1
|
Hoh D, Froehlich JE, Kramer DM. Redox regulation in chloroplast thylakoid lumen: The pmf changes everything, again. PLANT, CELL & ENVIRONMENT 2024; 47:2749-2765. [PMID: 38111217 DOI: 10.1111/pce.14789] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/28/2023] [Accepted: 12/05/2023] [Indexed: 12/20/2023]
Abstract
Photosynthesis is the foundation of life on Earth. However, if not well regulated, it can also generate excessive reactive oxygen species (ROS), which can cause photodamage. Regulation of photosynthesis is highly dynamic, responding to both environmental and metabolic cues, and occurs at many levels, from light capture to energy storage and metabolic processes. One general mechanism of regulation involves the reversible oxidation and reduction of protein thiol groups, which can affect the activity of enzymes and the stability of proteins. Such redox regulation has been well studied in stromal enzymes, but more recently, evidence has emerged of redox control of thylakoid lumenal enzymes. This review/hypothesis paper summarizes the latest research and discusses several open questions and challenges to achieving effective redox control in the lumen, focusing on the distinct environments and regulatory components of the thylakoid lumen, including the need to transport electrons across the thylakoid membrane, the effects of pH changes by the proton motive force (pmf) in the stromal and lumenal compartments, and the observed differences in redox states. These constraints suggest that activated oxygen species are likely to be major regulatory contributors to lumenal thiol redox regulation, with key components and processes yet to be discovered.
Collapse
Affiliation(s)
- Donghee Hoh
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
| | - John E Froehlich
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - David M Kramer
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
2
|
Hao J, Malnoë A. A Simple Sonication Method to Isolate the Chloroplast Lumen in Arabidopsis thaliana. Bio Protoc 2023; 13:e4756. [PMID: 37575389 PMCID: PMC10415170 DOI: 10.21769/bioprotoc.4756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/31/2023] [Accepted: 05/24/2023] [Indexed: 08/15/2023] Open
Abstract
The chloroplast lumen contains at least 80 proteins whose function and regulation are not yet fully understood. Isolating the chloroplast lumen enables the characterization of the lumenal proteins. The lumen can be isolated in several ways through thylakoid disruption using a Yeda press or sonication, or through thylakoid solubilization using a detergent. Here, we present a simple procedure to isolate thylakoid lumen by sonication using leaves of the plant Arabidopsis thaliana. The step-by-step procedure is as follows: thylakoids are isolated from chloroplasts, loosely associated thylakoid surface proteins from the stroma are removed, and the lumen fraction is collected in the supernatant following sonication and centrifugation. Compared to other procedures, this method is easy to implement and saves time, plant material, and cost. Lumenal proteins are obtained in high quantity and purity; however, some stromal membrane-associated proteins are released to the lumen fraction, so this method could be further adapted if needed by decreasing sonication power and/or time.
Collapse
Affiliation(s)
- Jingfang Hao
- Umeå Plant Science Centre (UPSC), Department of Plant Physiology, Umeå University, 901 87 Umeå, Sweden
| | - Alizée Malnoë
- Umeå Plant Science Centre (UPSC), Department of Plant Physiology, Umeå University, 901 87 Umeå, Sweden
| |
Collapse
|
3
|
Duan S, Dong B, Chen Z, Hong L, Zhang P, Yang Z, Wang HB, Jin HL. HHL1 and SOQ1 synergistically regulate nonphotochemical quenching in Arabidopsis. J Biol Chem 2023; 299:104670. [PMID: 37024091 PMCID: PMC10173003 DOI: 10.1016/j.jbc.2023.104670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/14/2023] [Accepted: 03/21/2023] [Indexed: 04/08/2023] Open
Abstract
Nonphotochemical quenching (NPQ) is an important photoprotective mechanism that quickly dissipates excess light energy as heat. NPQ can be induced in a few seconds to several hours; most studies of this process have focused on the rapid induction of NPQ. Recently, a new, slowly induced form of NPQ, called qH, was found during the discovery of the quenching inhibitor suppressor of quenching 1 (SOQ1). However, the specific mechanism of qH remains unclear. Here, we found that hypersensitive to high light 1 (HHL1)-a damage repair factor of photosystem II-interacts with SOQ1. The enhanced NPQ phenotype of the hhl1 mutant is similar to that of the soq1 mutant, which is not related to energy-dependent quenching or other known NPQ components. Furthermore, the hhl1 soq1 double mutant showed higher NPQ than the single mutants, but its pigment content and composition were similar to those of the wildtype. Overexpressing HHL1 decreased NPQ in hhl1 to below wildtype levels, whereas NPQ in hhl1 plants overexpressing SOQ1 was lower than that in hhl1 but higher than that in the wildtype. Moreover, we found that HHL1 promotes the SOQ1-mediated inhibition of plastidial lipoprotein through its von Willebrand factor type A domain. We propose that HHL1 and SOQ1 synergistically regulate NPQ.
