1
|
Nakamura S, Kojima Y, Takeuchi S. Causative Genes of Homologous Recombination Deficiency (HRD)-Related Breast Cancer and Specific Strategies at Present. Curr Oncol 2025; 32:90. [PMID: 39996890 PMCID: PMC11854191 DOI: 10.3390/curroncol32020090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/29/2025] [Accepted: 01/30/2025] [Indexed: 02/26/2025] Open
Abstract
Recently, homologous recombination deficiency (HRD) has become a new target for hereditary cancers. Molecular-based approaches for hereditary cancers in the clinical setting have been reviewed. In particular, the efficacy of the PARP inhibitor has been considered by several clinical trials for various kinds of hereditary cancers. This indicates that the PARP inhibitor can be effective for any kind of BRCA mutated cancers, regardless of the organ-specific cancer. Homologous recombination deficiency (HRD) has become a new target for hereditary cancers, indicating the necessity to confirm the status of HRD-related genes. ARID1A, ATM, ATRX, PALB2, BARD1, RAD51C and CHEK2 are known as HRD-related genes for which simultaneous examination as part of panel testing is more suitable. Both surgical and medical oncologists should learn the basis of genetics including HRD. An understanding of the basic mechanism of homologous repair recombination (HRR) in BRCA-related breast cancer is mandatory for all surgical or medical oncologists because PARP inhibitors may be effective for these cancers and a specific strategy of screening for non-cancers exists. The clinical behavior of each gene should be clarified based on a large-scale database in the future, or, in other words, on real-world data. Firstly, HRD-related genes should be examined when the hereditary nature of a cancer is placed in doubt after an examination of the relevant family history. Alternatively, HRD score examination is a solution by which to identify HRD-related genes at the first step. If lifetime risk is estimated at over 20%, an annual breast MRI is necessary for high-risk screening. However, there are limited data to show its benefit compared with BRCA. Therefore, a large-scale database, including clinical information and a long-term follow-up should be established, after which a periodical assessment is mandatory. The clinical behavior of each gene should be clarified based on a large-scale database, or, in other words, real-world data.
Collapse
Affiliation(s)
- Seigo Nakamura
- Institute for Clinical Genetics and Genomics, Showa University, Tokyo 142-8555, Japan; (Y.K.); (S.T.)
- Division of Breast Surgical Oncology, Department of Surgery, Showa University, Tokyo 142-8666, Japan
| | - Yasuyuki Kojima
- Institute for Clinical Genetics and Genomics, Showa University, Tokyo 142-8555, Japan; (Y.K.); (S.T.)
- Division of Breast Surgical Oncology, Department of Surgery, Showa University, Tokyo 142-8666, Japan
| | - Sayoko Takeuchi
- Institute for Clinical Genetics and Genomics, Showa University, Tokyo 142-8555, Japan; (Y.K.); (S.T.)
| |
Collapse
|
2
|
Rocca V, Lo Feudo E, Dinatolo F, Lavano SM, Bilotta A, Amato R, D’Antona L, Trapasso F, Baudi F, Colao E, Perrotti N, Paduano F, Iuliano R. Germline Variant Spectrum in Southern Italian High-Risk Hereditary Breast Cancer Patients: Insights from Multi-Gene Panel Testing. Curr Issues Mol Biol 2024; 46:13003-13020. [PMID: 39590369 PMCID: PMC11592649 DOI: 10.3390/cimb46110775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Hereditary breast cancer accounts for 5-10% of all cases, with pathogenic variants in BRCA1/2 and other susceptibility genes playing a crucial role. This study elucidates the prevalence and spectrum of germline variants in 13 cancer predisposition genes among high-risk hereditary breast cancer patients from Southern Italy. We employed next-generation sequencing (NGS) to analyze 254 individuals selected through genetic counseling. Pathogenic or likely pathogenic variants were identified in 13% (34/254) of patients, with 54% of these variants occurring in non-BRCA1/2 genes. Notably, we observed a recurrent BRCA1 c.4964_4982del founder mutation, underscoring the importance of population-specific genetic screening. The spectrum of variants extended beyond BRCA1/2 to include PALB2, ATM, TP53, CHEK2, and RAD51C, highlighting the genetic heterogeneity of breast cancer susceptibility. Variants of uncertain significance were detected in 20% of patients, emphasizing the ongoing challenge of variant interpretation in the era of multi-gene panel testing. These findings not only enhance our understanding of the genetic landscape of breast cancer in Southern Italy but also provide a foundation for developing more targeted, population-specific approaches to genetic testing and counseling, ultimately contributing to the advancement of precision medicine in oncology.
Collapse
Affiliation(s)
- Valentina Rocca
- Medical Genetics Unit, Renato Dulbecco University Hospital, 88100 Catanzaro, Italy; (V.R.); (E.L.F.); (F.D.); (S.M.L.); (A.B.); (R.A.); (F.T.); (F.B.); (E.C.); (N.P.)
- Department of Clinical and Experimental Medicine, Campus S. Venuta, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Elisa Lo Feudo
- Medical Genetics Unit, Renato Dulbecco University Hospital, 88100 Catanzaro, Italy; (V.R.); (E.L.F.); (F.D.); (S.M.L.); (A.B.); (R.A.); (F.T.); (F.B.); (E.C.); (N.P.)
- Department of Clinical and Experimental Medicine, Campus S. Venuta, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Francesca Dinatolo
- Medical Genetics Unit, Renato Dulbecco University Hospital, 88100 Catanzaro, Italy; (V.R.); (E.L.F.); (F.D.); (S.M.L.); (A.B.); (R.A.); (F.T.); (F.B.); (E.C.); (N.P.)
| | - Serena Marianna Lavano
- Medical Genetics Unit, Renato Dulbecco University Hospital, 88100 Catanzaro, Italy; (V.R.); (E.L.F.); (F.D.); (S.M.L.); (A.B.); (R.A.); (F.T.); (F.B.); (E.C.); (N.P.)
| | - Anna Bilotta
- Medical Genetics Unit, Renato Dulbecco University Hospital, 88100 Catanzaro, Italy; (V.R.); (E.L.F.); (F.D.); (S.M.L.); (A.B.); (R.A.); (F.T.); (F.B.); (E.C.); (N.P.)
| | - Rosario Amato
- Medical Genetics Unit, Renato Dulbecco University Hospital, 88100 Catanzaro, Italy; (V.R.); (E.L.F.); (F.D.); (S.M.L.); (A.B.); (R.A.); (F.T.); (F.B.); (E.C.); (N.P.)
- Department of Health Sciences, Campus S. Venuta, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy;
| | - Lucia D’Antona
- Department of Health Sciences, Campus S. Venuta, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy;
| | - Francesco Trapasso
- Medical Genetics Unit, Renato Dulbecco University Hospital, 88100 Catanzaro, Italy; (V.R.); (E.L.F.); (F.D.); (S.M.L.); (A.B.); (R.A.); (F.T.); (F.B.); (E.C.); (N.P.)
- Department of Clinical and Experimental Medicine, Campus S. Venuta, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Francesco Baudi
- Medical Genetics Unit, Renato Dulbecco University Hospital, 88100 Catanzaro, Italy; (V.R.); (E.L.F.); (F.D.); (S.M.L.); (A.B.); (R.A.); (F.T.); (F.B.); (E.C.); (N.P.)
- Department of Health Sciences, Campus S. Venuta, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy;
| | - Emma Colao
- Medical Genetics Unit, Renato Dulbecco University Hospital, 88100 Catanzaro, Italy; (V.R.); (E.L.F.); (F.D.); (S.M.L.); (A.B.); (R.A.); (F.T.); (F.B.); (E.C.); (N.P.)
| | - Nicola Perrotti
- Medical Genetics Unit, Renato Dulbecco University Hospital, 88100 Catanzaro, Italy; (V.R.); (E.L.F.); (F.D.); (S.M.L.); (A.B.); (R.A.); (F.T.); (F.B.); (E.C.); (N.P.)
- Department of Health Sciences, Campus S. Venuta, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy;
| | - Francesco Paduano
- Stem Cells and Medical Genetics Units, Biomedical Section, Tecnologica Research Institute and Marrelli Health, 88900 Crotone, Italy
| | - Rodolfo Iuliano
- Medical Genetics Unit, Renato Dulbecco University Hospital, 88100 Catanzaro, Italy; (V.R.); (E.L.F.); (F.D.); (S.M.L.); (A.B.); (R.A.); (F.T.); (F.B.); (E.C.); (N.P.)
- Department of Health Sciences, Campus S. Venuta, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy;
| |
Collapse
|
3
|
Yoshida R, Kaneyasu T, Ueki A, Yamauchi H, Ohsumi S, Ohno S, Aoki D, Baba S, Kawano J, Matsumoto N, Nagasaki M, Ueno T, Inari H, Kobayashi Y, Takei J, Gotoh O, Nishi M, Okamura M, Kaneko K, Okawa M, Suzuki M, Amino S, Inuzuka M, Noda T, Mori S, Nakamura S. High-risk pathogenic germline variants in blood relatives of BRCA1/2 negative probands. Breast Cancer 2024; 31:1028-1036. [PMID: 39003386 PMCID: PMC11489291 DOI: 10.1007/s12282-024-01615-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 07/08/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND Tailored, preventive cancer care requires the identification of pathogenic germline variants (PGVs) among potentially at-risk blood relatives (BRs). Cascade testing is carried out for BRs of probands who are positive for PGVs of an inherited cancer but not for negative probands. This study was conducted to examine the prevalence of PGVs for BRs of PGV-negative probands. METHODS PGV prevalence was assessed for 682 BRs of 281 probands with BRCA1/BRCA2 wild-type hereditary breast and ovarian cancer (HBOC) syndrome. RESULTS PGVs were discovered in 22 (45.8%) of the 48 BRs of the PGV-positive probands and in 14 (2.2%) of 634 BRs of the PGV-negative probands. Eleven PGVs on high-risk BRCA1, BRCA2, and TP53 genes were present only in BRs and not in the probands (probands vs BRs in Fisher exact test; p = 0.0104; odds ratio [OR] = 0.000 [0.000-0.5489 of 95% confidence interval]), partly due to the nature of the selection criteria. The enrichment of high-risk PGVs among BRs was also significant as compared with a non-cancer East Asian population (p = 0.0016; OR = 3.0791 [1.5521-5.6694]). PGV prevalence, risk class of gene, and genotype concordance were unaffected by the cancer history among BRs. CONCLUSION These findings imply the necessity to construct a novel testing scheme to complement cascade testing.
Collapse
Affiliation(s)
- Reiko Yoshida
- Division of Cancer Genomics, Cancer Institute, Japanese Foundation for Cancer Research (JFCR), 3-8-31 Ariake, Koto-ku, Tokyo, Japan
- Institute for Clinical Genetics and Genomics, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Japan
| | - Tomoko Kaneyasu
- Project for Development of Innovative Research on Cancer Therapeutics, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, 135-8550, Japan
| | - Arisa Ueki
- Department of Clinical Genetic Oncology, Cancer Institute Hospital, JFCR, 3-8-31 Ariake, Koto-ku, Tokyo, Japan
| | - Hideko Yamauchi
- Department of Breast Surgical Oncology, St. Luke's International Hospital, 10-1 Akashi-cho, Chuo-ku, Tokyo, Japan
| | - Shozo Ohsumi
- National Hospital Organization Shikoku Cancer Center, 160 Kou, Minamiumemoto-machi, Matsuyama, Ehime, Japan
| | - Shinji Ohno
- Breast Oncology Center, Cancer Institute Hospital, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, Japan
| | - Daisuke Aoki
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, Japan
| | - Shinichi Baba
- Sagara Hospital, 3-31 Matsubara-cho, Kagoshima, Japan
| | - Junko Kawano
- Sagara Hospital, 3-31 Matsubara-cho, Kagoshima, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Fukuura 3-9, Kanazawa-ku, Yokohama, Japan
| | - Masao Nagasaki
- Department of Biomedical Information Analysis, Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, 53 Shogoinkawahara-cho, Sakyo-ku, Kyoto, Japan
| | - Takayuki Ueno
- Breast Oncology Center, Cancer Institute Hospital, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, Japan
| | - Hitoshi Inari
- Breast Oncology Center, Cancer Institute Hospital, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, Japan
| | - Yusuke Kobayashi
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, Japan
| | - Junko Takei
- Department of Breast Surgical Oncology, St. Luke's International Hospital, 10-1 Akashi-cho, Chuo-ku, Tokyo, Japan
| | - Osamu Gotoh
- Project for Development of Innovative Research on Cancer Therapeutics, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, 135-8550, Japan
| | - Mitsuyo Nishi
- Sagara Hospital, 3-31 Matsubara-cho, Kagoshima, Japan
| | - Miki Okamura
- National Hospital Organization Shikoku Cancer Center, 160 Kou, Minamiumemoto-machi, Matsuyama, Ehime, Japan
| | - Keika Kaneko
- Department of Clinical Genetic Oncology, Cancer Institute Hospital, JFCR, 3-8-31 Ariake, Koto-ku, Tokyo, Japan
| | - Megumi Okawa
- Department of Breast Surgical Oncology, St. Luke's International Hospital, 10-1 Akashi-cho, Chuo-ku, Tokyo, Japan
| | - Misato Suzuki
- Department of Breast Surgical Oncology, St. Luke's International Hospital, 10-1 Akashi-cho, Chuo-ku, Tokyo, Japan
| | - Sayuri Amino
- Project for Development of Innovative Research on Cancer Therapeutics, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, 135-8550, Japan
| | - Mayuko Inuzuka
- Division of Breast Surgical Oncology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, Japan
| | - Tetsuo Noda
- Cancer Institute, JFCR, 3-8-31 Ariake, Koto-ku, Tokyo, Japan
| | - Seiichi Mori
- Project for Development of Innovative Research on Cancer Therapeutics, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, 135-8550, Japan.
