1
|
Ahrens J, Ford SD, Schaefer B, Reese D, Khan AR, Tibbo P, Rabin R, Cassidy CM, Palaniyappan L. Convergence of Cannabis and Psychosis on the Dopamine System. JAMA Psychiatry 2025:2832297. [PMID: 40202728 PMCID: PMC11983296 DOI: 10.1001/jamapsychiatry.2025.0432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 02/04/2025] [Indexed: 04/10/2025]
Abstract
Importance Despite evidence that individuals with a cannabis use disorder (CUD) are at elevated risk of psychosis and that the neurotransmitter dopamine has a role in psychosis, the mechanism linking cannabis use and psychosis remains unclear. Objective To use neuromelanin-sensitive magnetic resonance imaging (MRI), referred to as the neuromelanin-MRI signal, a practical, proxy measure of dopamine function, to assess whether a common alteration in the dopamine system may be implicated in CUD and psychosis and whether this alteration can be observed in those with a CUD whether or not they have a diagnosis of first-episode schizophrenia (FES). Design, Setting, and Participants This longitudinal observational cohort study recruited individuals from 2019 to 2023 from an early psychosis service and the surrounding communities in London, Ontario. The sample included individuals with and without CUD, with some in each group also diagnosed with FES. Exposures FES and CUD diagnoses from the Structured Clinical Interview for DSM-5. Main Outcomes and Measures Neuromelanin-MRI signals within the midbrain (substantia nigra [SN]/ventral tegmental area [VTA]) including a subregion previously linked to the severity of untreated psychosis (a priori region of interest). Linear mixed-effects analyses were performed relating neuromelanin-MRI signals to clinical measures. Results A total of 36 individuals without CUD (mean [SD] age, 22.3 [3.2] years; 29 male [81%]; 12 with FES) and 25 individuals with CUD (mean [SD] age, 24.3 [4.7] years; 22 male [88%]; 16 with FES) participated in the study. One-year follow-up was completed for 12 individuals with CUD and 25 without CUD. CUD was associated with elevated neuromelanin-MRI signal in a set of ventral SN/VTA voxels (387 of 2060 SN/VTA voxels, corrected P = .03, permutation test). CUD was also associated with elevated neuromelanin-MRI signal in the psychosis-related region of interest (t92 = 2.12, P = .04) with a significant dose-dependent association (higher burden of CUD symptoms associated with higher neuromelanin-MRI signal, F1, 96 = 4.89; P = .03). In contrast, participants with FES did not exhibit a significant elevation in neuromelanin-MRI signal (241 SN/VTA voxels had elevated signal, corrected P = .09). There was no association between time and neuromelanin-MRI signal. Conclusions and Relevance Elevated dopamine function in a critical SN/VTA subregion may be associated with psychosis risk in people with CUD. Cannabis was associated with the hypothesized final common pathway for the clinical expression of psychotic symptoms.
Collapse
Affiliation(s)
- Jessica Ahrens
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Sabrina D. Ford
- Robarts Research Institute, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
| | - Betsy Schaefer
- Robarts Research Institute, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
| | - David Reese
- Robarts Research Institute, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
| | - Ali R. Khan
- Robarts Research Institute, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Philip Tibbo
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Rachel Rabin
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Clifford M. Cassidy
- Renaissance School of Medicine, Stony Brook University, Stony Brook, New York
| | - Lena Palaniyappan
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Quebec, Canada
- Robarts Research Institute, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
- Renaissance School of Medicine, Stony Brook University, Stony Brook, New York
| |
Collapse
|
2
|
Trujillo P, O'Rourke KR, Roman OC, Song AK, Hett K, Cooper A, Black BK, Donahue MJ, Shibao CA, Biaggioni I, Claassen DO. Central Involvement in Pure Autonomic Failure: Insights from Neuromelanin-Sensitive Magnetic Resonance Imaging and 18F-Fluorodopa-Positron Emission Tomography. Mov Disord 2025; 40:716-726. [PMID: 39825743 PMCID: PMC12006890 DOI: 10.1002/mds.30119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/16/2024] [Accepted: 01/02/2025] [Indexed: 01/20/2025] Open
Abstract
BACKGROUND Central synucleinopathies, including Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA), involve alpha-synuclein accumulation and dopaminergic cell loss in the substantia nigra (SN) and locus coeruleus (LC). Pure autonomic failure (PAF), a peripheral synucleinopathy, often precedes central synucleinopathies. OBJECTIVES To assess early brain involvement in PAF using neuromelanin-sensitive magnetic resonance imaging (NM-MRI) and fluorodopa-positron emission tomography (FDOPA-PET), and to determine whether PAF patients with a high likelihood ratio (LR) for conversion to a central synucleinopathy exhibit reduced NM-MRI contrast in the LC and SN compared with controls and low-LR patients. METHODS Participants with PAF (n = 23) were categorized as high-LR (n = 13) or low-LR (n = 10) for conversion to central synucleinopathy. Additional participants included PD (n = 22), DLB (n = 8), and age- and sex-matched healthy controls (n = 23). NM-MRI at 3 T was used to quantify contrast ratios in the LC and SN, while FDOPA-PET measured presynaptic dopamine synthesis. Linear regression analyses, adjusted for age and sex, were used to compare NM-MRI contrast across groups. RESULTS High-LR PAF patients showed reduced contrast in the LC and SN compared with controls and low-LR PAF patients, with values similar to PD and DLB. The NM-MRI contrast in the SN correlated with dopamine uptake in the striatum. Longitudinal imaging in PAF patients (n = 6) demonstrated reduced NM-MRI and PET values in individuals who developed central synucleinopathies. CONCLUSIONS NM-MRI and FDOPA-PET may serve as potential biomarkers for early brain involvement and predicting progression to central synucleinopathies in PAF and could help identify patients for early intervention. © 2025 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Paula Trujillo
- Department of NeurologyVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Kaitlyn R. O'Rourke
- Department of NeurologyVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Olivia C. Roman
- Vanderbilt University School of MedicineNashvilleTennesseeUSA
| | - Alexander K. Song
- Department of NeurologyVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Kilian Hett
- Department of NeurologyVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Amy Cooper
- Department of NeurologyVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Bonnie K. Black
- Department of PharmacologyVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Manus J. Donahue
- Department of NeurologyVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Cyndya A. Shibao
- Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Italo Biaggioni
- Department of PharmacologyVanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Daniel O. Claassen
- Department of NeurologyVanderbilt University Medical CenterNashvilleTennesseeUSA
| |
Collapse
|
3
|
Kusama M, Kimura Y, Yoneyama M, Namiki T, Tamaru T, Miyagi K, Sato N. Comparison of 3D Magnetization-transfer- and Spectral-presaturation-with-inversion-recovery-based Neuromelanin Imaging. Magn Reson Med Sci 2025; 24:184-190. [PMID: 38382996 PMCID: PMC11996245 DOI: 10.2463/mrms.mp.2023-0095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/28/2023] [Indexed: 02/23/2024] Open
Abstract
PURPOSE Neuromelanin is visualized by optimizing the conditions of longitudinal relaxation (T1)-weighted imaging (T1WI). Although it was originally developed in 2D imaging, 3D imaging has been also reported, and T1WI sequences with magnetization transfer (MT) pulses are now widely used in 3D gradient echo (GRE) sequences. In this study, we assert that the use of spectral presaturation with inversion recovery (SPIR) may also be useful as an alternative to MT pulses, and we optimize SPIR and compare it with MT. METHODS Neuromelanin images with MT pulse and SPIR (flip angles [FAs] = 19º, 22º, and 25º) were acquired from 30 healthy volunteers. To achieve the same acquisition time of 5 min, the slab thickness of the MT images was less than 1/3 of those of the SPIR images; the acquisition areas for MT and SPIR were the brainstem and the whole brain, respectively. Visual and quantitative evaluation was performed and compared on the four sequences acquired for the substantia nigra pars compacta (SNc) and the locus coeruleus (LC). For visual assessment, we used the mean score from a 3-point scale by two evaluators. For quantitative evaluation, the contrast ratios of SNc and LC were calculated in comparison with the background tissue signal. RESULTS In visual assessments, the mean scores of the SPIR FA19º and FA22º images were better than others in the SNc. Regarding LC, the SPIR FA22º image yielded the best mean score. In quantitative evaluations, the MT image was significantly lower than the other three images in SNc. Regarding LC, there were no significant differences among the four acquired images (MT and SPIR FA19º, FA22º, and FA25º). CONCLUSIONS Detection of neuromelanin in SNc and LC was improved by the use of SPIR compared to MT pulse in 3D neuromelanin imaging.
