Technology, University of Tennessee, Knoxville, TN, USA
| | - Katrina Schlum
- Program in Genome Science and Technology, University of Tennessee, Knoxville, TN, USA
| | - Meng Li
- Biochemistry & Cellular and Molecular Biology Department, University of Tennessee, Knoxville, TN, USA
- Bredesen Center for Interdisciplinary Research & Education, University of Tennessee, Knoxville, TN, USA
| | - Muhamed Amin
- Department of Sciences, University College Groningen, Groningen, the Netherlands
| | - Carlos O.S. Sorzano
- Biocomputing Unit, National Center for Biotechnology (CSIC), Darwin 3, Campus Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
- Universidad CEU San Pablo, Campus Urb. Montepríncipe, Boadilla del Monte, 28668 Madrid, Spain
| | - Erney Ramírez-Aportela
- Biocomputing Unit, National Center for Biotechnology (CSIC), Darwin 3, Campus Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Panagiotis L. Kastritis
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - Egbert J. Boekema
- Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Albert Guskov
- Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Barry D. Bruce
- Biochemistry & Cellular and Molecular Biology Department, University of Tennessee, Knoxville, TN, USA
- Program in Genome Science and Technology, University of Tennessee, Knoxville, TN, USA
- Bredesen Center for Interdisciplinary Research & Education, University of Tennessee, Knoxville, TN, USA
- Microbiology Department, University of Tennessee, Knoxville, TN, USA
- Corresponding author
| |
Collapse
|
11
|
Jia A, Zheng Y, Chen H, Wang Q. Regulation and Functional Complexity of the Chlorophyll-Binding Protein IsiA. Front Microbiol 2021; 12:774107. [PMID: 34867913 PMCID: PMC8635728 DOI: 10.3389/fmicb.2021.774107] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 10/25/2021] [Indexed: 11/17/2022] Open
Abstract
As the oldest known lineage of oxygen-releasing photosynthetic organisms, cyanobacteria play the key roles in helping shaping the ecology of Earth. Iron is an ideal transition metal for redox reactions in biological systems. Cyanobacteria frequently encounter iron deficiency due to the environmental oxidation of ferrous ions to ferric ions, which are highly insoluble at physiological pH. A series of responses, including architectural changes to the photosynthetic membranes, allow cyanobacteria to withstand this condition and maintain photosynthesis. Iron-stress-induced protein A (IsiA) is homologous to the cyanobacterial chlorophyll (Chl)-binding protein, photosystem II core antenna protein CP43. IsiA is the major Chl-containing protein in iron-starved cyanobacteria, binding up to 50% of the Chl in these cells, and this Chl can be released from IsiA for the reconstruction of photosystems during the recovery from iron limitation. The pigment–protein complex (CPVI-4) encoded by isiA was identified and found to be expressed under iron-deficient conditions nearly 30years ago. However, its precise function is unknown, partially due to its complex regulation; isiA expression is induced by various types of stresses and abnormal physiological states besides iron deficiency. Furthermore, IsiA forms a range of complexes that perform different functions. In this article, we describe progress in understanding the regulation and functions of IsiA based on laboratory research using model cyanobacteria.
Collapse
Affiliation(s)
- Anqi Jia
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Yanli Zheng
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Hui Chen
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Qiang Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
12
|
Maity S, Daskalakis V, Elstner M, Kleinekathöfer U. Multiscale QM/MM molecular dynamics simulations of the trimeric major light-harvesting complex II. Phys Chem Chem Phys 2021; 23:7407-7417. [PMID: 33876100 DOI: 10.1039/d1cp01011e] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Photosynthetic processes are driven by sunlight. Too little of it and the photosynthetic machinery cannot produce the reductive power to drive the anabolic pathways. Too much sunlight and the machinery can get damaged. In higher plants, the major Light-Harvesting Complex (LHCII) efficiently absorbs the light energy, but can also dissipate it when in excess (quenching). In order to study the dynamics related to the quenching process but also the exciton dynamics in general, one needs to accurately determine the so-called spectral density which describes the coupling between the relevant pigment modes and the environmental degrees of freedom. To this end, Born-Oppenheimer molecular dynamics simulations in a quantum mechanics/molecular mechanics (QM/MM) fashion utilizing the density functional based tight binding (DFTB) method have been performed for the ground state dynamics. Subsequently, the time-dependent extension of the long-range-corrected DFTB scheme has been employed for the excited state calculations of the individual chlorophyll-a molecules in the LHCII complex. The analysis of this data resulted in spectral densities showing an astonishing agreement with the experimental counterpart in this rather large system. This consistency with an experimental observable also supports the accuracy, robustness, and reliability of the present multi-scale scheme. To the best of our knowledge, this is the first theoretical attempt on this large complex system is ever made to accurately simulate the spectral density. In addition, the resulting spectral densities and site energies were used to determine the exciton transfer rate within a special pigment pair consisting of a chlorophyll-a and a carotenoid molecule which is assumed to play a role in the balance between the light harvesting and quenching modes.