- Department of Genetic Diagnosis, Cancer Institute Hospital, JFCR, 3-8-31 Ariake, Koto-ku, Tokyo, Japan.
| | - Seigo Nakamura
- Division of Breast Surgical Oncology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, Japan
| |
Collapse
|
4
|
Davidson AL, Michailidou K, Parsons MT, Fortuno C, Bolla MK, Wang Q, Dennis J, Naven M, Abubakar M, Ahearn TU, Alonso MR, Andrulis IL, Antoniou AC, Auvinen P, Behrens S, Bermisheva MA, Bogdanova NV, Bojesen SE, Brüning T, Byers HJ, Camp NJ, Campbell A, Castelao JE, Cessna MH, Chang-Claude J, Chanock SJ, Chenevix-Trench G, Collée JM, Czene K, Dörk T, Eriksson M, Evans DG, Fasching PA, Figueroa JD, Flyger H, Gago-Dominguez M, García-Closas M, Glendon G, González-Neira A, Grassmann F, Gronwald J, Guénel P, Hadjisavvas A, Haeberle L, Hall P, Hamann U, Hartman M, Ho PJ, Hooning MJ, Hoppe R, Howell A, Jakubowska A, Khusnutdinova EK, Kristensen VN, Li J, Lim J, Lindblom A, Liu J, Lophatananon A, Mannermaa A, Mavroudis DA, Mensenkamp AR, Milne RL, Muir KR, Newman WG, Obi N, Panayiotidis MI, Park SK, Park-Simon TW, Peterlongo P, Radice P, Rashid MU, Rhenius V, Saloustros E, Sawyer EJ, Schmidt MK, Seibold P, Shah M, Southey MC, Teo SH, Tomlinson I, Torres D, Truong T, van de Beek I, van der Hout AH, Wendt CC, Dunning AM, Pharoah PDP, Devilee P, Easton DF, James PA, Spurdle AB. Co-observation of germline pathogenic variants in breast cancer predisposition genes: Results from analysis of the BRIDGES sequencing dataset. Am J Hum Genet 2024; 111:2059-2069. [PMID: 39096911 PMCID: PMC11393698 DOI: 10.1016/j.ajhg.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 08/05/2024] Open
Abstract
Co-observation of a gene variant with a pathogenic variant in another gene that explains the disease presentation has been designated as evidence against pathogenicity for commonly used variant classification guidelines. Multiple variant curation expert panels have specified, from consensus opinion, that this evidence type is not applicable for the classification of breast cancer predisposition gene variants. Statistical analysis of sequence data for 55,815 individuals diagnosed with breast cancer from the BRIDGES sequencing project was undertaken to formally assess the utility of co-observation data for germline variant classification. Our analysis included expected loss-of-function variants in 11 breast cancer predisposition genes and pathogenic missense variants in BRCA1, BRCA2, and TP53. We assessed whether co-observation of pathogenic variants in two different genes occurred more or less often than expected under the assumption of independence. Co-observation of pathogenic variants in each of BRCA1, BRCA2, and PALB2 with the remaining genes was less frequent than expected. This evidence for depletion remained after adjustment for age at diagnosis, study design (familial versus population-based), and country. Co-observation of a variant of uncertain significance in BRCA1, BRCA2, or PALB2 with a pathogenic variant in another breast cancer gene equated to supporting evidence against pathogenicity following criterion strength assignment based on the likelihood ratio and showed utility in reclassification of missense BRCA1 and BRCA2 variants identified in BRIDGES. Our approach has applicability for assessing the value of co-observation as a predictor of variant pathogenicity in other clinical contexts, including for gene-specific guidelines developed by ClinGen Variant Curation Expert Panels.
Collapse
Affiliation(s)
- Aimee L Davidson
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Kyriaki Michailidou
- Biostatistics Unit, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus; Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Michael T Parsons
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Cristina Fortuno
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Manjeet K Bolla
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Qin Wang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Marc Naven
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Mustapha Abubakar
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20850, USA
| | - Thomas U Ahearn
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20850, USA
| | - M Rosario Alonso
- Human Genotyping Unit-CeGen, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Irene L Andrulis
- Fred A. Litwin Center for Cancer Genetics, Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Antonis C Antoniou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Päivi Auvinen
- Translational Cancer Research Area, University of Eastern Finland, 70210 Kuopio, Finland; Institute of Clinical Medicine, Oncology, University of Eastern Finland, 70210 Kuopio, Finland; Department of Oncology, Cancer Center, Kuopio University Hospital, 70210 Kuopio, Finland
| | - Sabine Behrens
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Marina A Bermisheva
- Institute of Biochemistry and Genetics of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa 450054, Russia
| | - Natalia V Bogdanova
- Department of Radiation Oncology, Hannover Medical School, 30625 Hannover, Germany; Gynaecology Research Unit, Hannover Medical School, 30625 Hannover, Germany; N.N. Alexandrov Research Institute of Oncology and Medical Radiology, Minsk 223040, Belarus
| | - Stig E Bojesen
- Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, 2730 Herlev, Denmark; Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, 2730 Herlev, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Thomas Brüning
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum, 44789 Bochum, Germany
| | - Helen J Byers
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9WL, UK
| | - Nicola J Camp
- Department of Internal Medicine and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics & Cancer, The University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK; Usher Institute of Population Health Sciences and Informatics, The University of Edinburgh, Edinburgh EH16 4UX, UK
| | - Jose E Castelao
- Oncology and Genetics Unit, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS) Foundation, Complejo Hospitalario Universitario de Santiago, SERGAS, 36312 Vigo, Spain
| | - Melissa H Cessna
- Department of Pathology, Intermountain Health, Murray, UT, USA; Intermountain Biorepository, Intermountain Health, Murray, UT, USA
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Cancer Epidemiology Group, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20850, USA
| | - Georgia Chenevix-Trench
- Cancer Research Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | | | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Thilo Dörk
- Gynaecology Research Unit, Hannover Medical School, 30625 Hannover, Germany
| | - Mikael Eriksson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - D Gareth Evans
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9WL, UK; Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK
| | - Peter A Fasching
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Jonine D Figueroa
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20850, USA; Usher Institute of Population Health Sciences and Informatics, The University of Edinburgh, Edinburgh EH16 4UX, UK; Cancer Research UK Edinburgh Centre, The University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Henrik Flyger
- Department of Breast Surgery, Herlev and Gentofte Hospital, Copenhagen University Hospital, 2730 Herlev, Denmark
| | - Manuela Gago-Dominguez
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Fundación Pública Gallega de IDIS, Cancer Genetics and Epidemiology Group, Genomic Medicine Group, 15706 Santiago de Compostela, Spain
| | - Montserrat García-Closas
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20850, USA; The Division of Genetics and Epidemiology, The Institute of Cancer Research, London SM2 5NG, UK
| | - Gord Glendon
- Fred A. Litwin Center for Cancer Genetics, Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Anna González-Neira
- Human Genotyping Unit-CeGen, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Felix Grassmann
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 65 Stockholm, Sweden; Health and Medical University, Potsdam, Germany
| | - Jacek Gronwald
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University in Szczecin, 70-115 Szczecin, Poland
| | - Pascal Guénel
- Paris-Saclay University, UVSQ, INSERM, Gustave Roussay, CESP, 94805 Villejuif, France
| | - Andreas Hadjisavvas
- Department of Cancer Genetics, Therapeutics and Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus
| | - Lothar Haeberle
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 65 Stockholm, Sweden; Department of Oncology, Södersjukhuset, 118 83 Stockholm, Sweden
| | - Ute Hamann
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Mikael Hartman
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore City 117549, Singapore; Department of Surgery, National University Hospital and National University Health System, Singapore City 119228, Singapore; Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore City 119228, Singapore
| | - Peh Joo Ho
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore City 117549, Singapore; Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A(∗)STAR), Singapore City 138672, Singapore
| | - Maartje J Hooning
- Department of Medical Oncology, Erasmus MC Cancer Institute, 3015 GD Rotterdam, the Netherlands
| | - Reiner Hoppe
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, 70376 Stuttgart, Germany; University of Tübingen, 72074 Tübingen, Germany
| | - Anthony Howell
- Division of Cancer Sciences, University of Manchester, Manchester M13 9PL, UK
| | - Anna Jakubowska
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University in Szczecin, 70-115 Szczecin, Poland; Independent Laboratory of Molecular Biology and Genetic Diagnostics, Pomeranian Medical University, 171-252 Szczecin, Poland
| | - Elza K Khusnutdinova
- Institute of Biochemistry and Genetics of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa 450054, Russia; Federal State Budgetary Educational Institution of Higher Education, Saint Petersburg State University, St. Petersburg 199034, Russia
| | - Vessela N Kristensen
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, 0379 Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0450 Oslo, Norway
| | - Jingmei Li
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A(∗)STAR), Singapore City 138672, Singapore
| | - Joanna Lim
- Breast Cancer Research Programme, Cancer Research Malaysia, Subang Jaya, Selangor 47500, Malaysia
| | - Annika Lindblom
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden; Department of Clinical Genetics, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Jenny Liu
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore City 117549, Singapore; Department of General Surgery, Ng Teng Fong General Hospital, Singapore City 609606, Singapore
| | - Artitaya Lophatananon
- Division of Population Health, Health Services Research and Primary Care, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK
| | - Arto Mannermaa
- Translational Cancer Research Area, University of Eastern Finland, 70210 Kuopio, Finland; Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, 70210 Kuopio, Finland; Biobank of Eastern Finland, Kuopio University Hospital, Kuopio, Finland
| | - Dimitrios A Mavroudis
- Department of Medical Oncology, University Hospital of Heraklion, 711 10 Heraklion, Greece
| | - Arjen R Mensenkamp
- Department of Human Genetics, Radboud University Medical Center, 6525 Nijmegen GA, the Netherlands
| | - Roger L Milne
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC 3004, Australia; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC 3010, Australia; Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC 3168, Australia
| | - Kenneth R Muir
- Division of Population Health, Health Services Research and Primary Care, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK
| | - William G Newman
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9WL, UK; Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK
| | - Nadia Obi
- Institute for Occupational and Maritime Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Institute for Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Mihalis I Panayiotidis
- Department of Cancer Genetics, Therapeutics and Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus
| | - Sue K Park
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul 03080, Korea; Integrated Major in Innovative Medical Science, Seoul National University College of Medicine, Seoul 03080, Korea; Cancer Research Institute, Seoul National University, Seoul 03080, Korea
| | | | - Paolo Peterlongo
- Genome Diagnostics Program, IFOM ETS - the AIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | - Paolo Radice
- Predictive Medicine: Molecular Bases of Genetic Risk, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale Dei Tumori (INT), 20133 Milan, Italy
| | - Muhammad U Rashid
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Department of Basic Sciences, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH & RC), Lahore 54000, Pakistan
| | - Valerie Rhenius
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Emmanouil Saloustros
- Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Elinor J Sawyer
- School of Cancer & Pharmaceutical Sciences, Comprehensive Cancer Centre, Guy's Campus, King's College London, London, UK
| | - Marjanka K Schmidt
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, 1066 CX Amsterdam, the Netherlands; Department of Clinical Genetics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Petra Seibold
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Mitul Shah
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge CB1 8RN, UK
| | - Melissa C Southey
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC 3004, Australia; Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC 3168, Australia; Department of Clinical Pathology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Soo Hwang Teo
- Breast Cancer Research Programme, Cancer Research Malaysia, Subang Jaya, Selangor 47500, Malaysia; Department of Surgery, Faculty of Medicine, University of Malaya, UM Cancer Research Institute, Kuala Lumpur 50603, Malaysia
| | - Ian Tomlinson
- Department of Oncology, University of Oxford, Oxford OX3 7LF, UK
| | - Diana Torres
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Institute of Human Genetics, Pontificia Universidad Javeriana, Bogota 110231, Colombia
| | - Thérèse Truong
- Paris-Saclay University, UVSQ, INSERM, Gustave Roussay, CESP, 94805 Villejuif, France
| | - Irma van de Beek
- Department of Clinical Genetics, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, 1066 CX Amsterdam, the Netherlands
| | - Annemieke H van der Hout
- Department of Genetics, University Medical Center Groningen, University Groningen, 9713 GZ Groningen, the Netherlands
| | - Camilla C Wendt