Collapse
Affiliation(s)
- Midori Kusama
- Department of Radiology, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Yukio Kimura
- Department of Radiology, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | | | | | - Takeshi Tamaru
- Department of Radiology, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Kenji Miyagi
- Department of Radiology, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Noriko Sato
- Department of Radiology, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| |
Collapse
|
4
|
Wiesman AI, Madge V, Fon EA, Dagher A, Collins DL, Baillet S. Associations between neuromelanin depletion and cortical rhythmic activity in Parkinson's disease. Brain 2025; 148:875-885. [PMID: 39282945 PMCID: PMC11884654 DOI: 10.1093/brain/awae295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/08/2024] [Accepted: 09/02/2024] [Indexed: 09/25/2024] Open
Abstract
Parkinson's disease (PD) is marked by the death of neuromelanin-rich dopaminergic and noradrenergic cells in the substantia nigra (SN) and the locus coeruleus (LC), respectively, resulting in motor and cognitive impairments. Although SN dopamine dysfunction has clear neurophysiological effects, the association of reduced LC norepinephrine signalling with brain activity in PD remains to be established. We used neuromelanin-sensitive T1-weighted MRI (PD, n = 58; healthy control, n = 27) and task-free magnetoencephalography (PD, n = 58; healthy control, n = 65) to identify neuropathophysiological factors related to the degeneration of the LC and SN in patients with PD. We found pathological increases in rhythmic alpha-band (8-12 Hz) activity in patients with decreased LC neuromelanin, which were more strongly associated in patients with worse attentional impairments. This negative alpha-band-LC neuromelanin relationship is strongest in fronto-motor cortices, where alpha-band activity is inversely related to attention scores. Using neurochemical co-localization analyses with normative atlases of neurotransmitter transporters, we also show that this effect is more pronounced in regions with high densities of norepinephrine transporters. These observations support a noradrenergic association between LC integrity and alpha-band activity. Our data also show that rhythmic beta-band (15-29 Hz) activity in the left somatomotor cortex decreases with lower levels of SN neuromelanin; the same regions where beta activity reflects axial motor symptoms. Together, our findings clarify the association of well-documented alterations of rhythmic neurophysiology in PD with cortical and subcortical neurochemical systems. Specifically, attention-related alpha-band activity is related to dysfunction of the noradrenergic system, and beta activity with relevance to motor impairments reflects dopaminergic dysfunction.
Collapse
Affiliation(s)
- Alex I Wiesman
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada H3A 2B4
- Department of Biomedical Physiology & Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - Victoria Madge
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada H3A 2B4
| | - Edward A Fon
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada H3A 2B4
| | - Alain Dagher
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada H3A 2B4
| | - D Louis Collins
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada H3A 2B4
| | - Sylvain Baillet
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada H3A 2B4
| |
Collapse
|
5
|
Liu C, Ye Y, Guo Y, Zhou Y, Zhu Y, Liu X, Xu J, Zheng H, Liang D, Wang H. Wave-CAIPI Multiparameter MR Imaging in Neurology. NMR IN BIOMEDICINE 2025; 38:e5322. [PMID: 39873209 DOI: 10.1002/nbm.5322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 11/07/2024] [Accepted: 12/30/2024] [Indexed: 01/30/2025]
Abstract
In clinical practice, particularly in neurology assessments, imaging multiparametric MR images with a single-sequence scan is often limited by either insufficient imaging contrast or the constraints of accelerated imaging techniques. A novel single scan 3D imaging method, incorporating Wave-CAIPI and MULTIPLEX technologies and named WAMP, has been developed for rapid and comprehensive parametric imaging in clinical diagnostic applications. Featuring a hybrid design that includes wave encoding, the CAIPIRINHA sampling pattern, dual time of repetition (TR), dual flip angle (FA), multiecho, and optional flow modulation, the WAMP method captures information on RF B1t fields, proton density (PD), T1, susceptibility, and blood flow. This method facilitates the synthesis of multiple qualitative contrast-weighted images and relaxometric parametric maps. A single WAMP scan generates multiple contrast-weighted images and relaxometric parametric maps, including PD-weighted (PDW), T1-weighted (T1W), T2*-weighted (T2W), adjusted T1-weighted (aT1W), susceptibility-weighted imaging (SWI), B1t map, T1 map, T2/R2* map, PD map, and quantitative susceptibility mapping (QSM). Both phantom and in vivo experiments have demonstrated that the proposed method can achieve high image quality and quantification accuracy even at high acceleration factors of 4 and 9. The experiments have confirmed that the rapid single scan method can be effectively applied in clinical neurology, serving as a valuable diagnostic tool for conditions such as pediatric tuberous sclerosis complex (TSC)-related epilepsy, adult Parkinson's disease, and suspected stroke patient. The WAMP method holds substantial potential for advancing multiparametric MR imaging in clinical neurology, promising significant improvements in both diagnostic speed and accuracy.
Collapse
Affiliation(s)
- Congcong Liu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Yongquan Ye
- United Imaging Healthcare, Houston, Texas, USA
| | - Yifan Guo
- Research Center for Medical AI, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yihang Zhou
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Beijing, China
- Research Center for Medical AI, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yanjie Zhu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Xin Liu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Jian Xu
- United Imaging Healthcare, Houston, Texas, USA
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Dong Liang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Beijing, China
- Research Center for Medical AI, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Haifeng Wang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Freyberg Z, Andreazza AC, McClung CA, Phillips ML. Linking Mitochondrial Dysfunction, Neurotransmitter, and Neural Network Abnormalities and Mania: Elucidating Neurobiological Mechanisms of the Therapeutic Effect of the Ketogenic Diet in Bipolar Disorder. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2025; 10:267-277. [PMID: 39053576 PMCID: PMC11754533 DOI: 10.1016/j.bpsc.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/25/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
There is growing interest in the ketogenic diet as a treatment for bipolar disorder (BD), and there are promising anecdotal and small case study reports of efficacy. However, the neurobiological mechanisms by which diet-induced ketosis might ameliorate BD symptoms remain to be determined, particularly in manic and hypomanic states-defining features of BD. Identifying these mechanisms will provide new markers to guide personalized interventions and provide targets for novel treatment developments for individuals with BD. In this critical review, we describe recent findings highlighting 2 types of neurobiological abnormalities in BD: 1) mitochondrial dysfunction and 2) neurotransmitter and neural network functional abnormalities. We link these abnormalities to mania/hypomania and depression in BD and then describe the biological underpinnings by which the ketogenic diet may have a beneficial effect in individuals with BD. We end the review by describing approaches that can be employed in future studies to elucidate the neurobiology that underlies the therapeutic effect of the ketogenic diet in BD. Doing this may provide marker predictors to identify individuals who will respond well to the ketogenic diet, as well as offer neural targets for novel treatment developments for BD.
Collapse
Affiliation(s)
- Zachary Freyberg
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania.
| | - Ana C Andreazza
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Colleen A McClung
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Mary L Phillips
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
7
|
Fu J, Tang Y, Pan L, Lv K, Cao X, Xu S, Geng D, Yu H, Zhang J. Neuromelanin-MRI identifies locus coeruleus and substantia nigra degeneration as key differentiators in isolated rapid eye movement sleep behavior disorder. Brain Imaging Behav 2025; 19:72-81. [PMID: 39476171 DOI: 10.1007/s11682-024-00926-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2024] [Indexed: 02/23/2025]
Abstract
To explore the neuromelanin depigmentation of locus coeruleus (LC) and substantia nigra pars compacta (SNc) in the isolated rapid eye movement sleep behavior disorder (iRBD) using neuromelanin-sensitive MRI (NM-MRI), and to evaluate its utility for iRBD diagnosis. A total of 25 iRBD patients and 25 healthy controls were recruited and underwent NM-MRI. The contrast-to-noise ratio (CNR) of SNc and LC, and the volume of SNc were compared between groups and evaluated visually. The power of NM measures in discriminating iRBD patients from healthy controls were performed with receiver operating characteristic (ROC) curves and the area under curve (AUC) was calculated. The CNR of SNc and LC, the volume of SNc, the SNc/midbrain volume ratio as well as the visual scores of SNc and LC in iRBD patients were significantly decreased than those in controls (all P < 0.05). For quantitative analysis, the LC CNR acquired the highest accuracy in predicting iRBD (AUC 0.95, sensitivity 80%, specificity 100%), followed by SNc volume (AUC 0.93, sensitivity 88%, specificity 96%) and SNc CNR (AUC 0.74, sensitivity 92%, specificity 44%). For visual analysis, the accuracy of the visual score for SNc and LC were 78% (sensitivity 68%, specificity 88%) and 86% (sensitivity 88%, specificity 84%), respectively. The NM in the SNc and LC regions were significantly reduced in iRBD patients. NM measures showed good capability in discriminating iRBD from controls, suggesting that NM-MRI may be a valuable screening tool for iRBD.