Collapse
Affiliation(s)
- Sayan Maity
- Department of Physics and Earth Sciences, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany.
| | | | | | | |
Collapse
|
13
|
Xanthophyll carotenoids stabilise the association of cyanobacterial chlorophyll synthase with the LHC-like protein HliD. Biochem J 2021; 477:4021-4036. [PMID: 32990304 DOI: 10.1042/bcj20200561] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/11/2020] [Accepted: 09/28/2020] [Indexed: 02/03/2023]
Abstract
Chlorophyll synthase (ChlG) catalyses a terminal reaction in the chlorophyll biosynthesis pathway, attachment of phytol or geranylgeraniol to the C17 propionate of chlorophyllide. Cyanobacterial ChlG forms a stable complex with high light-inducible protein D (HliD), a small single-helix protein homologous to the third transmembrane helix of plant light-harvesting complexes (LHCs). The ChlG-HliD assembly binds chlorophyll, β-carotene, zeaxanthin and myxoxanthophyll and associates with the YidC insertase, most likely to facilitate incorporation of chlorophyll into translated photosystem apoproteins. HliD independently coordinates chlorophyll and β-carotene but the role of the xanthophylls, which appear to be exclusive to the core ChlG-HliD assembly, is unclear. Here we generated mutants of Synechocystis sp. PCC 6803 lacking specific combinations of carotenoids or HliD in a background with FLAG- or His-tagged ChlG. Immunoprecipitation experiments and analysis of isolated membranes demonstrate that the absence of zeaxanthin and myxoxanthophyll significantly weakens the interaction between HliD and ChlG. ChlG alone does not bind carotenoids and accumulation of the chlorophyllide substrate in the absence of xanthophylls indicates that activity/stability of the 'naked' enzyme is perturbed. In contrast, the interaction of HliD with a second partner, the photosystem II assembly factor Ycf39, is preserved in the absence of xanthophylls. We propose that xanthophylls are required for the stable association of ChlG and HliD, acting as a 'molecular glue' at the lateral transmembrane interface between these proteins; roles for zeaxanthin and myxoxanthophyll in ChlG-HliD complexation are discussed, as well as the possible presence of similar complexes between LHC-like proteins and chlorophyll biosynthesis enzymes in plants.
Collapse
|
14
|
Swainsbury DJK, Qian P, Jackson PJ, Faries KM, Niedzwiedzki DM, Martin EC, Farmer DA, Malone LA, Thompson RF, Ranson NA, Canniffe DP, Dickman MJ, Holten D, Kirmaier C, Hitchcock A, Hunter CN. Structures of Rhodopseudomonas palustris RC-LH1 complexes with open or closed quinone channels. SCIENCE ADVANCES 2021; 7:7/3/eabe2631. [PMID: 33523887 PMCID: PMC7806223 DOI: 10.1126/sciadv.abe2631] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/18/2020] [Indexed: 05/23/2023]
Abstract
The reaction-center light-harvesting complex 1 (RC-LH1) is the core photosynthetic component in purple phototrophic bacteria. We present two cryo-electron microscopy structures of RC-LH1 complexes from Rhodopseudomonas palustris A 2.65-Å resolution structure of the RC-LH114-W complex consists of an open 14-subunit LH1 ring surrounding the RC interrupted by protein-W, whereas the complex without protein-W at 2.80-Å resolution comprises an RC completely encircled by a closed, 16-subunit LH1 ring. Comparison of these structures provides insights into quinone dynamics within RC-LH1 complexes, including a previously unidentified conformational change upon quinone binding at the RC QB site, and the locations of accessory quinone binding sites that aid their delivery to the RC. The structurally unique protein-W prevents LH1 ring closure, creating a channel for accelerated quinone/quinol exchange.