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, 118 83 Stockholm, Sweden
| | - Alison M Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge CB1 8RN, UK
| | - Paul D P Pharoah
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, West Hollywood, CA 90069, USA
| | - Peter Devilee
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands; Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge CB1 8RN, UK
| | - Paul A James
- Parkville Familial Cancer Centre, The Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Amanda B Spurdle
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
5
|
Kwong A, Ho CYS, Leung HCM, Leung AWS, Au CH, Ma ESK. Mutation Spectrum Comparison between Benign Breast Lesion Cohort, Unselected Cancer Cohort and High-Risk Breast Cancer Cohort. Cancers (Basel) 2024; 16:3066. [PMID: 39272924 PMCID: PMC11393947 DOI: 10.3390/cancers16173066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Mutation study for high-risk breast and ovarian cancer (HBOC) has been extensively studied in patients of different ethnicities. Here we compared the germline mutation rate and mutation spectrum of patients (n = 4341) with benign breast diseases or breast cancers, with and without other risk factors. Three cohorts of Chinese patients were recruited. The first cohort, high-risk cohort (HR, n = 3935) included high-risk breast cancer patients fulfilling high-risk HBOC criteria and who are recruited at our genetics clinic. The second cohort, unselected cancer cohort (CC, n = 307) was from general recruitment of patients with breast cancer at breast surgery clinics. The third cohort, benign breast lesion cohort (NC, n = 99) comprised 99 patients with benign breast diseases such as fibroadenoma, fibroadenomatoid hyperplasia, and intraductal papilloma. Thirty HBOC related genes were sequenced on the above-mentioned patient cohorts. The germline mutation rates of HR, CC, and NC cohort were 11.9%, 6.5%, and 8.1%, respectively. In the CC cohort, 29.3% (90/307) of patients fulfilled the National Comprehensive Cancer Network (NCCN) high-risk genetic test criteria 2022 v.2. The mutation rate for this group of patients was 11.1%, similar to that of the HR cohort, while the mutation rate for those not fulfilling testing criteria was 4.6%, like that of the NC cohort. High penetrance genes (BRCA1/2, CDH1, PALB2, PTEN, and TP53) mutations were only found in the HR (10.6%) and CC (3.3%) cohorts but were not found in the NC cohort. ATM, BRIP1, RAD51C, and RAD51D mutations were identified in all cohorts. RAD51C and RAD51D mutations showed conflicting penetrance. An unexpectedly high mutation rate of total 2% was found in the NC cohort but it was only 0.3% and 0.5% in the HR cohort and CC cohort, respectively. Our results show a clinical need to enhance genetic testing of unselected breast cancer patients to identify the high-risk patients.
Collapse
Affiliation(s)
- Ava Kwong
- Division of Breast Surgery, Department of Surgery, The University of Hong Kong, Hong Kong SAR, China
- Hong Kong Hereditary Breast Cancer Family Registry, Hong Kong SAR, China
- Cancer Genetics Centre, Breast Surgery Centre, Surgery Centre, Hong Kong Sanatorium & Hospital, Hong Kong SAR, China
| | - Cecilia Y S Ho
- Department of Pathology, Division of Molecular Pathology, Hong Kong Sanatorium & Hospital, Hong Kong SAR, China
| | - Henry C M Leung
- Department of Pathology, Division of Molecular Pathology, Hong Kong Sanatorium & Hospital, Hong Kong SAR, China
| | - Amy W S Leung
- Department of Pathology, Division of Molecular Pathology, Hong Kong Sanatorium & Hospital, Hong Kong SAR, China
| | - Chun-Hang Au
- Department of Pathology, Division of Molecular Pathology, Hong Kong Sanatorium & Hospital, Hong Kong SAR, China
| | - Edmond S K Ma
- Hong Kong Hereditary Breast Cancer Family Registry, Hong Kong SAR, China
- Department of Pathology, Division of Molecular Pathology, Hong Kong Sanatorium & Hospital, Hong Kong SAR, China
| |
Collapse
|
6
|
van der Merwe NC, Buccimazza I, Rossouw B, Araujo M, Ntaita KS, Schoeman M, Vorster K, Napo K, Kotze MJ, Oosthuizen J. Clinical relevance of double heterozygosity revealed by next-generation sequencing of homologous recombination repair pathway genes in South African breast cancer patients. Breast Cancer Res Treat 2024; 207:331-342. [PMID: 38814507 PMCID: PMC11297091 DOI: 10.1007/s10549-024-07362-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 04/24/2024] [Indexed: 05/31/2024]
Abstract
PURPOSE Genetically predisposed breast cancer (BC) patients represent a minor but clinically meaningful subgroup of the disease, with 25% of all cases associated with actionable variants in BRCA1/2. Diagnostic implementation of next-generation sequencing (NGS) resulted in the rare identification of BC patients with double heterozygosity for deleterious variants in genes partaking in homologous recombination repair of DNA. As clinical heterogeneity poses challenges for genetic counseling, this study focused on the occurrence and clinical relevance of double heterozygous BC in South Africa. METHODS DNA samples were diagnostically screened using the NGS-based Oncomine™ BRCA Expanded Research Assay. Data was generated on the Ion GeneStudio S5 system and analyzed using the Torrent Suite™ and reporter software. The clinical significance of the variants detected was determined using international variant classification guidelines and treatment implications. RESULTS Six of 1600 BC patients (0.375%) tested were identified as being bi-allelic for two germline likely pathogenic or pathogenic variants. Most of the variants were present in BRCA1/2, including two founder-related small deletions in three cases, with family-specific variants detected in ATM, BARD1, FANCD2, NBN, and TP53. The scientific interpretation and clinical relevance were based on the clinical and tumor characteristics of each case. CONCLUSION This study increased current knowledge of the risk implications associated with the co-occurrence of more than one pathogenic variant in the BC susceptibility genes, confirmed to be a rare condition in South Africa. Further molecular pathology-based studies are warranted to determine whether clinical decision-making is affected by the detection of a second pathogenic variant in BRCA1/2 and TP53 carriers.
Collapse
Affiliation(s)
- Nerina C van der Merwe
- Division of Human Genetics, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa.
- Division of Human Genetics, National Health Laboratory Service, Universitas Hospital, Bloemfontein, South Africa.
| | - Ines Buccimazza
- Genetics Unit, Inkosi Albert Luthuli General Hospital, Durban, South Africa
- Department of Surgery, Nelson R Mandela School of Medicine, Inkosi Albert Luthuli General Hospital, Durban, South Africa
| | - Bianca Rossouw
- Division of Human Genetics, National Health Laboratory Service, Braamfontein, Johannesburg, South Africa
- Division of Human Genetics, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Monica Araujo
- Division of Human Genetics, National Health Laboratory Service, Braamfontein, Johannesburg, South Africa
- Division of Human Genetics, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Kholiwe S Ntaita
- Division of Human Genetics, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
- Division of Human Genetics, National Health Laboratory Service, Universitas Hospital, Bloemfontein, South Africa
| | - Mardelle Schoeman
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Karin Vorster
- Department of Oncology, Free State Department of Health, Universitas Annex Hospital, Bloemfontein, South Africa
- Department of Oncology, Faculty of Health Science, University of the Free State, Bloemfontein, South Africa
| | - Kgabo Napo
- Department of Oncology, Free State Department of Health, Universitas Annex Hospital, Bloemfontein, South Africa
- Department of Oncology, Faculty of Health Science, University of the Free State, Bloemfontein, South Africa
| | - Maritha J Kotze
- Division of Chemical Pathology, Department of Pathology, National Health Laboratory Service, Tygerberg Hospital, Cape Town, South Africa
- Division of Chemical Pathology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Jaco Oosthuizen
- Division of Human Genetics, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
- Division of Human Genetics, National Health Laboratory Service, Universitas Hospital, Bloemfontein, South Africa
| |
Collapse
|
7
|
Gotoh O, Sugiyama Y, Tonooka A, Kosugi M, Kitaura S, Minegishi R, Sano M, Amino S, Furuya R, Tanaka N, Kaneyasu T, Kumegawa K, Abe A, Nomura H, Takazawa Y, Kanao H, Maruyama R, Noda T, Mori S. Genetic and epigenetic alterations in precursor lesions of endometrial endometrioid carcinoma. J Pathol 2024; 263:275-287. [PMID: 38734880 DOI: 10.1002/path.6278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/09/2024] [Accepted: 02/27/2024] [Indexed: 05/13/2024]
Abstract
The hyperplasia-carcinoma sequence is a stepwise tumourigenic programme towards endometrial cancer in which normal endometrial epithelium becomes neoplastic through non-atypical endometrial hyperplasia (NAEH) and atypical endometrial hyperplasia (AEH), under the influence of unopposed oestrogen. NAEH and AEH are known to exhibit polyclonal and monoclonal cell growth, respectively; yet, aside from focal PTEN protein loss, the genetic and epigenetic alterations that occur during the cellular transition remain largely unknown. We sought to explore the potential molecular mechanisms that promote the NAEH-AEH transition and identify molecular markers that could help to differentiate between these two states. We conducted target-panel sequencing on the coding exons of 596 genes, including 96 endometrial cancer driver genes, and DNA methylome microarrays for 48 NAEH and 44 AEH lesions that were separately collected via macro- or micro-dissection from the endometrial tissues of 30 cases. Sequencing analyses revealed acquisition of the PTEN mutation and the clonal expansion of tumour cells in AEH samples. Further, across the transition, alterations to the DNA methylome were characterised by hypermethylation of promoter/enhancer regions and CpG islands, as well as hypo- and hyper-methylation of DNA-binding regions for transcription factors relevant to endometrial cell differentiation and/or tumourigenesis, including FOXA2, SOX17, and HAND2. The identified DNA methylation signature distinguishing NAEH and AEH lesions was reproducible in a validation cohort with modest discriminative capability. These findings not only support the concept that the transition from NAEH to AEH is an essential step within neoplastic cell transformation of endometrial epithelium but also provide deep insight into the molecular mechanism of the tumourigenic programme. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Osamu Gotoh
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Koto-ku, Japan
| | - Yuko Sugiyama
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Koto-ku, Japan
- Division of Gynecology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Koto-ku, Japan
| | - Akiko Tonooka
- Division of Pathology, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Japan
| | - Mayuko Kosugi
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Koto-ku, Japan
| | - Sunao Kitaura
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Koto-ku, Japan
| | - Ryu Minegishi
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Koto-ku, Japan
| | - Masatoshi Sano
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Koto-ku, Japan
| | - Sayuri Amino
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Koto-ku, Japan
| | - Rie Furuya
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Koto-ku, Japan
| | - Norio Tanaka
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Koto-ku, Japan
| | - Tomoko Kaneyasu
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Koto-ku, Japan
| | - Kohei Kumegawa
- Project for Cancer Epigenomics, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Japan
| | - Akiko Abe
- Division of Gynecology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Koto-ku, Japan
| | - Hidetaka Nomura
- Division of Gynecology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Koto-ku, Japan
| | - Yutaka Takazawa
- Department of Pathology, Toranomon Hospital, Minato-ku, Japan
| | - Hiroyuki Kanao
- Division of Gynecology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Koto-ku, Japan
| | - Reo Maruyama
- Project for Cancer Epigenomics, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Japan
| | - Tetsuo Noda
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Koto-ku, Japan
| | - Seiichi Mori
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Koto-ku, Japan
- Department of Genetic Diagnosis, Cancer Institute Hospital, JFCR, Koto-ku, Japan
| |
Collapse
|
8
|
Li J, He P, Cai Q, Chen L, Wang Y, Cai W, Qiu Y, Liu S, Guo W, Chen M, Lin Y, Wang C, Fu F. Spectrum and characteristics of germline PALB2 pathogenic variants in 1556 early-onset breast cancer patients in China. J Cancer Res Clin Oncol 2024; 150:322. [PMID: 38914840 PMCID: PMC11196361 DOI: 10.1007/s00432-024-05758-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/22/2024] [Indexed: 06/26/2024]
Abstract
PURPOSE Limited data are available regarding the partner and localizer of BRCA2 (PALB2) in Chinese patients with early breast cancer. This study aimed to assess the spectrum and characteristics of germline PALB2 pathogenic variants in this population. METHODS Peripheral blood samples were collected from 1556 patients diagnosed with BRCA1/2-negative early-onset breast cancer. All coding regions and exon‒intron boundaries of the PALB2 genes were screened through next-generation sequencing. RESULTS The prevalence of PALB2 pathogenic variants was approximately 0.77% in the cohort. Eleven PALB2 pathogenic variants were identified in twelve participants, including five frameshift mutations and six nonsense mutations. All other variants were detected once, except for PALB2 c.1056_1057del (detected twice). Two PALB2 carriers (2/12, 16.7%) have documented family history of breast cancer and/or ovarian cancer. Patients with a positive family history exhibited a threefold higher possibility of being identified as PALB2 carriers than those without a family history (2% vs. 0.69%), although the difference was not statistically significant (p = 0.178). Compared to non-carriers, PALB2 carriers has a tendency to appear in younger age (≤ 30 years) (25% vs 14.4%), human epidermal growth factor receptor-2 (HER2)-negative status (83.3% vs. 70.2%), and diagnosed with invasive micropapillary carcinoma (16.7% vs 3.1%). CONCLUSION The prevalence of the germline PALB2 pathogenic variants was approximately 0.77% in Chinese patients with BRCA1/2-negative early-onset breast cancer. Our findings is crucial for understanding population-specific genetic risks and offering insights that can enhance genetic counseling and genetic testing strategies in this population.
