1
|
Lin KT, Muneer G, Huang PR, Chen CS, Chen YJ. Mass Spectrometry-Based Proteomics for Next-Generation Precision Oncology. MASS SPECTROMETRY REVIEWS 2025. [PMID: 40269546 DOI: 10.1002/mas.21932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 03/29/2025] [Accepted: 04/01/2025] [Indexed: 04/25/2025]
Abstract
Cancer is the leading cause of death worldwide characterized by patient heterogeneity and complex tumor microenvironment. While the genomics-based testing has transformed modern medicine, the challenge of diverse clinical outcomes highlights unmet needs for precision oncology. As functional molecules regulating cellular processes, proteins hold great promise as biomarkers and drug targets. Mass spectrometry (MS)-based clinical proteomics has illuminated the molecular features of cancers and facilitated discovery of biomarkers or therapeutic targets, paving the way for innovative strategies that enhance the precision of personalized treatment. In this article, we introduced the tools and current achievements of MS-based proteomics, choice of discovery and targeted MS from discovery to validation phases, profiling sensitivity from bulk samples to single-cell level and tissue to liquid biopsy specimens, current regulatory landscape of MS-based protein laboratory-developed tests (LDTs). The challenges, success and future perspectives in translating research MS assay into clinical applications are also discussed. With well-designed validation studies to demonstrate clinical benefits and meet the regulatory requirements for both analytical and clinical performance, the future of MS-based assays is promising with numerous opportunities to improve cancer diagnosis, treatment, and monitoring.
Collapse
Affiliation(s)
- Kuen-Tyng Lin
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Gul Muneer
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | | | - Ciao-Syuan Chen
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Yu-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
2
|
Tang S, Wang Q, Sun K, Song Y, Liu R, Tan X, Li H, Lv Y, Yang F, Zhao J, Li S, Bi P, Yang J, Zhu Z, Chen D, Chuan Z, Luo X, Hu Z, Liu Y, Li Z, Ke T, Jiang D, Zheng K, Yang R, Chen K, Guo R. Metabolic Heterogeneity and Potential Immunotherapeutic Responses Revealed by Single-Cell Transcriptomics of Breast Cancer. Apoptosis 2024:10.1007/s10495-024-01952-7. [PMID: 38578322 DOI: 10.1007/s10495-024-01952-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND Breast cancer (BC) exhibits remarkable heterogeneity. However, the transcriptomic heterogeneity of BC at the single-cell level has not been fully elucidated. METHODS We acquired BC samples from 14 patients. Single-cell RNA sequencing (scRNA-seq), bioinformatic analyses, along with immunohistochemistry (IHC) and immunofluorescence (IF) assays were carried out. RESULTS According to the scRNA-seq results, 10 different cell types were identified. We found that Cancer-Associated Fibroblasts (CAFs) exhibited distinct biological functions and may promote resistance to therapy. Metabolic analysis of tumor cells revealed heterogeneity in glycolysis, gluconeogenesis, and fatty acid synthetase reprogramming, which led to chemotherapy resistance. Furthermore, patients with multiple metastases and progression were predicted to benefit from immunotherapy based on a heterogeneity analysis of T cells and tumor cells. CONCLUSIONS Our findings provide a comprehensive understanding of the heterogeneity of BC, provide comprehensive insight into the correlation between cancer metabolism and chemotherapy resistance, and enable the prediction of immunotherapy responses based on T-cell heterogeneity.
Collapse
Affiliation(s)
- Shicong Tang
- Department of Breast Surgery, Cancer Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, Yunnan, People's Republic of China.
| | - Qing Wang
- Department of Breast Surgery, Cancer Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, Yunnan, People's Republic of China
| | - Ke Sun
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, 650500, People's Republic of China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, 650500, People's Republic of China
| | - Ying Song
- Department of Breast Surgery, Cancer Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, Yunnan, People's Republic of China
| | - Rui Liu
- Department of Breast Surgery, Cancer Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, Yunnan, People's Republic of China
| | - Xin Tan
- Department of Breast Surgery, Cancer Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, Yunnan, People's Republic of China
| | - Huimeng Li
- Department of Breast Surgery, Cancer Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, Yunnan, People's Republic of China
| | - Yafeng Lv
- Department of Breast Surgery, Cancer Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, Yunnan, People's Republic of China
| | - Fuying Yang
- Department of Breast Surgery, Cancer Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, Yunnan, People's Republic of China
| | - Jiawen Zhao
- Department of Breast Surgery, Cancer Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, Yunnan, People's Republic of China
| | - Sijia Li
- Department of Breast Surgery, Cancer Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, Yunnan, People's Republic of China
| | - Pingping Bi
- Department of Breast Surgery, Cancer Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, Yunnan, People's Republic of China
| | - Jiali Yang
- Department of Breast Surgery, Cancer Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, Yunnan, People's Republic of China
| | - Zhengna Zhu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, 650500, People's Republic of China
| | - Dong Chen
- Department of Ultrasound, Caner Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, Yunnan, People's Republic of China
| | - Zhirui Chuan
- Department of Ultrasound, Caner Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, Yunnan, People's Republic of China
| | - Xiaomao Luo
- Department of Ultrasound, Caner Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, Yunnan, People's Republic of China
| | - Zaoxiu Hu
- Department of Pathology, Caner Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, Yunnan, People's Republic of China
| | - Ying Liu
- Department of Pathology, Caner Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, Yunnan, People's Republic of China
| | - Zhenhui Li
- Department of Radiology, Caner Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, Yunnan, People's Republic of China
| | - Tengfei Ke
- Department of Radiology, Caner Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, Yunnan, People's Republic of China
| | - Dewei Jiang
- Key Laboratory of Animal Models and Human, Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
- Kunming College of Life Sciences, University of Chinese Academy Sciences, Kunming, Yunnan, China
| | - Kai Zheng
- Department of Breast Surgery, Cancer Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, Yunnan, People's Republic of China
| | - Rirong Yang
- Center for Genomic and Personalized Medicine, Guangxi key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China.
- Department of Immunology, School of Basic Medical Sciences, Guangxi Medical University, Guangxi, 530021, People's Republic of China.
| | - Kai Chen
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, 650500, People's Republic of China.
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, 650500, People's Republic of China.
| | - Rong Guo
- Department of Breast Surgery, Cancer Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, Yunnan, People's Republic of China.
| |
Collapse
|