Collapse
Affiliation(s)
- Sujuan Duan
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Beibei Dong
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ziqi Chen
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Liu Hong
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Pengxiang Zhang
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ziyue Yang
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hong-Bin Wang
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China; Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Hong-Lei Jin
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China; Guangzhou Key Laboratory of Chinese Medicine Research on Prevention and Treatment of Osteoporosis, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
4
|
Bru P, Steen CJ, Park S, Amstutz CL, Sylak-Glassman EJ, Lam L, Fekete A, Mueller MJ, Longoni F, Fleming GR, Niyogi KK, Malnoë A. The major trimeric antenna complexes serve as a site for qH-energy dissipation in plants. J Biol Chem 2022; 298:102519. [PMID: 36152752 PMCID: PMC9615032 DOI: 10.1016/j.jbc.2022.102519] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 09/08/2022] [Accepted: 09/10/2022] [Indexed: 11/28/2022] Open
Abstract
Plants and algae are faced with a conundrum: harvesting sufficient light to drive their metabolic needs while dissipating light in excess to prevent photodamage, a process known as nonphotochemical quenching. A slowly relaxing form of energy dissipation, termed qH, is critical for plants’ survival under abiotic stress; however, qH location in the photosynthetic membrane is unresolved. Here, we tested whether we could isolate subcomplexes from plants in which qH was induced that would remain in an energy-dissipative state. Interestingly, we found that chlorophyll (Chl) fluorescence lifetimes were decreased by qH in isolated major trimeric antenna complexes, indicating that they serve as a site for qH-energy dissipation and providing a natively quenched complex with physiological relevance to natural conditions. Next, we monitored the changes in thylakoid pigment, protein, and lipid contents of antenna with active or inactive qH but did not detect any evident differences. Finally, we investigated whether specific subunits of the major antenna complexes were required for qH but found that qH was insensitive to trimer composition. Because we previously observed that qH can occur in the absence of specific xanthophylls, and no evident changes in pigments, proteins, or lipids were detected, we tentatively propose that the energy-dissipative state reported here may stem from Chl–Chl excitonic interaction.
Collapse
Affiliation(s)
- Pierrick Bru
- Umeå Plant Science Centre (UPSC), Department of Plant Physiology, Umeå University, 901 87 Umeå, Sweden
| | - Collin J Steen
- Department of Chemistry, University of California, Berkeley, CA 94720, USA; Molecular Biophysics and Integrated Bioimaging Division (formerly Physical Biosciences Division), Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Kavli Energy Nanoscience Institute, Berkeley, CA 94720, USA
| | - Soomin Park
- Department of Chemistry, University of California, Berkeley, CA 94720, USA; Molecular Biophysics and Integrated Bioimaging Division (formerly Physical Biosciences Division), Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Kavli Energy Nanoscience Institute, Berkeley, CA 94720, USA; School of Energy, Materials and Chemical Engineering, Korea University of Technology and Education, Cheonan, Chungnam 31253, Republic of Korea
| | - Cynthia L Amstutz
- Howard Hughes Medical Institute, Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Emily J Sylak-Glassman
- Department of Chemistry, University of California, Berkeley, CA 94720, USA; Molecular Biophysics and Integrated Bioimaging Division (formerly Physical Biosciences Division), Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Lam Lam
- Molecular Biophysics and Integrated Bioimaging Division (formerly Physical Biosciences Division), Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Kavli Energy Nanoscience Institute, Berkeley, CA 94720, USA; Graduate Group in Biophysics, University of California, Berkeley, CA 94720, USA
| | - Agnes Fekete
- Julius-von-Sachs-Institute, Biocenter, Pharmaceutical Biology, University of Wuerzburg, D-97082 Wuerzburg, Germany
| | - Martin J Mueller
- Julius-von-Sachs-Institute, Biocenter, Pharmaceutical Biology, University of Wuerzburg, D-97082 Wuerzburg, Germany
| | - Fiamma Longoni
- Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Graham R Fleming
- Department of Chemistry, University of California, Berkeley, CA 94720, USA; Molecular Biophysics and Integrated Bioimaging Division (formerly Physical Biosciences Division), Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Kavli Energy Nanoscience Institute, Berkeley, CA 94720, USA; Graduate Group in Biophysics, University of California, Berkeley, CA 94720, USA
| | - Krishna K Niyogi
- Molecular Biophysics and Integrated Bioimaging Division (formerly Physical Biosciences Division), Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Alizée Malnoë
- Umeå Plant Science Centre (UPSC), Department of Plant Physiology, Umeå University, 901 87 Umeå, Sweden.
| |
Collapse
|