Collapse
Affiliation(s)
- Jing Li
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian Province, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian Province, China
- Breast Cancer Institute, Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Peng He
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian Province, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian Province, China
- Breast Cancer Institute, Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Qindong Cai
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian Province, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian Province, China
- Breast Cancer Institute, Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Lili Chen
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian Province, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian Province, China
- Breast Cancer Institute, Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Yali Wang
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian Province, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian Province, China
- Breast Cancer Institute, Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Weifeng Cai
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian Province, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian Province, China
- Breast Cancer Institute, Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Yibin Qiu
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian Province, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian Province, China
- Breast Cancer Institute, Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Shunyi Liu
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian Province, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian Province, China
- Breast Cancer Institute, Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Wenhui Guo
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian Province, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian Province, China
- Breast Cancer Institute, Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Minyan Chen
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian Province, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian Province, China
- Breast Cancer Institute, Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Yuxiang Lin
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian Province, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian Province, China
- Breast Cancer Institute, Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Chuan Wang
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian Province, China.
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian Province, China.
- Breast Cancer Institute, Fujian Medical University, Fuzhou, 350001, Fujian Province, China.
| | - Fangmeng Fu
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian Province, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian Province, China
- Breast Cancer Institute, Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| |
Collapse
|
9
|
Tuncer SB, Celik B, Erciyas SK, Erdogan OS, Gültaslar BK, Odemis DA, Avsar M, Sen F, Saip PM, Yazici H. Germline mutational variants of Turkish ovarian cancer patients suspected of Hereditary Breast and Ovarian Cancer (HBOC) by next-generation sequencing. Pathol Res Pract 2024; 254:155075. [PMID: 38219492 DOI: 10.1016/j.prp.2023.155075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/11/2023] [Accepted: 12/29/2023] [Indexed: 01/16/2024]
Abstract
Hereditary Breast and Ovarian Cancer (HBOC) syndrome is characterized by an increased risk of developing breast cancer (BC) and ovarian cancer (OC) due to inherited genetic mutations. Understanding the genetic variants associated with HBOC is crucial for identifying individuals at high risk and implementing appropriate preventive measures. The study included 630 Turkish OC patients with confirmed diagnostic criteria of The National Comprehensive Cancer Network (NCCN) concerning HBOC. Genomic DNA was extracted from peripheral blood samples, and targeted Next-generation sequencing (NGS) was performed. Bioinformatics analysis and variant interpretation were conducted to identify pathogenic variants (PVs). Our analysis revealed a spectrum of germline pathogenic variants associated with HBOC in Turkish OC patients. Notably, several pathogenic variants in BRCA1, BRCA2, and other DNA repair genes were identified. Specifically, we observed germline PVs in 130 individuals, accounting for 20.63% of the total cohort. 76 distinct PVs in genes, BRCA1 (40 PVs), BRCA2 (29 PVs), ATM (1 PV), CHEK2 (2 PVs), ERCC2 (1 PV), MUTYH (1 PV), RAD51C (1 PV), and TP53 (1PV) and also, two different PVs (i.e., c.135-2 A>G p.? in BRCA1 and c.6466_6469delTCTC in BRCA2) were detected in a 34-year-old OC patient. In conclusion, our study contributes to a better understanding of the genetic variants underlying HBOC in Turkish OC patients. These findings provide valuable insights into the genetic architecture of HBOC in the Turkish population and shed light on the potential contribution of specific germline PVs to the increased risk of OC.
Collapse
Affiliation(s)
- Seref Bugra Tuncer
- Department of Cancer Genetics, Istanbul Faculty of Medicine, Oncology Institute, Istanbul University, Istanbul, Türkiye.
| | - Betul Celik
- Erzincan Binali Yıldırım University, Department of Molecular Biology, Erzincan, Türkiye
| | - Seda Kilic Erciyas
- Department of Cancer Genetics, Istanbul Faculty of Medicine, Oncology Institute, Istanbul University, Istanbul, Türkiye
| | - Ozge Sukruoglu Erdogan
- Department of Cancer Genetics, Istanbul Faculty of Medicine, Oncology Institute, Istanbul University, Istanbul, Türkiye
| | - Busra Kurt Gültaslar
- Department of Cancer Genetics, Istanbul Faculty of Medicine, Oncology Institute, Istanbul University, Istanbul, Türkiye
| | - Demet Akdeniz Odemis
- Department of Cancer Genetics, Istanbul Faculty of Medicine, Oncology Institute, Istanbul University, Istanbul, Türkiye
| | - Mukaddes Avsar
- Health Services Vocational of Higher Education, T.C. Istanbul Aydın University, Istanbul, Türkiye
| | - Fatma Sen
- Clinic of Medical Oncology, Avrasya Hospital, Istanbul, Türkiye
| | - Pınar Mualla Saip
- Department of Medical Oncology, Oncology Institute, Istanbul University, Istanbul, Türkiye
| | - Hulya Yazici
- Istanbul Arel University, Arel Medical Faculty, Department of Medical Biology and Genetics, Istanbul, Türkiye
| |
Collapse
|
10
|
Yuan W, Shang Z, Shen K, Yu Q, Lv Q, Cao Y, Wang J, Yang Y. Case report: Germline RECQL mutation potentially involved in hereditary predisposition to acute leukemia. Front Oncol 2023; 13:1066083. [PMID: 36998465 PMCID: PMC10043295 DOI: 10.3389/fonc.2023.1066083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 03/02/2023] [Indexed: 03/17/2023] Open
Abstract
The pathogenesis of acute leukemia is still complex and vague. Most types of acute leukemia are related to somatic gene mutations, and familial incidence is rare. Here we report a case of familial leukemia. The proband presented to our hospital with vaginal bleeding and disseminated intravascular coagulation at the age of 42 and was diagnosed with acute promyelocytic leukemia with typical PML-RARα fusion gene caused by t(15;17)(q24;q21) translocation. By taking the history, we found that the patient’s second daughter had been diagnosed with B-cell acute leukemia with ETV6-RUNX1 fusion gene at age 6. Then we performed whole exome sequencing in peripheral blood mononuclear cells from these two patients at remission status and identified 8 shared germline gene mutations. Using functional annotation and Sanger sequencing validation, we finally focused on a single nucleotide variant in RecQ like helicase (RECQL), rs146924988, which was negative in the proband’s healthy eldest daughter. This gene variant potentially led to a relative lack of RECQL protein, disordered DNA repair and chromatin rearrangement, which may mediate the occurrence of fusion genes, as driving factors for leukemia. This study identified a novel possible leukemia-related germline gene variant and provided a new understanding for the screening and pathogenesis of hereditary predisposition syndromes.
Collapse
Affiliation(s)
- Wei Yuan
- Department and Institute of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhen Shang
- Department of Hematology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kefeng Shen
- Department of Hematology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiuxia Yu
- Department of Hematology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiuxia Lv
- Department of Hematology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Cao
- Department of Hematology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jue Wang
- Department of Hematology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Yang
- Department of geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Yi Yang,
| |
Collapse
|
11
|
Muhammad N, Sadaqat R, Naeemi H, Masood I, Hassan U, Ijaz B, Hanif F, Syed AA, Yusuf MA, Rashid MU. Contribution of germline PALB2 variants to an unselected and prospectively registered pancreatic cancer patient cohort in Pakistan. HPB (Oxford) 2022; 24:2134-2144. [PMID: 36175305 DOI: 10.1016/j.hpb.2022.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/02/2022] [Accepted: 09/12/2022] [Indexed: 01/24/2023]
Abstract
BACKGROUND Partner and localizer of BRCA2 (PALB2) is a pancreatic cancer (PC) susceptibility gene reported in Caucasians. However, limited data are available among Asians. We investigated the contribution of PALB2 germline variants to Pakistani PC patients. METHODS 150 unselected and prospectively enrolled PC patients were comprehensively screened for PALB2 variants, using denaturing high-performance liquid chromatography and DNA sequencing. Novel variants were investigated for their pathogenic effect using in-silico tools. Potentially functional variants were screened in 200 controls. RESULTS Twenty-two different PALB2 variants were identified. A missense variant (p.Arg37His) was identified in a 48-years-old male patient with a family history of breast cancer. Another missense variant (p.Trp898Arg) was identified in a 48-years-old male patient with a family history of esophageal cancer. A novel 3' downstream variant (c.∗480A>G) was detected in a 34-years-old female patient with family history of lung cancer. Another novel 3' downstream variant (c.∗417A>C) was identified in a 41-years-old male patient. All these variants were absent in 200 controls. p.Arg37His and p.Trp898Arg were predicted as likely pathogenic. c.∗417A>C and c.∗480A>G were classified as variants of uncertain significance. CONCLUSION This is the first study that suggests a minimal contribution of PALB2 variants to PC risk in Pakistani population.