Collapse
Affiliation(s)
- David J K Swainsbury
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK.
| | - Pu Qian
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
- Materials and Structural Analysis, Thermo Fisher Scientific, Achtseweg Noord 5, 5651 GG Eindhoven, Netherlands
| | - Philip J Jackson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, S1 3JD, UK
| | - Kaitlyn M Faries
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Dariusz M Niedzwiedzki
- Center for Solar Energy and Energy Storage, Washington University in St. Louis, St. Louis, MO 63130, USA
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Elizabeth C Martin
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - David A Farmer
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Lorna A Malone
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Rebecca F Thompson
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Neil A Ranson
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Daniel P Canniffe
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Mark J Dickman
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, S1 3JD, UK
| | - Dewey Holten
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Christine Kirmaier
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Andrew Hitchcock
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - C Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK.
| |
Collapse
|
15
|
Abstract
Photosynthetic membranes are typically densely packed with proteins, and this is crucial for their function in efficient trapping of light energy. Despite being crowded with protein, the membranes are fluid systems in which proteins and smaller molecules can diffuse. Fluidity is also crucial for photosynthetic function, as it is essential for biogenesis, electron transport, and protein redistribution for functional regulation. All photosynthetic membranes seem to maintain a delicate balance between crowding, order, and fluidity. How does this work in phototrophic bacteria? In this review, we focus on two types of intensively studied bacterial photosynthetic membranes: the chromatophore membranes of purple bacteria and the thylakoid membranes of cyanobacteria. Both systems are distinct from the plasma membrane, and both have a distinctive protein composition that reflects their specialized roles. Chromatophores are formed from plasma membrane invaginations, while thylakoid membranes appear to be an independent intracellular membrane system. We discuss the techniques that can be applied to study the organization and dynamics of these membrane systems, including electron microscopy techniques, atomic force microscopy, and many variants of fluorescence microscopy. We go on to discuss the insights that havebeen acquired from these techniques, and the role of membrane dynamics in the physiology of photosynthetic membranes. Membrane dynamics on multiple timescales are crucial for membrane function, from electron transport on timescales of microseconds to milliseconds to regulation and biogenesis on timescales of minutes to hours. We emphasize the open questions that remain in the field.
Collapse
Affiliation(s)
- Conrad W. Mullineaux
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Lu-Ning Liu
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
16
|
Zhao LS, Huokko T, Wilson S, Simpson DM, Wang Q, Ruban AV, Mullineaux CW, Zhang YZ, Liu LN. Structural variability, coordination and adaptation of a native photosynthetic machinery. NATURE PLANTS 2020; 6:869-882. [PMID: 32665651 DOI: 10.1038/s41477-020-0694-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 05/14/2020] [Indexed: 05/12/2023]
Abstract
Cyanobacterial thylakoid membranes represent the active sites for both photosynthetic and respiratory electron transport. We used high-resolution atomic force microscopy to visualize the native organization and interactions of photosynthetic complexes within the thylakoid membranes from the model cyanobacterium Synechococcus elongatus PCC 7942. The thylakoid membranes are heterogeneous and assemble photosynthetic complexes into functional domains to enhance their coordination and regulation. Under high light, the chlorophyll-binding proteins IsiA are strongly expressed and associate with Photosystem I (PSI), forming highly variable IsiA-PSI supercomplexes to increase the absorption cross-section of PSI. There are also tight interactions of PSI with Photosystem II (PSII), cytochrome b6f, ATP synthase and NAD(P)H dehydrogenase complexes. The organizational variability of these photosynthetic supercomplexes permits efficient linear and cyclic electron transport as well as bioenergetic regulation. Understanding the organizational landscape and environmental adaptation of cyanobacterial thylakoid membranes may help inform strategies for engineering efficient photosynthetic systems and photo-biofactories.
Collapse
Affiliation(s)
- Long-Sheng Zhao
- State Key Laboratory of Microbial Technology, and Marine Biotechnology Research Center, Shandong University, Qingdao, China
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
- College of Marine Life Sciences and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Tuomas Huokko
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Sam Wilson
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Deborah M Simpson
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Qiang Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Alexander V Ruban
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Conrad W Mullineaux
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Yu-Zhong Zhang
- State Key Laboratory of Microbial Technology, and Marine Biotechnology Research Center, Shandong University, Qingdao, China.
- College of Marine Life Sciences and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Lu-Ning Liu
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK.