Collapse
Affiliation(s)
- Junyan Fu
- Department of Radiology, Huashan Hospital, Fudan University, No.12 Wulumuqi Road (Middle), Shanghai, 200040, China
| | - Ye Tang
- Department of Radiology, Huashan Hospital, Fudan University, No.12 Wulumuqi Road (Middle), Shanghai, 200040, China
| | - Lei Pan
- Department of Radiology, Huashan Hospital, Fudan University, No.12 Wulumuqi Road (Middle), Shanghai, 200040, China
| | - Kun Lv
- Department of Radiology, Huashan Hospital, Fudan University, No.12 Wulumuqi Road (Middle), Shanghai, 200040, China
| | - Xin Cao
- Department of Radiology, Huashan Hospital, Fudan University, No.12 Wulumuqi Road (Middle), Shanghai, 200040, China
| | - Siting Xu
- Department of Radiology, Huashan Hospital, Fudan University, No.12 Wulumuqi Road (Middle), Shanghai, 200040, China
| | - Daoying Geng
- Department of Radiology, Huashan Hospital, Fudan University, No.12 Wulumuqi Road (Middle), Shanghai, 200040, China
| | - Huan Yu
- Department of Neurology, Huashan Hospital, Fudan University, No.12 Wulumuqi Road (Middle), Shanghai, 200040, China
| | - Jun Zhang
- Department of Radiology, Huashan Hospital, Fudan University, No.12 Wulumuqi Road (Middle), Shanghai, 200040, China.
- Department of Radiology, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai, 200040, China.
| |
Collapse
|
8
|
Železníková Ž, Nováková L, Vojtíšek L, Brabenec L, Mitterová K, Morávková I, Rektorová I. Early Changes in the Locus Coeruleus in Mild Cognitive Impairment with Lewy Bodies. Mov Disord 2025; 40:276-284. [PMID: 39535454 PMCID: PMC11832806 DOI: 10.1002/mds.30058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/12/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Although neuromelanin-sensitive magnetic resonance imaging (NM-MRI) has been used to evaluate early neurodegeneration in Parkinson's disease, studies concentrating on the locus coeruleus (LC) in pre-dementia stages of dementia with Lewy bodies (DLB) are lacking. OBJECTIVES The aims were to evaluate NM-MRI signal changes in the LC in patients with mild cognitive impairment with Lewy bodies (MCI-LB) compared to healthy controls (HC) and to identify the cognitive correlates of the changes. We also aimed to test the hypothesis of a caudal-rostral α-synuclein pathology spread using NM-MRI of the different LC subparts. METHODS A total of 38 MCI-LB patients and 59 HCs underwent clinical and cognitive testing and NM-MRI of the LC. We calculated the contrast ratio of NM-MRI signal (LC-CR) in the whole LC as well as in its caudal, middle, and rostral MRI slices, and we compared the LC-CR values between the MCI-LB and HC groups. Linear regression analyses were performed to assess the relationship between the LC-CR and cognitive outcomes. RESULTS The MCI-LB group exhibited a significant reduction in the right LC-CR compared to HCs (P = 0.021). The right LC-CR decrease was associated with impaired visuospatial memory in the MCI-LB group. Only the caudal part of the LC exhibited significant LC-CR decreases in MCI-LB patients compared to HCs on both sides (P < 0.0001). CONCLUSIONS This is the first study that focuses on LC-CRs in MCI-LB patients and analyzes the LC subparts, offering new insights into the LC integrity alterations in the initial stages of DLB and their clinical correlates. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Žaneta Železníková
- Applied Neuroscience Research Group, Central European Institute of Technology, CEITECMasaryk UniversityBrnoCzech Republic
| | - L'ubomíra Nováková
- Applied Neuroscience Research Group, Central European Institute of Technology, CEITECMasaryk UniversityBrnoCzech Republic
- International Clinical Research Center, ICRCFaculty of Medicine and St. Anne's University Hospital, Masaryk UniversityBrnoCzech Republic
| | - Lubomír Vojtíšek
- Multimodal and Functional Neuroimaging Research Group, Central European Institute of Technology, CEITECMasaryk UniversityBrnoCzech Republic
| | - Luboš Brabenec
- Applied Neuroscience Research Group, Central European Institute of Technology, CEITECMasaryk UniversityBrnoCzech Republic
- International Clinical Research Center, ICRCFaculty of Medicine and St. Anne's University Hospital, Masaryk UniversityBrnoCzech Republic
| | - Kristína Mitterová
- Applied Neuroscience Research Group, Central European Institute of Technology, CEITECMasaryk UniversityBrnoCzech Republic
- International Clinical Research Center, ICRCFaculty of Medicine and St. Anne's University Hospital, Masaryk UniversityBrnoCzech Republic
| | - Ivona Morávková
- Applied Neuroscience Research Group, Central European Institute of Technology, CEITECMasaryk UniversityBrnoCzech Republic
- First Department of NeurologyFaculty of Medicine and St. Anne's University Hospital, Masaryk UniversityBrnoCzech Republic
| | - Irena Rektorová
- Applied Neuroscience Research Group, Central European Institute of Technology, CEITECMasaryk UniversityBrnoCzech Republic
- International Clinical Research Center, ICRCFaculty of Medicine and St. Anne's University Hospital, Masaryk UniversityBrnoCzech Republic
- First Department of NeurologyFaculty of Medicine and St. Anne's University Hospital, Masaryk UniversityBrnoCzech Republic
| |
Collapse
|
9
|
Yi D, Byun MS, Jung JH, Jung G, Ahn H, Chang YY, Keum M, Lee J, Lee Y, Kim YK, Kang KM, Sohn C, Risacher SL, Saykin AJ, Lee DY. Locus coeruleus tau is linked to successive cortical tau accumulation. Alzheimers Dement 2025; 21:e14426. [PMID: 39641328 PMCID: PMC11848382 DOI: 10.1002/alz.14426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 12/07/2024]
Abstract
INTRODUCTION We investigated the hypothesis that tau burden in the locus coeruleus (LC) correlates with tau accumulation in cortical regions according to the Braak stages and examined whether the relationships differed according to cortical amyloid beta (Aβ) deposition. METHODS One hundred and seventy well-characterized participants from an ongoing cohort were included. High-resolution T1, tau positron emission tomography (PET), and amyloid PET were obtained. RESULTS LC tau burden was significantly linked to global tau in neocortical regions, as was tau in both early Braak stage (stage I/II) and later Braak stage areas. This relationship was significant only in Aβ-positive individuals. While LC tau did not directly impact memory, it was indirectly associated with delayed memory through mediation or moderation pathways. DISCUSSION The findings from living human brains support the idea that LC tau closely relates to subsequent cortical tau accumulation, particularly among individuals with pathological Aβ accumulation, and identify LC tau burden as a promising indicator of cognitive trajectories of AD. HIGHLIGHTS Tau burden in the LC was significantly associated with cortical tau accumulation. Tau burden in SN or PPN showed no association with cortical tau accumulation. LC tau burden was serially associated with Braak stages. The tau-LC and cortical tau relationship was significant only in the Aβ-positive group. Cortical amyloid's impact on memory worsens with higher tau accumulation in the LC.