Collapse
Affiliation(s)
- Noor Muhammad
- Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Center (SKMCH&RC), Lahore, Pakistan
| | - Rida Sadaqat
- Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Center (SKMCH&RC), Lahore, Pakistan
| | - Humaira Naeemi
- Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Center (SKMCH&RC), Lahore, Pakistan
| | - Iqra Masood
- Clinical Research Office, SKMCH&RC, Lahore, Pakistan
| | - Usman Hassan
- Department of Pathology, SKMCH&RC, Lahore, Pakistan
| | - Bushra Ijaz
- Laboratory of Applied and Functional Genomics, National Center of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Faisal Hanif
- Department of Surgical Oncology, SKMCH&RC, Lahore, Pakistan; Centre for Liver and Biliary Sciences, Bahria International Hospital, Lahore, Pakistan
| | - Aamir A Syed
- Department of Surgical Oncology, SKMCH&RC, Lahore, Pakistan
| | | | - Muhammad U Rashid
- Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Center (SKMCH&RC), Lahore, Pakistan.
| |
Collapse
|
12
|
Shokouh MR, Azhdari F, Pirouzi A, Mohsenzadeh M, Department of Bacteriology and Virology, Shiraz University of Medical Sciences, Shiraz, Iran, Department of Bacteriology and Virology, Shiraz University of Medical Sciences, Shiraz, Iran, Cellular and Molecular Gerash Research Center, Gerash University of Medical Sciences, Gerash, Iran, Gerash Al-Zahra Fertility Center, Gerash University of Medical Sciences, Gerash, Iran. Association between the Presence of CMV, BKV and JC Virus and Ovarian Cancer in Fars Province, Southwestern Iran. IRANIAN JOURNAL OF MEDICAL MICROBIOLOGY 2022. [DOI: 10.30699/ijmm.16.6.551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
13
|
Paduano F, Colao E, Fabiani F, Rocca V, Dinatolo F, Dattola A, D’Antona L, Amato R, Trapasso F, Baudi F, Perrotti N, Iuliano R. Germline Testing in a Cohort of Patients at High Risk of Hereditary Cancer Predisposition Syndromes: First Two-Year Results from South Italy. Genes (Basel) 2022; 13:1286. [PMID: 35886069 PMCID: PMC9319682 DOI: 10.3390/genes13071286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 12/04/2022] Open
Abstract
Germline pathogenic variants (PVs) in oncogenes and tumour suppressor genes are responsible for 5 to 10% of all diagnosed cancers, which are commonly known as hereditary cancer predisposition syndromes (HCPS). A total of 104 individuals at high risk of HCPS were selected by genetic counselling for genetic testing in the past 2 years. Most of them were subjects having a personal and family history of breast cancer (BC) selected according to current established criteria. Genes analysis involved in HCPS was assessed by next-generation sequencing (NGS) using a custom cancer panel with high- and moderate-risk susceptibility genes. Germline PVs were identified in 17 of 104 individuals (16.3%) analysed, while variants of uncertain significance (VUS) were identified in 21/104 (20.2%) cases. Concerning the germline PVs distribution among the 13 BC individuals with positive findings, 8/13 (61.5%) were in the BRCA1/2 genes, whereas 5/13 (38.4%) were in other high- or moderate-risk genes including PALB2, TP53, ATM and CHEK2. NGS genetic testing showed that 6/13 (46.1%) of the PVs observed in BC patients were detected in triple-negative BC. Interestingly, the likelihood of carrying the PVs in the moderate-to-high-risk genes calculated by the cancer risk model BOADICEA was significantly higher in pathogenic variant carriers than in negative subjects. Collectively, this study shows that multigene panel testing can offer an effective diagnostic approach for patients at high risk of hereditary cancers.
Collapse
Affiliation(s)
- Francesco Paduano
- Medical Genetics Unit, Mater Domini University Hospital, 88100 Catanzaro, Italy; (E.C.); (F.F.); (V.R.); (F.D.); (A.D.); (L.D.); (R.A.); (F.T.); (F.B.); (N.P.)
- Department of Health Sciences, Campus S. Venuta, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
- Stem Cells and Medical Genetics Units, Tecnologica Research Institute and Marrelli Health, 88900 Crotone, Italy
| | - Emma Colao
- Medical Genetics Unit, Mater Domini University Hospital, 88100 Catanzaro, Italy; (E.C.); (F.F.); (V.R.); (F.D.); (A.D.); (L.D.); (R.A.); (F.T.); (F.B.); (N.P.)
| | - Fernanda Fabiani
- Medical Genetics Unit, Mater Domini University Hospital, 88100 Catanzaro, Italy; (E.C.); (F.F.); (V.R.); (F.D.); (A.D.); (L.D.); (R.A.); (F.T.); (F.B.); (N.P.)
| | - Valentina Rocca
- Medical Genetics Unit, Mater Domini University Hospital, 88100 Catanzaro, Italy; (E.C.); (F.F.); (V.R.); (F.D.); (A.D.); (L.D.); (R.A.); (F.T.); (F.B.); (N.P.)
- Department of Experimental and Clinical Medicine, Campus S. Venuta, University Magna Graecia of Catanzaro, Viale Europa, Località Germaneto, 88100 Catanzaro, Italy
| | - Francesca Dinatolo
- Medical Genetics Unit, Mater Domini University Hospital, 88100 Catanzaro, Italy; (E.C.); (F.F.); (V.R.); (F.D.); (A.D.); (L.D.); (R.A.); (F.T.); (F.B.); (N.P.)
| | - Adele Dattola
- Medical Genetics Unit, Mater Domini University Hospital, 88100 Catanzaro, Italy; (E.C.); (F.F.); (V.R.); (F.D.); (A.D.); (L.D.); (R.A.); (F.T.); (F.B.); (N.P.)
| | - Lucia D’Antona
- Medical Genetics Unit, Mater Domini University Hospital, 88100 Catanzaro, Italy; (E.C.); (F.F.); (V.R.); (F.D.); (A.D.); (L.D.); (R.A.); (F.T.); (F.B.); (N.P.)
- Department of Health Sciences, Campus S. Venuta, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Rosario Amato
- Medical Genetics Unit, Mater Domini University Hospital, 88100 Catanzaro, Italy; (E.C.); (F.F.); (V.R.); (F.D.); (A.D.); (L.D.); (R.A.); (F.T.); (F.B.); (N.P.)
- Department of Health Sciences, Campus S. Venuta, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Francesco Trapasso
- Medical Genetics Unit, Mater Domini University Hospital, 88100 Catanzaro, Italy; (E.C.); (F.F.); (V.R.); (F.D.); (A.D.); (L.D.); (R.A.); (F.T.); (F.B.); (N.P.)
- Department of Experimental and Clinical Medicine, Campus S. Venuta, University Magna Graecia of Catanzaro, Viale Europa, Località Germaneto, 88100 Catanzaro, Italy
| | - Francesco Baudi
- Medical Genetics Unit, Mater Domini University Hospital, 88100 Catanzaro, Italy; (E.C.); (F.F.); (V.R.); (F.D.); (A.D.); (L.D.); (R.A.); (F.T.); (F.B.); (N.P.)
- Department of Health Sciences, Campus S. Venuta, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Nicola Perrotti
- Medical Genetics Unit, Mater Domini University Hospital, 88100 Catanzaro, Italy; (E.C.); (F.F.); (V.R.); (F.D.); (A.D.); (L.D.); (R.A.); (F.T.); (F.B.); (N.P.)
- Department of Health Sciences, Campus S. Venuta, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Rodolfo Iuliano
- Medical Genetics Unit, Mater Domini University Hospital, 88100 Catanzaro, Italy; (E.C.); (F.F.); (V.R.); (F.D.); (A.D.); (L.D.); (R.A.); (F.T.); (F.B.); (N.P.)
- Department of Health Sciences, Campus S. Venuta, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
14
|
Efficacy and safety of olaparib maintenance monotherapy for Japanese patients with platinum-sensitive relapsed ovarian, fallopian tube, and primary peritoneal cancer. Int J Clin Oncol 2022; 27:1644-1650. [PMID: 35835930 DOI: 10.1007/s10147-022-02212-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 06/21/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND Olaparib maintenance therapy for platinum-sensitive relapsed ovarian cancer has been approved in Japan since April 2018. Here, we report the experience administering this therapy in our hospital, with the aim of evaluating efficacy and safety in the Japanese population. METHODS The study included 52 patients with platinum-sensitive relapsed ovarian, fallopian tube, and primary peritoneal cancer. All patients started olaparib at a dose of 300 mg twice daily. Information about treatment efficacy and adverse effects was collected retrospectively from medical records. RESULTS Median age was 58 years old (range: 33-80), and 82.7% of the patients were diagnosed with high-grade serous carcinoma. Sixteen patients (30.8%) possessed the BRCA1/2 pathogenic variant (15 germline and 1 tissue), 3 (5.8%) possessed variants of unknown significance (2 germline and 1 tissue), 16 (30.8%) possessed wild type, and 17 (32.7%) were not analyzed. Median progression-free survival was 15.3 months (95% CI 9.0-21.6). Patients with BRCA1/2 pathogenic variants showed significantly longer PFS than patients with wild-type BRCA1/2 (p = 0.007). Disease progression caused 34 cases to discontinue olaparib. Eighteen (34.6%) individuals exhibited ≥ grade 3 anemia, although they recovered in response to appropriate management. One patient discontinued olaparib because of prolonged renal dysfunction. Another patient presented with grade 3 fatigue, but recovered after 2 weeks of interruption and continued olaparib treatment. CONCLUSION Olaparib maintenance therapy for platinum-sensitive recurrent ovarian cancer in the Japanese population is sufficiently safe and no less effective than reports from previous studies.
Collapse
|
15
|
Benito-Sánchez B, Barroso A, Fernández V, Mercadillo F, Núñez-Torres R, Pita G, Pombo L, Morales-Chamorro R, Cano-Cano JM, Urioste M, González-Neira A, Osorio A. Apparent regional differences in the spectrum of BARD1 pathogenic variants in Spanish population and importance of copy number variants. Sci Rep 2022; 12:8547. [PMID: 35595798 PMCID: PMC9122922 DOI: 10.1038/s41598-022-12480-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/11/2022] [Indexed: 12/22/2022] Open
Abstract
Only up to 25% of the cases in which there is a familial aggregation of breast and/or ovarian cancer are explained by germline mutations in the well-known BRCA1 and BRCA2 high-risk genes. Recently, the BRCA1-associated ring domain (BARD1), that partners BRCA1 in DNA repair, has been confirmed as a moderate-risk breast cancer susceptibility gene. Taking advantage of next-generation sequencing techniques, and with the purpose of defining the whole spectrum of possible pathogenic variants (PVs) in this gene, here we have performed a comprehensive mutational analysis of BARD1 in a cohort of 1946 Spanish patients who fulfilled criteria to be tested for germline pathogenic mutations in BRCA1 and BRCA2. We identified 22 different rare germline variants, being 5 of them clearly pathogenic or likely pathogenic large deletions, which account for 0.26% of the patients tested. Our results show that the prevalence and spectrum of mutations in the BARD1 gene might vary between different regions of Spain and expose the relevance to test for copy number variations.
Collapse
Affiliation(s)
- B Benito-Sánchez
- Familial Cancer Clinical Unit, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
| | - A Barroso
- Familial Cancer Clinical Unit, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
| | - V Fernández
- Familial Cancer Clinical Unit, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
| | - F Mercadillo
- Familial Cancer Clinical Unit, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
| | - R Núñez-Torres
- Human Genotyping Unit (CEGEN), Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
| | - G Pita
- Human Genotyping Unit (CEGEN), Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
| | - L Pombo
- Medical Oncology Section, Universitary Hospital Complex of Albacete, Albacete, Spain
| | - R Morales-Chamorro
- Medical Oncology Section, Hospitalary Compex La Mancha Centro, Alcázar de San Juan, Ciudad Real, Spain
| | - J M Cano-Cano
- Medical Oncology Service, Universitary General Hospital of Ciudad Real, Ciudad Real, Spain
| | - M Urioste
- Familial Cancer Clinical Unit, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
| | - A González-Neira
- Human Genotyping Unit (CEGEN), Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
| | - A Osorio
- Familial Cancer Clinical Unit, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain.
- Spanish Network On Rare Diseases (CIBERER), 28029, Madrid, Spain.
- Familial Cancer Clinical Unit, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), C/Melchor Fernández Almagro 3, 29029, Madrid, Spain.
| |
Collapse
|
16
|
Kasugai Y, Kohmoto T, Taniyama Y, Koyanagi YN, Usui Y, Iwase M, Oze I, Yamaguchi R, Ito H, Imoto I, Matsuo K. Association between germline pathogenic variants and breast cancer risk in Japanese women: The HERPACC study. Cancer Sci 2022; 113:1451-1462. [PMID: 35218119 PMCID: PMC8990868 DOI: 10.1111/cas.15312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/14/2022] [Accepted: 02/21/2022] [Indexed: 12/24/2022] Open
Abstract
Approximately 5%-10% of breast cancers are hereditary, caused by germline pathogenic variants (GPVs) in breast cancer predisposition genes. To date, most studies of the prevalence of GPVs and risk of breast cancer for each gene based on cases and noncancer controls have been conducted in Europe and the United States, and little information from Japanese populations is available. Furthermore, no studies considered confounding by established environmental factors and single-nucleotide polymorphisms (SNPs) identified in genome-wide association studies (GWAS) together in GPV evaluation. To evaluate the association between GPVs in nine established breast cancer predisposition genes including BRCA1/2 and breast cancer risk in Japanese women comprehensively, we conducted a case-control study within the Hospital-based Epidemiologic Research Program at Aichi Cancer Center (629 cases and 1153 controls). The associations between GPVs and the risk of breast cancer were assessed by odds ratios (OR) and 95% confidence intervals (CI) using logistic regression models adjusted for potential confounders. A total of 25 GPVs were detected among all cases (4.0%: 95% CI: 2.6-5.9), whereas four individuals carried GPVs in all controls (0.4%). The OR for breast cancer by all GPVs and by GPVs in BRCA1/2 was 12.2 (4.4-34.0, p = 1.74E-06) and 16.0 (4.2-60.9, p = 5.03E-0.5), respectively. A potential confounding with GPVs was observed for the GWAS-identified SNPs, whereas not for established environmental risk factors. In conclusion, GPVs increase the risk of breast cancer in Japanese women regardless of environmental factors and GWAS-identified SNPs. Future studies investigating interactions with environment and SNPs are warranted.