- College of Marine Life Sciences and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China.
| |
Collapse
|
17
|
Pinevich AV. Chloroplast history clarified by the criterion of light-harvesting complex. Biosystems 2020; 196:104173. [PMID: 32534171 DOI: 10.1016/j.biosystems.2020.104173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/19/2020] [Accepted: 05/21/2020] [Indexed: 01/13/2023]
Abstract
Bacterial essence of mitochondria and chloroplasts was initially proclaimed in general outline. Later, the remarkable insight gave way to an elaborate hypothesis. Finally, it took shape of a theory confirmed by molecular biology data. In particular, the rrn operon, which is the key phylogeny marker, locates chloroplasts on the tree of Cyanobacteria. Chloroplast ancestry and diversity can be also traced with the rpoС and psbA genes, rbc operon, and other molecular criteria of prime importance. Another criterion, also highly reliable, is light-harvesting complex (LHC). LHC pigment and protein moieties specify light acclimation strategies in evolutionary retrospect and modern biosphere. The onset of symbiosis between eukaryotic host and pre-chloroplast, as well as further mutual adjustment of partners depended on physiological competence of LHC. In this review, the criterion of LHC is applied to the origin and diversity of chloroplasts. In particular, ancient cyanobacterium possessing tandem antenna (encoded by the cbp genes and the pbp genes, correspondingly), and defined as a prochlorophyte, is argued to be chloroplast ancestor.
Collapse
Affiliation(s)
- Alexander V Pinevich
- St. Petersburg State University, Department of Microbiology, St. Petersburg, Russia.
| |
Collapse
|
18
|
Yoneda T, Tanimoto Y, Takagi D, Morigaki K. Photosynthetic Model Membranes of Natural Plant Thylakoid Embedded in a Patterned Polymeric Lipid Bilayer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:5863-5871. [PMID: 32390435 DOI: 10.1021/acs.langmuir.0c00613] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Thylakoid membranes in the chloroplast of plants, algae, and cyanobacteria are the powerhouse of photosynthesis, capturing solar energy and converting it into chemical energy. Although their structures and functions have been extensively studied, the intrinsically heterogeneous and dynamic nature of the membrane structures is still not fully understood. Investigating native thylakoid membranes in vivo is difficult due to their small size and limited external access to the chloroplast interior, while the bottom-up approaches based on model systems have been hampered by the sheer complexity of the native membrane. Here, we try to fill the gap by reconstituting the whole thylakoid membrane into a patterned substrate-supported planer bilayer. A mixture of thylakoid membrane purified from spinach leaves and synthetic phospholipid 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) vesicles spontaneously formed a laterally continuous and fluid two-dimensional (2D) membrane in the scaffold of the patterned polymeric bilayer. Chlorophyll fluorescence arising from photosystem II (PSII) recovered after photobleaching, suggesting that the membrane components are laterally mobile. The reversible changes of chlorophyll fluorescence in the presence of the electron acceptors and/or inhibitors indicated that the electron transfer activity of PSII was retained. Furthermore, we confirmed the electron transfer activity of photosystem I (PSI) by observing the generation of nicotinamide adenine dinucleotide phosphate (NADPH) in the presence of water-soluble ferredoxin and ferredoxin-NADP+ reductase. The lateral mobility of membrane-bound molecules and the functional reconstitution of major photosystems provide evidence that our hybrid thylakoid membranes could be an excellent experimental platform to study the 2D molecular organization and machinery of photosynthesis.
Collapse
Affiliation(s)
- Takuro Yoneda
- Graduate School of Agricultural Science, Kobe University, Rokkodaicho 1-1, Nada, Kobe 657-8501, Japan
| | - Yasushi Tanimoto
- Graduate School of Agricultural Science, Kobe University, Rokkodaicho 1-1, Nada, Kobe 657-8501, Japan
| | - Daisuke Takagi
- Graduate School of Agricultural Science, Kobe University, Rokkodaicho 1-1, Nada, Kobe 657-8501, Japan
- Graduate School of Agricultural Science, Tohoku University, Aoba 468-1, Aranaki, Aoba, Sendai 980-0845, Japan
| | - Kenichi Morigaki
- Graduate School of Agricultural Science, Kobe University, Rokkodaicho 1-1, Nada, Kobe 657-8501, Japan
- Biosignal Research Center, Kobe University, Rokkodaicho 1-1, Nada, Kobe 657-8501, Japan
| |
Collapse
|
19
|
Sener M, Levy S, Stone JE, Christensen AJ, Isralewitz B, Patterson R, Borkiewicz K, Carpenter J, Hunter CN, Luthey-Schulten Z, Cox D. Multiscale modeling and cinematic visualization of photosynthetic energy conversion processes from electronic to cell scales. PARALLEL COMPUTING 2020; 102:102698. [PMID: 34824485 PMCID: PMC8612599 DOI: 10.1016/j.parco.2020.102698] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Conversion of sunlight into chemical energy, namely photosynthesis, is the primary energy source of life on Earth. A visualization depicting this process, based on multiscale computational models from electronic to cell scales, is presented in the form of an excerpt from the fulldome show Birth of Planet Earth. This accessible visual narrative shows a lay audience, including children, how the energy of sunlight is captured, converted, and stored through a chain of proteins to power living cells. The visualization is the result of a multi-year collaboration among biophysicists, visualization scientists, and artists, which, in turn, is based on a decade-long experimental-computational collaboration on structural and functional modeling that produced an atomic detail description of a bacterial bioenergetic organelle, the chromatophore. Software advancements necessitated by this project have led to significant performance and feature advances, including hardware-accelerated cinematic ray tracing and instanced visualizations for efficient cell-scale modeling. The energy conversion steps depicted feature an integration of function from electronic to cell levels, spanning nearly 12 orders of magnitude in time scales. This atomic detail description uniquely enables a modern retelling of one of humanity's earliest stories-the interplay between light and life.