Collapse
Affiliation(s)
- Dahyun Yi
- Institute of Human Behavioral MedicineMedical Research CenterSeoul National UniversitySeoulSeoulRepublic of Korea
| | - Min Soo Byun
- Department of NeuropsychiatrySeoul National University HospitalSeoulSeoulRepublic of Korea
- Department of PsychiatrySeoul National University College of MedicineSeoulSeoulRepublic of Korea
| | - Joon Hyung Jung
- Department of PsychiatryChungbuk National University HospitalCheongju‐siRepublic of Korea
| | - Gijung Jung
- Institute of Human Behavioral MedicineMedical Research CenterSeoul National UniversitySeoulSeoulRepublic of Korea
| | - Hyejin Ahn
- Interdisciplinary Program of Cognitive ScienceSeoul National University College of HumanitiesSeoulSeoulRepublic of Korea
| | - Yoon Young Chang
- Inje University Sanggye Paik HospitalSeoulSeoulRepublic of Korea
| | - Musung Keum
- Department of NeuropsychiatrySoonchunhyang University HospitalBucheon‐siGyeonggi‐doRepublic of Korea
| | - Jun‐Young Lee
- Department of PsychiatrySeoul National University Boramae Medical CenterSeoulSeoulRepublic of Korea
| | - Yun‐Sang Lee
- Department of Nuclear MedicineSeoul National University College of MedicineSeoulSeoulRepublic of Korea
| | - Yu Kyeong Kim
- Department of Nuclear MedicineSeoul National University Boramae Medical CenterSeoulSeoulRepublic of Korea
| | - Koung Mi Kang
- Department of RadiologySeoul National University HospitalSeoulSeoulRepublic of Korea
- Department of RadiologySeoul National University College of MedicineSeoulSeoulRepublic of Korea
| | - Chul‐Ho Sohn
- Department of RadiologySeoul National University HospitalSeoulSeoulRepublic of Korea
- Department of RadiologySeoul National University College of MedicineSeoulSeoulRepublic of Korea
| | - Shannon L. Risacher
- Indiana Alzheimer's Disease Research CenterIndianapolisIndianaUSA
- Center for NeuroimagingDepartment of Radiology and Imaging SciencesIndiana University School of MedicineIndianapolisIndianaUSA
- Stark Neurosciences Research InstituteIndiana University School of MedicineIndianapolisIndianaUSA
| | - Andrew J. Saykin
- Indiana Alzheimer's Disease Research CenterIndianapolisIndianaUSA
- Center for NeuroimagingDepartment of Radiology and Imaging SciencesIndiana University School of MedicineIndianapolisIndianaUSA
- Stark Neurosciences Research InstituteIndiana University School of MedicineIndianapolisIndianaUSA
- Network Science InstituteIndiana UniversityBloomingtonIndianaUSA
| | - Dong Young Lee
- Institute of Human Behavioral MedicineMedical Research CenterSeoul National UniversitySeoulSeoulRepublic of Korea
- Department of NeuropsychiatrySeoul National University HospitalSeoulSeoulRepublic of Korea
- Department of PsychiatrySeoul National University College of MedicineSeoulSeoulRepublic of Korea
| | | |
Collapse
|
10
|
Fang Y, Zhou C, Zhu B, Liu J, Liu S, Guan X, Guo T, Xu X, Zhang M, Tian J, Yin X, Zhang B, Zhao G, Yan Y. Locus Coeruleus Degeneration in Essential Tremor With Mild Cognitive Impairment: A Neuromelanin MRI Study. CNS Neurosci Ther 2025; 31:e70214. [PMID: 39777994 PMCID: PMC11707437 DOI: 10.1111/cns.70214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 12/10/2024] [Accepted: 12/30/2024] [Indexed: 01/11/2025] Open
Abstract
OBJECTIVE Our aim was to research the neuromelanin-sensitive magnetic resonance imaging (NM-MRI) features of the locus coeruleus (LC) in essential tremor (ET) patients of various cognitive states and to explore the relationships between these features and cognition. METHODS We recruited three groups of participants, including 30 ET patients with mild cognitive impairment (ET-MCI), 57 ET patients with normal cognition (ET-NC), and 105 healthy controls (HCs). All participants underwent MRI scanning and clinical evaluation. Through NM-MRI images, we compared the contrast-to-noise ratio of LC (CNRLC) between groups and evaluated the relationships between CNRLC and cognitive scales. RESULTS Compared to HCs, ET-MCI patients had a substantially lower CNRLC value (p = 0.017). The CNRLC of ET-NC patients was intermediate between that of ET-MCI patients and HCs. Furthermore, a partial correlation analysis in ET-MCI patients, controlling for age, gender, and education level, showed that higher CNRLC values correlate with better performance on the Montreal cognitive assessment test and the trail making test A. CONCLUSION LC degeneration in ET patients may partially contribute to cognitive decline, suggesting that the LC norepinephrine system deserves further research on the mechanism of cognitive decline of ET patients as well as the development of targeted drugs.
Collapse
Affiliation(s)
- Yuelin Fang
- Department of Neurology, the Fourth Affiliated Hospital, International Institutes of MedicineZhejiang University School of MedicineHangzhouChina
| | - Cheng Zhou
- Department of Radiology, the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Bingting Zhu
- Department of Neurology, the Fourth Affiliated Hospital, International Institutes of MedicineZhejiang University School of MedicineHangzhouChina
| | - Jiasi Liu
- Department of Neurology, the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Sicheng Liu
- Department of Neurology, the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xiaojun Guan
- Department of Radiology, the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Tao Guo
- Department of Radiology, the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xiaojun Xu
- Department of Radiology, the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Minming Zhang
- Department of Radiology, the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jun Tian
- Department of Neurology, the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xinzhen Yin
- Department of Neurology, the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Baorong Zhang
- Department of Neurology, the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Guohua Zhao
- Department of Neurology, the Fourth Affiliated Hospital, International Institutes of MedicineZhejiang University School of MedicineHangzhouChina
- Department of Neurology, the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Yaping Yan
- Department of Neurology, the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| |
Collapse
|
11
|
Chougar L, Coarelli G, Lejeune FX, Ziegner P, Gaurav R, Biondetti E, Sayah S, Hilab R, Dagher A, Durr A, Lehéricy S. Substantia nigra degeneration in spinocerebellar ataxia 2 and 7 using neuromelanin-sensitive imaging. Eur J Neurol 2025; 32:e70035. [PMID: 39757380 DOI: 10.1111/ene.70035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/17/2024] [Indexed: 01/07/2025]
Abstract
OBJECTIVE Spinocerebellar ataxias (SCA) are neurodegenerative diseases with widespread lesions across the central nervous system. Ataxia and spasticity are usually predominant, but patients may also present with parkinsonism. We aimed to characterize substantia nigra pars compacta (SNc) degeneration in SCA2 and 7 using neuromelanin-sensitive imaging. METHODS Ataxic and preataxic expansion carriers with SCA2 (n=15) and SCA7 (n=15) and healthy controls (n=10) were prospectively recruited. Volume and signal-to-noise ratio (SNR) values of the SNc were extracted from neuromelanin-sensitive images. ROC curves were used to determine the metrics that best differentiated SCA participants. Correlations between imaging measurements, clinical variables, and plasma neurofilaments light chain (NfL) levels were investigated. RESULTS SCA2 participants had lower SNR values in the SNc than controls (110.2 ± 1.3 versus 113.2 ± 1.4; p < 0.001) and those with SCA7 (112.5 ± 2.1; p < 0.01). SNR in SCA7 participants and controls did not differ. In ataxic patients, SNc volumes were lower in SCA2 (0.13 ± 0.04; p = 0.06) and SCA7 (0.10 ± 0.03, p = 0.02) patients compared to controls (0.17 ± 0.04). Signal decrease was detected at the preataxic stage in SCA2, but not in SCA7. SCA2 participants showed prominent involvement of the associative and limbic nigral territories. SNR discriminated ataxic and preataxic SCA2 participants from controls (AUC ≥0.94). SNc volume differentiated ataxic SCA7 participants from controls (AUC = 1), but not preataxic ones. In SCA7, correlations were observed between SNc volume and time to onset, CAG repeats, clinical severity scores, and NfL. CONCLUSIONS Neuromelanin-sensitive imaging provides biomarkers of nigral degeneration in SCAs, detectable from the preataxic stage in SCA2, which could potentially serve as outcome measures in clinical trials.