Collapse
Grants
- Aichi Cancer Center Joint Research Project on Priority Areas
- Grant-in-Aid for the Third Term Comprehensive 10-year Strategy for Cancer Control from the Ministry of Health, Labour and Welfare of Japan
- JP15ck0106177 AMED
- JP21ck0106553 AMED
- Cancer BioBank Aichi
- 17015018 Grants-in-Aid for Scientific Research from the Ministry of Education, Science, Sports, Culture and Technology of Japan
- 221S0001 Grants-in-Aid for Scientific Research from the Ministry of Education, Science, Sports, Culture and Technology of Japan
- JP16H06277(CoBiA) Grants-in-Aid for Scientific Research from the Ministry of Education, Science, Sports, Culture and Technology of Japan
- JP18H03045 Grants-in-Aid for Scientific Research from the Ministry of Education, Science, Sports, Culture and Technology of Japan
- AMED
- Grants‐in‐Aid for Scientific Research from the Ministry of Education, Science, Sports, Culture and Technology of Japan
Collapse
Affiliation(s)
- Yumiko Kasugai
- Division of Cancer Epidemiology and PreventionAichi Cancer Center Research InstituteNagoyaJapan
- Department of Cancer EpidemiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Tomohiro Kohmoto
- Division of Cancer Systems BiologyAichi Cancer Center Research InstituteNagoyaJapan
- Department of Human GeneticsGraduate School of Biomedical SciencesTokushima UniversityTokushimaJapan
| | - Yukari Taniyama
- Division of Cancer Information and ControlAichi Cancer Center Research InstituteNagoyaJapan
| | - Yuriko N. Koyanagi
- Division of Cancer Information and ControlAichi Cancer Center Research InstituteNagoyaJapan
| | - Yoshiaki Usui
- Division of Cancer Information and ControlAichi Cancer Center Research InstituteNagoyaJapan
- Laboratory for Genotyping DevelopmentRIKEN Center for Integrative Medical SciencesYokohamaJapan
| | - Madoka Iwase
- Division of Cancer Epidemiology and PreventionAichi Cancer Center Research InstituteNagoyaJapan
| | - Isao Oze
- Division of Cancer Epidemiology and PreventionAichi Cancer Center Research InstituteNagoyaJapan
| | - Rui Yamaguchi
- Division of Cancer Systems BiologyAichi Cancer Center Research InstituteNagoyaJapan
| | - Hidemi Ito
- Division of Cancer Information and ControlAichi Cancer Center Research InstituteNagoyaJapan
| | - Issei Imoto
- Aichi Cancer Center Research InstituteNagoyaJapan
| | - Keitaro Matsuo
- Division of Cancer Epidemiology and PreventionAichi Cancer Center Research InstituteNagoyaJapan
- Department of Cancer EpidemiologyNagoya University Graduate School of MedicineNagoyaJapan
| |
Collapse
|
17
|
Futamura M, Yoshida K. Current status of AYA-generation breast cancer: trends worldwide and in Japan. Int J Clin Oncol 2021; 27:16-24. [PMID: 34921319 DOI: 10.1007/s10147-021-02087-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/11/2021] [Indexed: 11/28/2022]
Abstract
Breast cancer (BC) is the most common cancer worldwide among women. In Japan, the incidence of BC gradually increased. The recent number of adolescent and young adult (AYA)-BC patients is approximately 4,000-5,000 every year, accounting for 5% of all BC cases. BC in young people has been attracting attention since Japan's third basic plan to promote cancer control programs incorporated cancer control measures for pediatric (age ≤ 14 years) and adolescent and young adult (AYA)-generation (age 15-39 years) cancers in 2018. Attention is needed to detect AYA-BC because of the presence of dense breasts. AYA-BC patients are clinically characterized by larger tumor size, more lymph node metastases, advanced stages, and a higher rate of aggressive phenotypes, such as triple-negative or HER2-positive subtypes, and are strongly associated with family history and genetic germline alterations, including hereditary breast and ovarian cancers. Given that AYA-BC patients show a poorer prognosis than older BC patients, they often require intensive therapies, including surgery, radiation, chemotherapy, and endocrine therapy. We must solve many survivorship-associated problems in AYA-BC patients, including fertility preservation, comorbidity after treatment, and long-term follow-up. Under these circumstances, national and local governments and various academic societies have started addressing these problems by formulating laws and guidelines, establishing medical systems, and offering financial support to conquer cancer and maintain a better quality of life. This review summarizes the current trends of AYA-BC worldwide and in Japan. Further Japan-specific data on AYA-BC are required to clarify its characteristics and improve prognosis and survivorship.
Collapse
Affiliation(s)
- Manabu Futamura
- Breast Surgery, Department of Surgery, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan.
| | - Kazuhiro Yoshida
- Gastroenterological Surgery, Department of Surgery, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| |
Collapse
|
18
|
Futagawa M, Yamamoto H, Kochi M, Urakawa Y, Sogawa R, Kato F, Okazawa-Sakai M, Ennishi D, Shinozaki K, Inoue H, Yanai H, Hirasawa A. Retroperitoneal leiomyosarcoma in a female patient with a germline splicing variant RAD51D c.904-2A > T: a case report. Hered Cancer Clin Pract 2021; 19:48. [PMID: 34838098 PMCID: PMC8627011 DOI: 10.1186/s13053-021-00205-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/03/2021] [Indexed: 11/10/2022] Open
Abstract
Background RAD51D (RAD51 paralog D) is an intermediate cancer susceptibility gene for primary ovarian cancer, including fallopian tube and peritoneal carcinomas and breast cancer. Although gynecological non-epithelial tumors such as uterine sarcomas are associated with genomic instability, including BRCA impairment, there is no clear evidence of the relationship between RAD51D variants and the risk of sarcoma development. Case presentation A Japanese woman in her 50s underwent multiple surgical resections and several regimens of chemotherapy for tumors that originated in the retroperitoneum and recurred in the peritoneum over a clinical course of approximately 4 years. The peritoneal tumor was histologically diagnosed as a leiomyosarcoma and was genetically identified to show a splice variant of RAD51D c.904-2A > T [NM_002878] through tumor profiling performed as a part of cancer precision medicine. The confirmatory genetic test performed after genetic counseling revealed that the RAD51D splicing variant detected in her tumor was of germline origin. In silico analyses supported the possible pathogenicity of the detected splice variant of RAD51D with a predicted attenuation in mRNA transcription and truncated protein production due to frameshifting, which was attributed to a single-nucleotide alteration in the splicing acceptor site at the 3′-end of intron 9 of RAD51D. Considering her unfavorable clinical outcome, which showed a highly aggressive phenotype of leiomyosarcoma with altered RAD51D, this case provided novel evidence for the relationship of a RAD51D splicing variant with malignant tumor development or progression. We report the findings of this rare case with possible involvement of the germline variant of RAD51D c.904-2A > T as a potential predisposing factor for malignant tumors, including leiomyosarcoma. Conclusions We present the findings of a case of leiomyosarcoma in the peritoneum of a female patient with a novel germline splicing variant of RAD51D as potential evidence for the pathogenicity of the variant and its involvement in the risk of sarcoma etiology and/or development. To the best of our knowledge, this is the first case report describing a leiomyosarcoma carrying a germline RAD51D splicing variant and elucidating its pathogenicity on the basis of computational prediction of the impairment of normal transcription and the presumed loss of functional protein production. Supplementary Information The online version contains supplementary material available at 10.1186/s13053-021-00205-x.
Collapse
Affiliation(s)
- Mashu Futagawa
- Department of Clinical Genomic Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8551, Japan.,Department of Clinical Genomic Medicine, Okayama University Hospital, Okayama, Japan
| | - Hideki Yamamoto
- Department of Clinical Genomic Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8551, Japan. .,Department of Clinical Genomic Medicine, Okayama University Hospital, Okayama, Japan.
| | - Mariko Kochi
- Department of Clinical Genomic Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8551, Japan.,Department of Clinical Genomic Medicine, Okayama University Hospital, Okayama, Japan
| | - Yusaku Urakawa
- Department of Clinical Genomic Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8551, Japan.,Department of Clinical Genomic Medicine, Okayama University Hospital, Okayama, Japan
| | - Reimi Sogawa
- Department of Clinical Genomic Medicine, Okayama University Hospital, Okayama, Japan
| | - Fumino Kato
- Department of Clinical Genomic Medicine, Okayama University Hospital, Okayama, Japan
| | - Mika Okazawa-Sakai
- Department of Clinical Genomic Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8551, Japan
| | - Daisuke Ennishi
- Center for Comprehensive Genomic Medicine, Okayama University Hospital, Okayama, Japan
| | - Katsunori Shinozaki
- Division of Clinical Oncology, Hiroshima Prefecture Hospital, Hiroshima, Japan
| | - Hirofumi Inoue
- Department of Pathology, Okayama University Hospital, Okayama, Japan
| | - Hiroyuki Yanai
- Department of Pathology, Okayama University Hospital, Okayama, Japan
| | - Akira Hirasawa
- Department of Clinical Genomic Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8551, Japan.,Department of Clinical Genomic Medicine, Okayama University Hospital, Okayama, Japan
| |
Collapse
|
19
|
Ercoskun P, Yuce Kahraman C, Ozkan G, Tatar A. Genetic Characterization of Hereditary Cancer Syndromes Based on Targeted Next-Generation Sequencing. Mol Syndromol 2021; 13:123-131. [DOI: 10.1159/000518927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/06/2021] [Indexed: 11/19/2022] Open
Abstract
A hereditary cancer syndrome is a genetic predisposition to cancer caused by a germline mutation in cancer-related genes. Identifying the disease-causing variant is important for both the patient and relatives at risk in cancer families because this could be a guide in treatment and secondary cancer prevention. In this study, hereditary cancer panel harboring cancer-related genes was performed on MiSeq Illumina NGS system from peripheral blood samples. Sequencing files were fed into a cloud-based data analysis pipeline. Reportable variants were classified according to the American College of Medical Genetics and Genomics guidelines. Three hundred five individuals were included in the study. Different pathogenic/likely pathogenic variants were detected in 75 individuals. The majority of these variants were in the <i>MUTYH</i>, <i>BRCA2</i>, and <i>CHEK2</i> genes. Nine novel pathogenic/likely pathogenic variants were identified in <i>BRCA1</i>, <i>BRCA2</i>, <i>GALNT12</i>, <i>ATM</i>, <i>MLH1</i>, <i>MSH2</i>, <i>APC</i>, and <i>KIT</i> genes. We obtained interesting and novel variants which could be related to hereditary cancer, and this study confirmed that NGS is an indispensable method for the risk assessment in cancer families.
Collapse
|
20
|
Russi M, Marson D, Fermeglia A, Aulic S, Fermeglia M, Laurini E, Pricl S. The fellowship of the RING: BRCA1, its partner BARD1 and their liaison in DNA repair and cancer. Pharmacol Ther 2021; 232:108009. [PMID: 34619284 DOI: 10.1016/j.pharmthera.2021.108009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 08/22/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022]
Abstract
The breast cancer type 1 susceptibility protein (BRCA1) and its partner - the BRCA1-associated RING domain protein 1 (BARD1) - are key players in a plethora of fundamental biological functions including, among others, DNA repair, replication fork protection, cell cycle progression, telomere maintenance, chromatin remodeling, apoptosis and tumor suppression. However, mutations in their encoding genes transform them into dangerous threats, and substantially increase the risk of developing cancer and other malignancies during the lifetime of the affected individuals. Understanding how BRCA1 and BARD1 perform their biological activities therefore not only provides a powerful mean to prevent such fatal occurrences but can also pave the way to the development of new targeted therapeutics. Thus, through this review work we aim at presenting the major efforts focused on the functional characterization and structural insights of BRCA1 and BARD1, per se and in combination with all their principal mediators and regulators, and on the multifaceted roles these proteins play in the maintenance of human genome integrity.