Collapse
Affiliation(s)
- Melih Sener
- Beckman Institute, University of Illinois at Urbana-Champaign
| | - Stuart Levy
- Advanced Visualization Laboratory, NCSA, University of Illinois at Urbana-Champaign
| | - John E. Stone
- Beckman Institute, University of Illinois at Urbana-Champaign
| | - AJ Christensen
- Advanced Visualization Laboratory, NCSA, University of Illinois at Urbana-Champaign
| | | | - Robert Patterson
- Advanced Visualization Laboratory, NCSA, University of Illinois at Urbana-Champaign
| | - Kalina Borkiewicz
- Advanced Visualization Laboratory, NCSA, University of Illinois at Urbana-Champaign
| | - Jeffrey Carpenter
- Advanced Visualization Laboratory, NCSA, University of Illinois at Urbana-Champaign
| | - C. Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, U.K
| | | | - Donna Cox
- Beckman Institute, University of Illinois at Urbana-Champaign
| |
Collapse
|
20
|
Siebenaller C, Junglas B, Schneider D. Functional Implications of Multiple IM30 Oligomeric States. FRONTIERS IN PLANT SCIENCE 2019; 10:1500. [PMID: 31824532 PMCID: PMC6882379 DOI: 10.3389/fpls.2019.01500] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/29/2019] [Indexed: 05/03/2023]
Abstract
The inner membrane-associated protein of 30 kDa (IM30), also known as the vesicle-inducing protein in plastids 1 (Vipp1), is essential for photo-autotrophic growth of cyanobacteria, algae and higher plants. While its exact function still remains largely elusive, it is commonly accepted that IM30 is crucially involved in thylakoid membrane biogenesis, stabilization and/or maintenance. A characteristic feature of IM30 is its intrinsic propensity to form large homo-oligomeric protein complexes. 15 years ago, it has been reported that these supercomplexes have a ring-shaped structure. However, the in vivo significance of these ring structures is not finally resolved yet and the formation of more complex assemblies has been reported. We here present and discuss research on IM30 conducted within the past 25 years with a special emphasis on the question of why we potentially need IM30 supercomplexes in vivo.
Collapse
Affiliation(s)
| | | | - Dirk Schneider
- Department of Pharmacy and Biochemistry, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
21
|
Brady NG, Li M, Ma Y, Gumbart JC, Bruce BD. Non-detergent isolation of a cyanobacterial photosystem I using styrene maleic acid alternating copolymers. RSC Adv 2019; 9:31781-31796. [PMID: 35527920 PMCID: PMC9072662 DOI: 10.1039/c9ra04619d] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/02/2019] [Indexed: 11/21/2022] Open
Abstract
Trimeric Photosystem I (PSI) from the thermophilic cyanobacteriumThermosynechococcus elongatus(Te) is the largest membrane protein complex to be encapsulated within a SMALP to date.
Collapse
Affiliation(s)
- Nathan G. Brady
- Department of Biochemistry & Cellular and Molecular Biology
- University of Tennessee at Knoxville
- Knoxville
- USA
| | - Meng Li
- Department of Biochemistry & Cellular and Molecular Biology
- University of Tennessee at Knoxville
- Knoxville
- USA
- Bredesen Center for Interdisciplinary Research and Education
| | - Yue Ma
- Department of Biochemistry & Cellular and Molecular Biology
- University of Tennessee at Knoxville
- Knoxville
- USA
| | | | - Barry D. Bruce
- Department of Biochemistry & Cellular and Molecular Biology
- University of Tennessee at Knoxville
- Knoxville
- USA
- Bredesen Center for Interdisciplinary Research and Education
| |
Collapse
|