Collapse
Affiliation(s)
- Lydia Chougar
- Institut du Cerveau-Paris Brain Institute ICM, Sorbonne Université, Inserm 1127, CNRS 7225, Hôpital de la Pitié Salpêtrière Paris, Paris, France
- Department of Neuroradiology, Hôpital Pitié-Salpêtrière, Paris, France
- The Neuro (Montreal Neurological Institute-MNI), McGill University, Montreal, Canada
| | - Giulia Coarelli
- Institut du Cerveau-Paris Brain Institute ICM, Sorbonne Université, Inserm 1127, CNRS 7225, Hôpital de la Pitié Salpêtrière Paris, Paris, France
| | - François-Xavier Lejeune
- Institut du Cerveau-Paris Brain Institute ICM, Sorbonne Université, Inserm 1127, CNRS 7225, Hôpital de la Pitié Salpêtrière Paris, Paris, France
- Sorbonne Université, Paris Brain Institute's Data Analysis Core Facility, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Pia Ziegner
- Institut du Cerveau-Paris Brain Institute ICM, Sorbonne Université, Inserm 1127, CNRS 7225, Hôpital de la Pitié Salpêtrière Paris, Paris, France
| | - Rahul Gaurav
- Institut du Cerveau-Paris Brain Institute ICM, Sorbonne Université, Inserm 1127, CNRS 7225, Hôpital de la Pitié Salpêtrière Paris, Paris, France
| | - Emma Biondetti
- Department of Neurosciences, Imaging, and Clinical Sciences, University 'G. D'Annunzio' of Chieti-Pescara, Chieti, Italy
- Institute for Advanced Biomedical Technologies, University 'G. D'Annunzio' of Chieti-Pescara, Chieti, Italy
| | - Sabrina Sayah
- Institut du Cerveau-Paris Brain Institute ICM, Sorbonne Université, Inserm 1127, CNRS 7225, Hôpital de la Pitié Salpêtrière Paris, Paris, France
| | - Rania Hilab
- Institut du Cerveau-Paris Brain Institute ICM, Sorbonne Université, Inserm 1127, CNRS 7225, Hôpital de la Pitié Salpêtrière Paris, Paris, France
| | - Alain Dagher
- The Neuro (Montreal Neurological Institute-MNI), McGill University, Montreal, Canada
| | - Alexandra Durr
- Institut du Cerveau-Paris Brain Institute ICM, Sorbonne Université, Inserm 1127, CNRS 7225, Hôpital de la Pitié Salpêtrière Paris, Paris, France
| | - Stéphane Lehéricy
- Institut du Cerveau-Paris Brain Institute ICM, Sorbonne Université, Inserm 1127, CNRS 7225, Hôpital de la Pitié Salpêtrière Paris, Paris, France
- Department of Neuroradiology, Hôpital Pitié-Salpêtrière, Paris, France
| |
Collapse
|
12
|
Wengler K, Trujillo P, Cassidy CM, Horga G. Neuromelanin-sensitive MRI for mechanistic research and biomarker development in psychiatry. Neuropsychopharmacology 2024; 50:137-152. [PMID: 39160355 PMCID: PMC11526017 DOI: 10.1038/s41386-024-01934-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/21/2024] [Accepted: 07/15/2024] [Indexed: 08/21/2024]
Abstract
Neuromelanin-sensitive MRI is a burgeoning non-invasive neuroimaging method with an increasing number of applications in psychiatric research. This MRI modality is sensitive to the concentration of neuromelanin, which is synthesized from intracellular catecholamines and accumulates in catecholaminergic nuclei including the dopaminergic substantia nigra and the noradrenergic locus coeruleus. Emerging data suggest the utility of neuromelanin-sensitive MRI as a proxy measure for variability in catecholamine metabolism and function, even in the absence of catecholaminergic cell loss. Given the importance of catecholamine function to several psychiatric disorders and their treatments, neuromelanin-sensitive MRI is ideally positioned as an informative and easy-to-acquire catecholaminergic index. In this review paper, we examine basic aspects of neuromelanin and neuromelanin-sensitive MRI and focus on its psychiatric applications in the contexts of mechanistic research and biomarker development. We discuss ongoing debates and state-of-the-art research into the mechanisms of the neuromelanin-sensitive MRI contrast, standardized protocols and optimized analytic approaches, and application of cutting-edge methods such as machine learning and artificial intelligence to enhance the feasibility and predictive power of neuromelanin-sensitive-MRI-based tools. We finally lay out important future directions to allow neuromelanin-sensitive-MRI to fulfill its potential as a key component of the research, and ultimately clinical, toolbox in psychiatry.
Collapse
Affiliation(s)
- Kenneth Wengler
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Paula Trujillo
- Department of Neurology, Vanderbilt University Medical Center, Vanderbilt, TN, USA
| | - Clifford M Cassidy
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Guillermo Horga
- New York State Psychiatric Institute, New York, NY, USA.
- Department of Psychiatry, Columbia University, New York, NY, USA.
| |
Collapse
|
13
|
Calabro FJ, Parr AC. Can Neuromelanin-Sensitive MRI Provide Insight Into the Dopaminergic Pathways Contributing to Substance Use? Am J Psychiatry 2024; 181:949-951. [PMID: 39482949 DOI: 10.1176/appi.ajp.20240853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Affiliation(s)
- Finnegan J Calabro
- Department of Psychiatry (Calabro and Parr) and Department of Bioengineering (Calabro), University of Pittsburgh, Pittsburgh, PA
| | - Ashley C Parr
- Department of Psychiatry (Calabro and Parr) and Department of Bioengineering (Calabro), University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
14
|
van der Horn HJ, Vakhtin AA, Julio K, Nitschke S, Shaff N, Dodd AB, Erhardt E, Phillips JP, Pirio Richardson S, Deligtisch A, Stewart M, Suarez Cedeno G, Meles SK, Mayer AR, Ryman SG. Parkinson's disease cerebrovascular reactivity pattern: A feasibility study. J Cereb Blood Flow Metab 2024; 44:1774-1786. [PMID: 38578669 PMCID: PMC11494834 DOI: 10.1177/0271678x241241895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 04/06/2024]
Abstract
A mounting body of research points to cerebrovascular dysfunction as a fundamental element in the pathophysiology of Parkinson's disease (PD). In the current feasibility study, blood-oxygen-level-dependent (BOLD) MRI was used to measure cerebrovascular reactivity (CVR) in response to hypercapnia in 26 PD patients and 16 healthy controls (HC), and aimed to find a multivariate pattern specific to PD. Whole-brain maps of CVR amplitude (i.e., magnitude of response to CO2) and latency (i.e., time to reach maximum amplitude) were computed, which were further analyzed using scaled sub-profile model principal component analysis (SSM-PCA) with leave-one-out cross-validation. A meaningful pattern based on CVR latency was identified, which was named the PD CVR pattern (PD-CVRP). This pattern was characterized by relatively increased latency in basal ganglia, sensorimotor cortex, supplementary motor area, thalamus and visual cortex, as well as decreased latency in the cerebral white matter, relative to HC. There were no significant associations with clinical measures, though sample size may have limited our ability to detect significant associations. In summary, the PD-CVRP highlights the importance of cerebrovascular dysfunction in PD, and may be a potential biomarker for future clinical research and practice.
Collapse
Affiliation(s)
- Harm Jan van der Horn
- Department of Translational Neuroscience, The Mind Research Network, Albuquerque, NM, USA
| | - Andrei A Vakhtin
- Department of Translational Neuroscience, The Mind Research Network, Albuquerque, NM, USA
| | - Kayla Julio
- Department of Translational Neuroscience, The Mind Research Network, Albuquerque, NM, USA
| | - Stephanie Nitschke
- Department of Translational Neuroscience, The Mind Research Network, Albuquerque, NM, USA
| | - Nicholas Shaff
- Department of Translational Neuroscience, The Mind Research Network, Albuquerque, NM, USA
| | - Andrew B Dodd
- Department of Translational Neuroscience, The Mind Research Network, Albuquerque, NM, USA
| | - Erik Erhardt
- Department of Mathematics and Statistics, University of New Mexico, Albuquerque, NM, USA
| | - John P Phillips
- Department of Translational Neuroscience, The Mind Research Network, Albuquerque, NM, USA
| | - Sarah Pirio Richardson
- Nene and Jamie Koch Comprehensive Movement Disorder Center, Department of Neurology, University of New Mexico, Albuquerque, NM, USA
- New Mexico VA Health Care System, Albuquerque, NM, USA
| | - Amanda Deligtisch
- Nene and Jamie Koch Comprehensive Movement Disorder Center, Department of Neurology, University of New Mexico, Albuquerque, NM, USA
| | - Melanie Stewart
- Nene and Jamie Koch Comprehensive Movement Disorder Center, Department of Neurology, University of New Mexico, Albuquerque, NM, USA
| | - Gerson Suarez Cedeno
- Nene and Jamie Koch Comprehensive Movement Disorder Center, Department of Neurology, University of New Mexico, Albuquerque, NM, USA
| | - Sanne K Meles
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Andrew R Mayer
- Department of Translational Neuroscience, The Mind Research Network, Albuquerque, NM, USA
| | - Sephira G Ryman
- Department of Translational Neuroscience, The Mind Research Network, Albuquerque, NM, USA
- Nene and Jamie Koch Comprehensive Movement Disorder Center, Department of Neurology, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
15
|
Quattrone A, Zappia M, Quattrone A. Simple biomarkers to distinguish Parkinson's disease from its mimics in clinical practice: a comprehensive review and future directions. Front Neurol 2024; 15:1460576. [PMID: 39364423 PMCID: PMC11446779 DOI: 10.3389/fneur.2024.1460576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 09/09/2024] [Indexed: 10/05/2024] Open
Abstract
In the last few years, a plethora of biomarkers have been proposed for the differentiation of Parkinson's disease (PD) from its mimics. Most of them consist of complex measures, often based on expensive technology, not easily employed outside research centers. MRI measures have been widely used to differentiate between PD and other parkinsonism. However, these measurements were often performed manually on small brain areas in small patient cohorts with intra- and inter-rater variability. The aim of the current review is to provide a comprehensive and updated overview of the literature on biomarkers commonly used to differentiate PD from its mimics (including parkinsonism and tremor syndromes), focusing on parameters derived by simple qualitative or quantitative measurements that can be used in routine practice. Several electrophysiological, sonographic and MRI biomarkers have shown promising results, including the blink-reflex recovery cycle, tremor analysis, sonographic or MRI assessment of substantia nigra, and several qualitative MRI signs or simple linear measures to be directly performed on MR images. The most significant issue is that most studies have been conducted on small patient cohorts from a single center, with limited reproducibility of the findings. Future studies should be carried out on larger international cohorts of patients to ensure generalizability. Moreover, research on simple biomarkers should seek measurements to differentiate patients with different diseases but similar clinical phenotypes, distinguish subtypes of the same disease, assess disease progression, and correlate biomarkers with pathological data. An even more important goal would be to predict the disease in the preclinical phase.