Collapse
Affiliation(s)
- Maria Russi
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Domenico Marson
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Alice Fermeglia
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Suzana Aulic
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Maurizio Fermeglia
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Erik Laurini
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Sabrina Pricl
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy; Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland.
| |
Collapse
|
21
|
Senda N, Kawaguchi-Sakita N, Kawashima M, Inagaki-Kawata Y, Yoshida K, Takada M, Kataoka M, Torii M, Nishimura T, Kawaguchi K, Suzuki E, Kataoka Y, Matsumoto Y, Yoshibayashi H, Yamagami K, Tsuyuki S, Takahara S, Yamauchi A, Shinkura N, Kato H, Moriguchi Y, Okamura R, Kan N, Suwa H, Sakata S, Mashima S, Yotsumoto F, Tachibana T, Tanaka M, Togashi K, Haga H, Yamada T, Kosugi S, Inamoto T, Sugimoto M, Ogawa S, Toi M. Optimization of prediction methods for risk assessment of pathogenic germline variants in the Japanese population. Cancer Sci 2021; 112:3338-3348. [PMID: 34036661 PMCID: PMC8353892 DOI: 10.1111/cas.14986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 04/30/2021] [Accepted: 05/06/2021] [Indexed: 12/19/2022] Open
Abstract
Predicting pathogenic germline variants (PGVs) in breast cancer patients is important for selecting optimal therapeutics and implementing risk reduction strategies. However, PGV risk factors and the performance of prediction methods in the Japanese population remain unclear. We investigated clinicopathological risk factors using the Tyrer‐Cuzick (TC) breast cancer risk evaluation tool to predict BRCA PGVs in unselected Japanese breast cancer patients (n = 1,995). Eleven breast cancer susceptibility genes were analyzed using target‐capture sequencing in a previous study; the PGV prevalence in BRCA1, BRCA2, and PALB2 was 0.75%, 3.1%, and 0.45%, respectively. Significant associations were found between the presence of BRCA PGVs and early disease onset, number of familial cancer cases (up to third‐degree relatives), triple‐negative breast cancer patients under the age of 60, and ovarian cancer history (all P < .0001). In total, 816 patients (40.9%) satisfied the National Comprehensive Cancer Network (NCCN) guidelines for recommending multigene testing. The sensitivity and specificity of the NCCN criteria for discriminating PGV carriers from noncarriers were 71.3% and 60.7%, respectively. The TC model showed good discrimination for predicting BRCA PGVs (area under the curve, 0.75; 95% confidence interval, 0.69‐0.81). Furthermore, use of the TC model with an optimized cutoff of TC score ≥0.16% in addition to the NCCN guidelines improved the predictive efficiency for high‐risk groups (sensitivity, 77.2%; specificity, 54.8%; about 11 genes). Given the influence of ethnic differences on prediction, we consider that further studies are warranted to elucidate the role of environmental and genetic factors for realizing precise prediction.
Collapse
Affiliation(s)
- Noriko Senda
- Department of Breast Surgery, Kyoto University, Kyoto, Japan
| | | | | | | | - Kenichi Yoshida
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
| | - Masahiro Takada
- Department of Breast Surgery, Kyoto University, Kyoto, Japan
| | - Masako Kataoka
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University, Kyoto, Japan
| | - Masae Torii
- Department of Breast Surgery, Japanese Red Cross Wakayama Medical Center, Wakayama, Japan
| | | | | | - Eiji Suzuki
- Department of Breast Surgery, Kyoto University, Kyoto, Japan
| | - Yuki Kataoka
- Department of Healthcare Epidemiology, School of Public Health, in the Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | - Hiroshi Yoshibayashi
- Department of Breast Surgery, Japanese Red Cross Wakayama Medical Center, Wakayama, Japan
| | - Kazuhiko Yamagami
- Department of Breast Surgery and Oncology, Shinko Hospital, Kobe, Japan
| | - Shigeru Tsuyuki
- Department of Breast Surgery, Osaka Red Cross Hospital, Osaka, Japan
| | | | - Akira Yamauchi
- Department of Breast Surgery, Kitano Hospital, Osaka, Japan
| | - Nobuhiko Shinkura
- Department of Surgery, Ijinkai Takeda General Hospital, Kyoto, Japan
| | - Hironori Kato
- Department of Breast Surgery, Kobe City Medical Center General Hospital, Kobe, Japan
| | | | - Ryuji Okamura
- Department of Breast Surgery, Yamatotakada Municipal Hospital, Yamatotakada, Japan
| | | | - Hirofumi Suwa
- Department of Breast Surgery, Hyogo Prefectural Amagasaki General Medical Center, Amagasaki, Japan
| | - Shingo Sakata
- Department of Breast Surgery, Rakuwakai Otowa Hospital, Kyoto, Japan
| | - Susumu Mashima
- Department of Surgery, Japan Community Health Care Organization, Yamato Koriyama Hospital, Yamato Koriyama, Japan
| | - Fumiaki Yotsumoto
- Department of Breast Surgery, Shiga General Hospital, Moriyama, Japan
| | | | - Mitsuru Tanaka
- Department of Surgery, Hirakata Kohsai Hospital, Hirakata, Japan
| | - Kaori Togashi
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University, Kyoto, Japan
| | - Hironori Haga
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Takahiro Yamada
- Department of Medical Ethics/Medical Genetics, Kyoto University, Kyoto, Japan
| | - Shinji Kosugi
- Department of Medical Ethics/Medical Genetics, Kyoto University, Kyoto, Japan
| | - Takashi Inamoto
- Faculty of Health Care, Tenri Health Care University, Tenri, Japan
| | - Masahiro Sugimoto
- Health Promotion and Preemptive Medicine, Research and Development Center for Minimally Invasive Therapies, Tokyo Medical University, Tokyo, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
| | - Masakazu Toi
- Department of Breast Surgery, Kyoto University, Kyoto, Japan
| |
Collapse
|
22
|
Yoshida R, Hagio T, Kaneyasu T, Gotoh O, Osako T, Tanaka N, Amino S, Yaguchi N, Nakashima E, Kitagawa D, Ueno T, Ohno S, Nakajima T, Nakamura S, Miki Y, Hirota T, Takahashi S, Matsuura M, Noda T, Mori S. Pathogenicity assessment of variants for breast cancer susceptibility genes based on BRCAness of tumor sample. Cancer Sci 2021; 112:1310-1319. [PMID: 33421217 PMCID: PMC7935793 DOI: 10.1111/cas.14803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/03/2020] [Accepted: 01/05/2021] [Indexed: 12/26/2022] Open
Abstract
Genes involved in the homologous recombination repair pathway—as exemplified by BRCA1, BRCA2, PALB2, ATM, and CHEK2—are frequently associated with hereditary breast and ovarian cancer syndrome. Germline mutations in the loci of these genes with loss of heterozygosity or additional somatic truncation at the WT allele lead to the development of breast cancers with characteristic clinicopathological features and prominent genomic features of homologous recombination deficiency, otherwise referred to as “BRCAness.” Although clinical genetic testing for these and other genes has increased the chances of identifying pathogenic variants, there has also been an increase in the prevalence of variants of uncertain significance, which poses a challenge to patient care because of the difficulties associated with making further clinical decisions. To overcome this challenge, we sought to develop a methodology to reclassify the pathogenicity of these unknown variants using statistical modeling of BRCAness. The model was developed with Lasso logistic regression by comparing 116 genomic attributes derived from 37 BRCA1/2 biallelic mutant and 32 homologous recombination‐quiescent breast cancer exomes. The model showed 95.8% and 86.7% accuracies in the training cohort and The Cancer Genome Atlas validation cohort, respectively. Through application of the model for variant reclassification of homologous recombination‐associated hereditary breast and ovarian cancer causal genes and further assessment with clinicopathological features, we finally identified one likely pathogenic and five likely benign variants. As such, the BRCAness model developed from the tumor exome was robust and provided a reasonable basis for variant reclassification.
Collapse
Affiliation(s)
- Reiko Yoshida
- Department of Oncotherapeutic Medicine, Graduate School of Medicine, Tohoku University, Sendai, Japan.,Division of Cancer Genomics, Cancer Institute, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan.,Department of Clinical Genetic Oncology, Cancer Institute Hospital (CIH), JFCR, Tokyo, Japan
| | - Taichi Hagio
- Division of Cancer Genomics, Cancer Institute, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan.,Project for Development of Innovative Research on Cancer Therapeutics, Cancer Precision Medicine Center, JFCR, Tokyo, Japan
| | - Tomoko Kaneyasu
- Division of Cancer Genomics, Cancer Institute, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan.,Project for Development of Innovative Research on Cancer Therapeutics, Cancer Precision Medicine Center, JFCR, Tokyo, Japan
| | - Osamu Gotoh
- Division of Cancer Genomics, Cancer Institute, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan.,Project for Development of Innovative Research on Cancer Therapeutics, Cancer Precision Medicine Center, JFCR, Tokyo, Japan
| | - Tomo Osako
- Division of Pathology, Cancer Institute, JFCR, Tokyo, Japan
| | - Norio Tanaka
- Division of Cancer Genomics, Cancer Institute, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan.,Project for Development of Innovative Research on Cancer Therapeutics, Cancer Precision Medicine Center, JFCR, Tokyo, Japan
| | - Sayuri Amino
- Division of Cancer Genomics, Cancer Institute, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan.,Project for Development of Genomics-based Cancer Medicine, Cancer Precision Medicine Center, JFCR, Tokyo, Japan
| | - Noriko Yaguchi
- Division of Cancer Genomics, Cancer Institute, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan.,Project for Development of Innovative Research on Cancer Therapeutics, Cancer Precision Medicine Center, JFCR, Tokyo, Japan
| | | | - Dai Kitagawa
- Breast Oncology Center, CIH, JFCR, Tokyo, Japan.,Department of Breast Surgical Oncology, Center Hospital of the National Center for Global Health and Medicine, Tokyo, Japan
| | | | - Shinji Ohno
- Breast Oncology Center, CIH, JFCR, Tokyo, Japan
| | - Takeshi Nakajima
- Department of Clinical Genetic Oncology, Cancer Institute Hospital (CIH), JFCR, Tokyo, Japan
| | - Seigo Nakamura
- Division of Breast Surgical Oncology, Showa University School of Medicine, Tokyo, Japan
| | - Yoshio Miki
- Division of Genetic Diagnosis, Cancer Institute, JFCR, Tokyo, Japan
| | - Toru Hirota
- Department of Cellular and Molecular Imaging of Cancer, Graduate School of Medicine, Tohoku University, Sendai, Japan.,Division of Experimental Pathology, Cancer Institute, JFCR, Tokyo, Japan
| | - Shunji Takahashi
- Department of Oncotherapeutic Medicine, Graduate School of Medicine, Tohoku University, Sendai, Japan.,Department of Medical Oncology, CIH, JFCR, Tokyo, Japan
| | - Masaaki Matsuura
- Division of Cancer Genomics, Cancer Institute, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan
| | - Tetsuo Noda
- Division of Cancer Genomics, Cancer Institute, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan.,Project for Development of Genomics-based Cancer Medicine, Cancer Precision Medicine Center, JFCR, Tokyo, Japan.,Cancer, Institute, JFCR, Tokyo, Japan
| | - Seiichi Mori
- Division of Cancer Genomics, Cancer Institute, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan.,Project for Development of Innovative Research on Cancer Therapeutics, Cancer Precision Medicine Center, JFCR, Tokyo, Japan
| |
Collapse
|
23
|
Rofes P, Del Valle J, Torres-Esquius S, Feliubadaló L, Stradella A, Moreno-Cabrera JM, López-Doriga A, Munté E, De Cid R, Campos O, Cuesta R, Teulé Á, Grau È, Sanz J, Capellá G, Díez O, Brunet J, Balmaña J, Lázaro C. BARD1 Pathogenic Variants are Associated with Triple-Negative Breast Cancer in a Spanish Hereditary Breast and Ovarian Cancer Cohort. Genes (Basel) 2021; 12:genes12020150. [PMID: 33498765 PMCID: PMC7911518 DOI: 10.3390/genes12020150] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/13/2021] [Accepted: 01/20/2021] [Indexed: 12/16/2022] Open
Abstract
Only a small fraction of hereditary breast and/or ovarian cancer (HBOC) cases are caused by germline variants in the high-penetrance breast cancer 1 and 2 genes (BRCA1 and BRCA2). BRCA1-associated ring domain 1 (BARD1), nuclear partner of BRCA1, has been suggested as a potential HBOC risk gene, although its prevalence and penetrance are variable according to populations and type of tumor. We aimed to investigate the prevalence of BARD1 truncating variants in a cohort of patients with clinical suspicion of HBOC. A comprehensive BARD1 screening by multigene panel analysis was performed in 4015 unrelated patients according to our regional guidelines for genetic testing in hereditary cancer. In addition, 51,202 Genome Aggregation Database (gnomAD) non-Finnish, non-cancer European individuals were used as a control population. In our patient cohort, we identified 19 patients with heterozygous BARD1 truncating variants (0.47%), whereas the frequency observed in the gnomAD controls was 0.12%. We found a statistically significant association of truncating BARD1 variants with overall risk (odds ratio (OR) = 3.78; CI = 2.10–6.48; p = 1.16 × 10−5). This association remained significant in the hereditary breast cancer (HBC) group (OR = 4.18; CI = 2.10–7.70; p = 5.45 × 10−5). Furthermore, deleterious BARD1 variants were enriched among triple-negative BC patients (OR = 5.40; CI = 1.77–18.15; p = 0.001) compared to other BC subtypes. Our results support the role of BARD1 as a moderate penetrance BC predisposing gene and highlight a stronger association with triple-negative tumors.