Collapse
Affiliation(s)
- Andrea Quattrone
- Neuroscience Research Center, University “Magna Graecia”, Catanzaro, Italy
- Institute of Neurology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Mario Zappia
- Department of Medical, Surgical Sciences and Advanced Technologies, GF Ingrassia, University of Catania, Catania, Italy
| | - Aldo Quattrone
- Neuroscience Research Center, University “Magna Graecia”, Catanzaro, Italy
| |
Collapse
|
16
|
Feng H, Tu N, Wang K, Ma X, Zhang Z, Liu Z, Cheng Z, Bu L. Neuromelanin-targeted 18 F-P3BZA PET/MR imaging of the substantia nigra in rhesus macaques. EJNMMI Res 2024; 14:79. [PMID: 39225971 PMCID: PMC11372002 DOI: 10.1186/s13550-024-01136-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Neuromelanin is mostly located in dopaminergic neurons in the substantia nigra (SN) pars compacta, and can be detected by magnetic resonance imaging (MRI). It is a promising imaging-base biomarker for neurological diseases. We previously developed a melanin-specific probe N-(2-(diethylamino)-ethyl)-18F-5-fluoropicolinamide (18F-P3BZA), which was initially developed for the imaging of melanoma. 18F-P3BZA exhibited high levels of binding to the melanin in vitro and in vivo with high retention and favorable pharmacokinetics. In this study we further investigated whether 18F-P3BZA could be used to quantitatively detect neuromelanin in the SN in healthy rhesus macaques. RESULTS 18F-P3BZA exhibited desired hydrophobicity with estimated log Know 5.08 and log D7.4 1.68. 18F-P3BZA readily crossed the blood-brain barrier with brain transport coefficients (Kin) of 40 ± 8 µL g-1s-1. 18F-P3BZA accumulated specifically in neuromelanotic PC12 cells, melanin-rich melanoma cells, and melanoma xenografts. Binding of 18F-P3BZA to B16F10 cells was much higher than to SKOV3 cells at 60 min (6.17 ± 0.53%IA and 0.24 ± 0.05%IA, respectively). In the biodistribution study, 18F-P3BZA had higher accumulation in B16F10 tumors (6.31 ± 0.99%IA/g) than in SKOV3 tumors (0.25 ± 0.09%IA/g). Meanwhile, 18F-P3BZA uptake in B16F10 tumors could be blocked by excess cold 19F-P3BZA (0.81 ± 0.02%IA/g, 88% inhibition, p < 0.05). PET/MRI 18F-P3BZA provided clear visualization of neuromelanin-rich SN at 30-60 min after injection in healthy macaques. The SN to cerebella ratios were 2.7 and 2.4 times higher at 30 and 60 min after injection. In in vitro autoradiography studies 18F-P3BZA exhibited high levels of binding to the SN, and almost no binding to surrounding midbrain tissues. CONCLUSION 18F-P3BZA PET/MRI clearly images neuromelanin in the SN, and may assist in the early diagnosis of neurological diseases associated with abnormal neuromelanin expression.
Collapse
Affiliation(s)
- Hongyan Feng
- PET-CT/MRI Center, Renmin Hospital of Wuhan University, 95Zhangzhidong Road, Wuchang District, Wuhan, 430060, Hubei, China
| | - Ning Tu
- PET-CT/MRI Center, Renmin Hospital of Wuhan University, 95Zhangzhidong Road, Wuchang District, Wuhan, 430060, Hubei, China
| | - Ke Wang
- PET-CT/MRI Center, Renmin Hospital of Wuhan University, 95Zhangzhidong Road, Wuchang District, Wuhan, 430060, Hubei, China
| | - Xiaowei Ma
- Department of Nuclear Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhongchun Liu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhen Cheng
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| | - Lihong Bu
- PET-CT/MRI Center, Renmin Hospital of Wuhan University, 95Zhangzhidong Road, Wuchang District, Wuhan, 430060, Hubei, China.
| |
Collapse
|
17
|
McCall A, Forouhandehpour R, Celebi S, Richard-Malenfant C, Hamati R, Guimond S, Tuominen L, Weinshenker D, Jaworska N, McQuaid RJ, Shlik J, Robillard R, Kaminsky Z, Cassidy CM. Evidence for Locus Coeruleus-Norepinephrine System Abnormality in Military Posttraumatic Stress Disorder Revealed by Neuromelanin-Sensitive Magnetic Resonance Imaging. Biol Psychiatry 2024; 96:268-277. [PMID: 38296219 DOI: 10.1016/j.biopsych.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/04/2024] [Accepted: 01/22/2024] [Indexed: 07/26/2024]
Abstract
BACKGROUND The complex neurobiology of posttraumatic stress disorder (PTSD) calls for the characterization of specific disruptions in brain functions that require targeted treatment. One such alteration could be an overactive locus coeruleus (LC)-norepinephrine system, which may be linked to hyperarousal symptoms, a characteristic and burdensome aspect of the disorder. METHODS Study participants were Canadian Armed Forces veterans with PTSD related to deployment to combat zones (n = 34) and age- and sex-matched healthy control participants (n = 32). Clinical measures included the Clinician-Administered PTSD Scale for DSM-5, and neuroimaging measures included a neuromelanin-sensitive magnetic resonance imaging scan to measure the LC signal. Robust linear regression analyses related the LC signal to clinical measures. RESULTS Compared with control participants, the LC signal was significantly elevated in the PTSD group (t62 = 2.64, p = .010), and this group difference was most pronounced in the caudal LC (t56 = 2.70, Cohen's d = 0.72). The caudal LC signal was also positively correlated with the severity of Clinician-Administered PTSD Scale for DSM-5 hyperarousal symptoms in the PTSD group (t26 = 2.16, p = .040). CONCLUSIONS These findings are consistent with a growing body of evidence indicative of elevated LC-norepinephrine system function in PTSD. Furthermore, they indicate the promise of neuromelanin-sensitive magnetic resonance imaging as a noninvasive method to probe the LC-norepinephrine system that has the potential to support subtyping and treatment of PTSD or other neuropsychiatric conditions.
Collapse
Affiliation(s)
- Adelina McCall
- University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, Ontario, Canada
| | | | - Seyda Celebi
- University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, Ontario, Canada
| | | | - Rami Hamati
- University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, Ontario, Canada
| | - Synthia Guimond
- University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, Ontario, Canada; Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada; Département de psychoéducation et de psychologie, Université du Québec en Outaouais, Gatineau, Quebec, Canada
| | - Lauri Tuominen
- University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, Ontario, Canada; Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - David Weinshenker
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| | - Natalia Jaworska
- University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, Ontario, Canada; Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Robyn J McQuaid
- University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, Ontario, Canada; Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Jakov Shlik
- University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, Ontario, Canada
| | - Rebecca Robillard
- University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, Ontario, Canada
| | - Zachary Kaminsky
- University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, Ontario, Canada
| | - Clifford M Cassidy
- University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, Ontario, Canada; Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada; Renaissance School of Medicine at Stony Brook University, Stony Brook, New York.
| |
Collapse
|
18
|
Gaeta M, Galletta K, Cavallaro M, Mormina E, Cannizzaro MT, Lanzafame LRM, D'Angelo T, Blandino A, Vinci SL, Granata F. T1 relaxation: Chemo-physical fundamentals of magnetic resonance imaging and clinical applications. Insights Imaging 2024; 15:200. [PMID: 39120775 PMCID: PMC11315875 DOI: 10.1186/s13244-024-01744-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 06/07/2024] [Indexed: 08/10/2024] Open
Abstract
A knowledge of the complex phenomena that regulate T1 signal on Magnetic Resonance Imaging is essential in clinical practice for a more effective characterization of pathological processes. The authors review the physical basis of T1 Relaxation Time and the fundamental aspects of physics and chemistry that can influence this parameter. The main substances (water, fat, macromolecules, methemoglobin, melanin, Gadolinium, calcium) that influence T1 and the different MRI acquisition techniques that can be applied to enhance their presence in diagnostic images are then evaluated. An extensive case illustration of the different phenomena and techniques in the areas of CNS, abdomino-pelvic, and osteoarticular pathology is also proposed. CRITICAL RELEVANCE STATEMENT: T1 relaxation time is strongly influenced by numerous factors related to tissue characteristics and the presence in the context of the lesions of some specific substances. An examination of these phenomena with extensive MRI exemplification is reported. KEY POINTS: The purpose of the paper is to illustrate the chemical-physical basis of T1 Relaxation Time. MRI methods in accordance with the various clinical indications are listed. Several examples of clinical application in abdominopelvic and CNS pathology are reported.