Collapse
Affiliation(s)
- Paula Rofes
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, 08908 L’Hospitalet de Llobregat, Spain; (P.R.); (J.D.V.); (L.F.); (A.S.); (J.M.M.-C.); (E.M.); (O.C.); (R.C.); (Á.T.); (G.C.)
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, 08908 L’Hospitalet de Llobregat, Spain;
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28929 Madrid, Spain
| | - Jesús Del Valle
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, 08908 L’Hospitalet de Llobregat, Spain; (P.R.); (J.D.V.); (L.F.); (A.S.); (J.M.M.-C.); (E.M.); (O.C.); (R.C.); (Á.T.); (G.C.)
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, 08908 L’Hospitalet de Llobregat, Spain;
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28929 Madrid, Spain
| | - Sara Torres-Esquius
- Hereditary Cancer Genetics Group, Vall d’Hebron Institute of Oncology (VHIO), Medical Oncology Department, University Hospital Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (S.T.-E.); (J.B.)
| | - Lídia Feliubadaló
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, 08908 L’Hospitalet de Llobregat, Spain; (P.R.); (J.D.V.); (L.F.); (A.S.); (J.M.M.-C.); (E.M.); (O.C.); (R.C.); (Á.T.); (G.C.)
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, 08908 L’Hospitalet de Llobregat, Spain;
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28929 Madrid, Spain
| | - Agostina Stradella
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, 08908 L’Hospitalet de Llobregat, Spain; (P.R.); (J.D.V.); (L.F.); (A.S.); (J.M.M.-C.); (E.M.); (O.C.); (R.C.); (Á.T.); (G.C.)
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, 08908 L’Hospitalet de Llobregat, Spain;
- Medical Oncology Department, Catalan Institute of Oncology, IDIBELL, 08908 L’Hospitalet de Llobregat, Spain;
| | - José Marcos Moreno-Cabrera
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, 08908 L’Hospitalet de Llobregat, Spain; (P.R.); (J.D.V.); (L.F.); (A.S.); (J.M.M.-C.); (E.M.); (O.C.); (R.C.); (Á.T.); (G.C.)
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, 08908 L’Hospitalet de Llobregat, Spain;
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28929 Madrid, Spain
| | - Adriana López-Doriga
- Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology, 08908 L’Hospitalet de Llobregat, Spain;
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| | - Elisabet Munté
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, 08908 L’Hospitalet de Llobregat, Spain; (P.R.); (J.D.V.); (L.F.); (A.S.); (J.M.M.-C.); (E.M.); (O.C.); (R.C.); (Á.T.); (G.C.)
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, 08908 L’Hospitalet de Llobregat, Spain;
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28929 Madrid, Spain
| | - Rafael De Cid
- Genomes for Life-GCAT Lab Group, IGTP, Institut Germans Trias i Pujol (IGTP), 08916 Badalona, Spain;
| | - Olga Campos
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, 08908 L’Hospitalet de Llobregat, Spain; (P.R.); (J.D.V.); (L.F.); (A.S.); (J.M.M.-C.); (E.M.); (O.C.); (R.C.); (Á.T.); (G.C.)
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, 08908 L’Hospitalet de Llobregat, Spain;
| | - Raquel Cuesta
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, 08908 L’Hospitalet de Llobregat, Spain; (P.R.); (J.D.V.); (L.F.); (A.S.); (J.M.M.-C.); (E.M.); (O.C.); (R.C.); (Á.T.); (G.C.)
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, 08908 L’Hospitalet de Llobregat, Spain;
| | - Álex Teulé
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, 08908 L’Hospitalet de Llobregat, Spain; (P.R.); (J.D.V.); (L.F.); (A.S.); (J.M.M.-C.); (E.M.); (O.C.); (R.C.); (Á.T.); (G.C.)
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, 08908 L’Hospitalet de Llobregat, Spain;
| | - Èlia Grau
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, 08908 L’Hospitalet de Llobregat, Spain;
- Hereditary Cancer Program, Catalan Institute of Oncology, IGTP, 08916 Badalona, Spain
| | - Judit Sanz
- Genetic Counselling Unit, Medical Oncology Department, Althaia Xarxa Assistencial Universitària de Manresa, 08243 Manresa, Spain;
| | - Gabriel Capellá
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, 08908 L’Hospitalet de Llobregat, Spain; (P.R.); (J.D.V.); (L.F.); (A.S.); (J.M.M.-C.); (E.M.); (O.C.); (R.C.); (Á.T.); (G.C.)
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, 08908 L’Hospitalet de Llobregat, Spain;
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28929 Madrid, Spain
| | - Orland Díez
- Catalan Health Institute, Vall d’Hebron Hospital Universitari, 08035 Barcelona, Spain;
- Hereditary Cancer Genetics Group, Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Joan Brunet
- Medical Oncology Department, Catalan Institute of Oncology, IDIBELL, 08908 L’Hospitalet de Llobregat, Spain;
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBGI, 17007 Girona, Spain
- Medical Sciences Department, School of Medicine, University of Girona, 17007 Girona, Spain
| | - Judith Balmaña
- Hereditary Cancer Genetics Group, Vall d’Hebron Institute of Oncology (VHIO), Medical Oncology Department, University Hospital Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (S.T.-E.); (J.B.)
| | - Conxi Lázaro
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, 08908 L’Hospitalet de Llobregat, Spain; (P.R.); (J.D.V.); (L.F.); (A.S.); (J.M.M.-C.); (E.M.); (O.C.); (R.C.); (Á.T.); (G.C.)
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, 08908 L’Hospitalet de Llobregat, Spain;
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28929 Madrid, Spain
- Correspondence: ; Tel.: +34-93-2607145
| |
Collapse
|
24
|
Nepomuceno TC, Carvalho MA, Rodrigue A, Simard J, Masson JY, Monteiro ANA. PALB2 Variants: Protein Domains and Cancer Susceptibility. Trends Cancer 2020; 7:188-197. [PMID: 33139182 DOI: 10.1016/j.trecan.2020.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 01/09/2023]
Abstract
Since its discovery, partner and localizer of breast cancer 2 (BRCA2) (PALB2) has emerged as a major tumor suppressor gene linked to breast cancer (BC), pancreatic cancer (PC), and ovarian cancer (OC) susceptibility. Its protein product plays a pivotal role in the maintenance of genome integrity. Here we discuss the first functional evaluation of a large set of PALB2 missense variants of uncertain significance (VUSs). Assessment of 136 VUSs interrogating a range of PALB2 biological functions resulted in the identification of 15 variants with consistent loss of function across different assays. All loss-of-function variants are located at the PALB2 coiled coil (CC) or at the WD40 domain, highlighting the importance of modular domains mechanistically involved in the DNA damage response (DDR) and pinpointing their roles in tumor suppression.
Collapse
Affiliation(s)
- Thales C Nepomuceno
- Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; Divisão de Pesquisa Clínica, Instituto Nacional de Câncer, Rio de Janeiro 20230-130, Brazil
| | - Marcelo A Carvalho
- Divisão de Pesquisa Clínica, Instituto Nacional de Câncer, Rio de Janeiro 20230-130, Brazil; Instituto Federal do Rio de Janeiro (IFRJ), Rio de Janeiro 20270-021, Brazil
| | - Amélie Rodrigue
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Division, 9 McMahon, Quebec City, QC G1R 3S3, Canada
| | - Jacques Simard
- Genomics Center, CHU de Quebec-Université Laval Research Center, Quebec City, QC, Canada
| | - Jean-Yves Masson
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Division, 9 McMahon, Quebec City, QC G1R 3S3, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Quebec City, QC G1V 0A6, Canada
| | - Alvaro N A Monteiro
- Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA.
| |
Collapse
|
25
|
Grasel RS, Felicio PS, de Paula AE, Campacci N, Garcia FADO, de Andrade ES, Evangelista AF, Fernandes GC, Sabato CDS, De Marchi P, Souza CDP, de Paula CAA, Torrezan GT, Galvão HDCR, Carraro DM, Palmero EI. Using Co-segregation and Loss of Heterozygosity Analysis to Define the Pathogenicity of Unclassified Variants in Hereditary Breast Cancer Patients. Front Oncol 2020; 10:571330. [PMID: 33134171 PMCID: PMC7566163 DOI: 10.3389/fonc.2020.571330] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/28/2020] [Indexed: 12/18/2022] Open
Abstract
The use of gene panels introduces a new dilemma in the genetics field due to the high frequency of variants of uncertain significance (VUS). The objective of this study was to provide evidence that may help in the classification of these germline variants in terms of their clinical impact and association with the disease in question. A total of 52 unrelated women at-risk for HBOC and negative for BRCA1/BRCA2 pathogenic variants were evaluated through a gene panel comprising 14 breast and/or ovarian cancer susceptibility genes. Of the 453 germline variants identified, 15 variants (classes 3, 4, and 5) in the ATM, BRIP1, CHEK2, MRE11A, MUTHY, PALB2, RAD50, and RAD51C genes were evaluated via databases, co-segregation studies and loss of heterozygosity in the tumor. The co-segregation analysis allowed the establishment of an association with the presence of variants and the risk of cancer for variant c.316C>T in the BRIP1 gene. Four variants of uncertain significance showed loss of heterozygosity in the tumor (ATM c.4709T>C; CHEK2 c.1036C>T; PALB2 c.1001A>G, and RAD50 c.281T>C), which is an indication of pathogenicity. Thus, the present study provides novel evidence that favors the association of variants in moderate-risk genes with the development of hereditary breast cancer.
Collapse
Affiliation(s)
| | - Paula Silva Felicio
- Molecular Oncology Research Center, Barretos Cancer Hospital, São Paulo, Brazil
| | | | - Natalia Campacci
- Molecular Oncology Research Center, Barretos Cancer Hospital, São Paulo, Brazil
| | | | | | | | | | | | - Pedro De Marchi
- Department of Medical Oncology, Barretos Cancer Hospital, São Paulo, Brazil.,Oncoclinicas, Rio de Janeiro, Brazil
| | - Cristiano de Pádua Souza
- Department of Medical Oncology, Barretos Cancer Hospital, São Paulo, Brazil.,Department of Oncogenetics, Barretos Cancer Hospital, São Paulo, Brazil
| | | | | | | | - Dirce Maria Carraro
- Genomic Diagnostic Center, AC Camargo Cancer Center, São Paulo, Brazil.,Genomics and Molecular Biology Group, CIPE - A. C. Camargo Cancer Center, São Paulo, Brazil
| | - Edenir Inêz Palmero
- Molecular Oncology Research Center, Barretos Cancer Hospital, São Paulo, Brazil.,Center of Molecular Diagnosis, Barretos Cancer Hospital, São Paulo, Brazil.,Pele Little Prince Research Institute, Curitiba, Brazil.,Faculdades Pequeno Príncipe, Curitiba, Brazil
| |
Collapse
|