Collapse
Affiliation(s)
- Michele Gaeta
- Radiology Unit - Biomorf Department, University of Messina, Messina, Italy
| | - Karol Galletta
- Neuroradiology Unit - Biomorf Department, University of Messina, Messina, Italy
| | - Marco Cavallaro
- Neuroradiology Unit - Biomorf Department, University of Messina, Messina, Italy
| | - Enricomaria Mormina
- Neuroradiology Unit - Biomorf Department, University of Messina, Messina, Italy
| | | | | | - Tommaso D'Angelo
- Radiology Unit - Biomorf Department, University of Messina, Messina, Italy.
- Department of Radiology and Nuclear Medicine, Erasmus MC, 3015 GD, Rotterdam, The Netherlands.
| | - Alfredo Blandino
- Radiology Unit - Biomorf Department, University of Messina, Messina, Italy
| | - Sergio Lucio Vinci
- Neuroradiology Unit - Biomorf Department, University of Messina, Messina, Italy
| | - Francesca Granata
- Neuroradiology Unit - Biomorf Department, University of Messina, Messina, Italy
| |
Collapse
|
19
|
Ariz M, Martínez M, Alvarez I, Fernández-Seara MA, Castellanos G, Pastor P, Pastor MA, Ortiz de Solórzano C. Automatic Segmentation and Quantification of Nigrosome-1 Neuromelanin and Iron in MRI: A Candidate Biomarker for Parkinson's Disease. J Magn Reson Imaging 2024; 60:534-547. [PMID: 37915245 DOI: 10.1002/jmri.29073] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 11/03/2023] Open
Abstract
BACKGROUND There is a lack of automated tools for the segmentation and quantification of neuromelanin (NM) and iron in the nigrosome-1 (N1). Existing tools evaluate the N1 sign, i.e., the presence or absence of the "swallow-tail" in iron-sensitive MRI, or globally analyze the MRI signal in an area containing the N1, without providing a volumetric delineation. PURPOSE Present an automated method to segment the N1 and quantify differences in N1's NM and iron content between Parkinson's disease (PD) patients and healthy controls (HCs). Study whether N1 degeneration is clinically related to PD and could be used as a biomarker of the disease. STUDY TYPE Prospective. SUBJECTS Seventy-one PD (65.3 ± 10.3 years old, 34 female/37 male); 30 HC (62.7 ± 7.8 years old, 17 female/13 male). FIELD STRENGTH/SEQUENCE 3 T Anatomical T1-weighted MPRAGE, NM-MRI T1-weighted gradient with magnetization transfer, susceptibility-weighted imaging (SWI). ASSESSMENT N1 was automatically segmented in SWI images using a multi-image atlas, populated with healthy N1 structures manually annotated by a neurologist. Relative NM and iron content were quantified and their diagnostic performance assessed and compared with the substantia nigra pars compacta (SNc). The association between image parameters and clinically relevant variables was studied. STATISTICAL TESTS Nonparametric tests were used (Mann-Whitney's U, chi-square, and Friedman tests) at P = 0.05. RESULTS N1's relative NM content decreased and relative iron content increased in PD patients compared with HCs (NM-CRHC = 22.55 ± 1.49; NM-CRPD = 19.79 ± 1.92; NM-nVolHC = 2.69 × 10-5 ± 1.02 × 10-5; NM-nVolPD = 1.18 × 10-5 ± 0.96 × 10-5; Iron-CRHC = 10.51 ± 2.64; Iron-CRPD = 19.35 ± 7.88; Iron-nVolHC = 0.72 × 10-5 ± 0.81 × 10-5; Iron-nVolPD = 2.82 × 10-5 ± 2.04 × 10-5). Binary logistic regression analyses combining N1 and SNc image parameters yielded a top AUC = 0.955. Significant correlation was found between most N1 parameters and both disease duration (ρNM-CR = -0.31; ρiron-CR = 0.43; ρiron-nVol = 0.46) and the motor status (ρNM-nVol = -0.27; ρiron-CR = 0.33; ρiron-nVol = 0.28), suggesting NM reduction along with iron accumulation in N1 as the disease progresses. DATA CONCLUSION This method provides a fully automatic N1 segmentation, and the analyses performed reveal that N1 relative NM and iron quantification improves diagnostic performance and suggest a relative NM reduction along with a relative iron accumulation in N1 as the disease progresses. EVIDENCE LEVEL 1 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Mikel Ariz
- Ciberonc and Biomedical Engineering Program, CIMA University of Navarra, Pamplona, Spain
- Department of Electrical, Electronic and Communications Engineering, Public University of Navarre, Pamplona, Spain
| | - Martín Martínez
- Neuroimaging Laboratory, University of Navarra, School of Medicine, Pamplona, Spain
| | - Ignacio Alvarez
- Movement Disorders Unit, Neurology, University Hospital Mútua de Terrassa, Terrassa, Barcelona, Spain
| | - Maria A Fernández-Seara
- Department of Radiology, Clínica Universidad de Navarra, Pamplona, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Gabriel Castellanos
- Department of Physiological Sciences, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Pau Pastor
- Unit of Neurodegenerative Diseases, Department of Neurology, University Hospital Germans Trias i Pujol, and Germans Trias i Pujol Research Institute (IGTP), Badalona, Barcelona, Spain
| | - Maria A Pastor
- Neuroimaging Laboratory, University of Navarra, School of Medicine, Pamplona, Spain
- Movement Disorders Unit, Neurology, University of Navarra, Pamplona, Spain
| | - Carlos Ortiz de Solórzano
- Ciberonc and Biomedical Engineering Program, CIMA University of Navarra, Pamplona, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| |
Collapse
|
20
|
Zheng Y, Li Y, Cai H, Kou W, Yang C, Li S, Wang J, Zhang N, Feng T. Alterations of Peripheral Lymphocyte Subsets in Isolated Rapid Eye Movement Sleep Behavior Disorder. Mov Disord 2024; 39:1179-1189. [PMID: 38529776 DOI: 10.1002/mds.29798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND Adaptive immune dysfunction may play a crucial role in Parkinson's disease (PD) development. Isolated rapid eye movement sleep behavior disorder (iRBD) represents the prodromal stage of synucleinopathies, including PD. Elucidating the peripheral adaptive immune system is crucial in iRBD, but current knowledge remains limited. OBJECTIVE This study aimed to characterize peripheral lymphocyte profiles in iRBD patients compared with healthy control subjects (HCs). METHODS This cross-sectional study recruited polysomnography-confirmed iRBD patients and age- and sex-matched HCs. Venous blood was collected from each participant. Flow cytometry was used to evaluate surface markers and intracellular cytokine production in peripheral blood mononuclear cells. RESULTS Forty-four iRBD patients and 36 HCs were included. Compared with HCs, patients with iRBD exhibited significant decreases in absolute counts of total lymphocytes and CD3+ T cells. In terms of T cell subsets, iRBD patients showed higher frequencies and counts of proinflammatory T helper 1 cells and INF-γ+ CD8+ T cells, along with lower frequencies and counts of anti-inflammatory T helper 2 cells. A significant increase in the frequency of central memory T cells in CD8+ T cells was also observed in iRBD. Regarding B cells, iRBD patients demonstrated reduced frequencies and counts of double-negative memory B cells compared with control subjects. CONCLUSIONS This study demonstrated alterations in the peripheral adaptive immune system in iRBD, specifically in CD4+ and INF-γ+ CD8+ T cell subsets. An overall shift toward a proinflammatory state of adaptive immunity was already evident in iRBD. These observations might provide insights into the optimal timing for initiating immune interventions in PD. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Yuanchu Zheng
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yatong Li
- Department of Neurology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Huihui Cai
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wenyi Kou
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chen Yang
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Siming Li
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jiawei Wang
- Department of Neurology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ning Zhang
- Department of Neuropsychiatry and Behavioral Neurology and Clinical Psychology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tao Feng
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
21
|
Dahl MJ, Werkle-Bergner M, Mather M. Neuromodulatory systems in aging and disease. Neurosci Biobehav Rev 2024; 162:105647. [PMID: 38574783 DOI: 10.1016/j.neubiorev.2024.105647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 03/29/2024] [Accepted: 03/29/2024] [Indexed: 04/06/2024]
Affiliation(s)
- Martin J Dahl
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin 14195, Germany; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany; Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA.
| | - Markus Werkle-Bergner
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin 14195, Germany
| | - Mara Mather
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA; Department of Psychology, University of Southern California, Los Angeles, CA, USA; Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
22
|
Gao L, Gaurav R, Ziegner P, Ma J, Sun J, Chen J, Fang J, Fan Y, Bao Y, Zhang D, Chan P, Yang Q, Fan Z, Lehéricy S, Wu T. Regional nigral neuromelanin degeneration in asymptomatic leucine-rich repeat kinase 2 gene carrier using MRI. Sci Rep 2024; 14:10621. [PMID: 38729969 PMCID: PMC11087650 DOI: 10.1038/s41598-024-59074-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 04/07/2024] [Indexed: 05/12/2024] Open
Abstract
Asymptomatic Leucine-Rich Repeat Kinase 2 Gene (LRRK2) carriers are at risk for developing Parkinson's disease (PD). We studied presymptomatic substantia nigra pars compacta (SNc) regional neurodegeneration in asymptomatic LRRK2 carriers compared to idiopathic PD patients using neuromelanin-sensitive MRI technique (NM-MRI). Fifteen asymptomatic LRRK2 carriers, 22 idiopathic PD patients, and 30 healthy controls (HCs) were scanned using NM-MRI. We computed volume and contrast-to-noise ratio (CNR) derived from the whole SNc and the sensorimotor, associative, and limbic SNc regions. An analysis of covariance was performed to explore the differences of whole and regional NM-MRI values among the groups while controlling the effect of age and sex. In whole SNc, LRRK2 had significantly lower CNR than HCs but non-significantly higher volume and CNR than PD patients, and PD patients significantly lower volume and CNR compared to HCs. Inside SNc regions, there were significant group effects for CNR in all regions and for volumes in the associative region, with a trend in the sensorimotor region but no significant changes in the limbic region. PD had reduced volume and CNR in all regions compared to HCs. Asymptomatic LRRK2 carriers showed globally decreased SNc volume and CNR suggesting early nigral neurodegeneration in these subjects at risk of developing PD.
Collapse
Affiliation(s)
- Linlin Gao
- Department of General Practice, Tianjin Union Medical Center, Tianjin, China
| | - Rahul Gaurav
- Paris Brain Institute - ICM, INSERM U1127, CNRS UMR 7225, Pitié-Salpêtrière Hospital, Sorbonne Université, Paris, France.
- Movement Investigations and Therapeutics Team (MOV'IT), Paris Brain Institute - ICM, Paris, France.
- Center for NeuroImaging Research (CENIR), Paris Brain Institute - ICM, Hôpital Pitié-Salpêtrière, 47 Boulevard de l'Hôpital, 75013, Paris, France.
| | - Pia Ziegner
- Paris Brain Institute - ICM, INSERM U1127, CNRS UMR 7225, Pitié-Salpêtrière Hospital, Sorbonne Université, Paris, France
- Center for NeuroImaging Research (CENIR), Paris Brain Institute - ICM, Hôpital Pitié-Salpêtrière, 47 Boulevard de l'Hôpital, 75013, Paris, France
- Department of Neurology (H.J.), University Hospital of Heidelberg, Heidelberg, Germany
| | - Jinghong Ma
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Junyan Sun
- Department of Neurology, Center for Movement Disorders, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jie Chen
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Jiliang Fang
- Department of Radiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yangyang Fan
- Department of Radiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yan Bao
- Department of Radiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dongling Zhang
- Department of Neurology, Center for Movement Disorders, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Piu Chan
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Qi Yang
- Department of Radiology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Zhaoyang Fan
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Stéphane Lehéricy
- Paris Brain Institute - ICM, INSERM U1127, CNRS UMR 7225, Pitié-Salpêtrière Hospital, Sorbonne Université, Paris, France.
- Movement Investigations and Therapeutics Team (MOV'IT), Paris Brain Institute - ICM, Paris, France.
- Center for NeuroImaging Research (CENIR), Paris Brain Institute - ICM, Hôpital Pitié-Salpêtrière, 47 Boulevard de l'Hôpital, 75013, Paris, France.
- Department of Neuroradiology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France.
| | - Tao Wu
- Department of Neurology, Center for Movement Disorders, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, China.
| |
Collapse
|
23
|
Kannarkat GT, Zack R, Skrinak RT, Morley JF, Davila-Rivera R, Arezoumandan S, Dorfmann K, Luk K, Wolk DA, Weintraub D, Tropea TF, Lee EB, Xie SX, Chandrasekaran G, Lee VMY, Irwin D, Akhtar RS, Chen-Plotkin AS. α-Synuclein Conformations in Plasma Distinguish Parkinson's Disease from Dementia with Lewy Bodies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.07.593056. [PMID: 38765963 PMCID: PMC11100683 DOI: 10.1101/2024.05.07.593056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Spread and aggregation of misfolded α-synuclein (aSyn) within the brain is the pathologic hallmark of Lewy body diseases (LBD), including Parkinson's disease (PD) and dementia with Lewy bodies (DLB). While evidence exists for multiple aSyn protein conformations, often termed "strains" for their distinct biological properties, it is unclear whether PD and DLB result from aSyn strain differences, and biomarkers that differentiate PD and DLB are lacking. Moreover, while pathological forms of aSyn have been detected outside the brain ( e.g., in skin, gut, blood), the functional significance of these peripheral aSyn species is unclear. Here, we developed assays using monoclonal antibodies selective for two different aSyn species generated in vitro - termed Strain A and Strain B - and used them to evaluate human brain tissue, cerebrospinal fluid (CSF), and plasma, through immunohistochemistry, enzyme-linked immunoassay, and immunoblotting. Surprisingly, we found that plasma aSyn species detected by these antibodies differentiated individuals with PD vs. DLB in a discovery cohort (UPenn, n=235, AUC 0.83) and a multi-site replication cohort (Parkinson's Disease Biomarker Program, or PDBP, n=200, AUC 0.72). aSyn plasma species detected by the Strain A antibody also predicted rate of cognitive decline in PD. We found no evidence for aSyn strains in CSF, and ability to template aSyn fibrillization differed for species isolated from plasma vs. brain, and in PD vs. DLB. Taken together, our findings suggest that aSyn conformational differences may impact clinical presentation and cortical spread of pathological aSyn. Moreover, the enrichment of these aSyn strains in plasma implicates a non-central nervous system source.
Collapse
|
24
|
Yan Y, Zhang M, Ren W, Zheng X, Chang Y. Neuromelanin-sensitive magnetic resonance imaging: Possibilities and promises as an imaging biomarker for Parkinson's disease. Eur J Neurosci 2024; 59:2616-2627. [PMID: 38441250 DOI: 10.1111/ejn.16296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 02/03/2024] [Accepted: 02/07/2024] [Indexed: 05/22/2024]
Abstract
Parkinson's disease (PD) is an age-related progressive neurodegenerative disorder characterized by both motor and non-motor symptoms resulting from the death of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and noradrenergic neurons in the locus coeruleus (LC). The current diagnosis of PD primarily relies on motor symptoms, often leading to diagnoses in advanced stages, where a significant portion of SNpc dopamine neurons has already succumbed. Therefore, the identification of imaging biomarkers for early-stage PD diagnosis and disease progression monitoring is imperative. Recent studies propose that neuromelanin-sensitive magnetic resonance imaging (NM-MRI) holds promise as an imaging biomarker. In this review, we summarize the latest findings concerning NM-MRI characteristics at various stages in patients with PD and those with atypical parkinsonism. In conclusion, alterations in neuromelanin within the LC are associated with non-motor symptoms and prove to be a reliable imaging biomarker in the prodromal phase of PD. Furthermore, NM-MRI demonstrates efficacy in differentiating progressive supranuclear palsy (PSP) from PD and multiple system atrophy with predominant parkinsonism. The spatial patterns of changes in the SNpc can be indicative of PD progression and aid in distinguishing between PSP and synucleinopathies. We recommend that patients with PD and individuals at risk for PD undergo regular NM-MRI examinations. This technology holds the potential for widespread use in PD diagnosis.
Collapse
Affiliation(s)
- Yayun Yan
- Department of Neurology, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Mengchao Zhang
- Department of Radiology, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Wenhua Ren
- Department of Neurology, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Xiaoqi Zheng
- Department of Neurology, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Ying Chang
- Department of Neurology, China-Japan Union Hospital, Jilin University, Changchun, China
| |
Collapse
|
25
|
Liu P, Wang X, Zhang Y, Huang P, Jin Z, Cheng Z, Chen Y, Xu Q, Ghassaban K, Liu Y, Chen S, He N, Yan F, Haacke EM. PENCIL imaging: A novel approach for neuromelanin sensitive MRI in Parkinson's disease. Neuroimage 2024; 291:120588. [PMID: 38537765 DOI: 10.1016/j.neuroimage.2024.120588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 03/11/2024] [Accepted: 03/25/2024] [Indexed: 04/01/2024] Open
Abstract
BACKGROUND Parkinson's disease (PD) is associated with the loss of neuromelanin (NM) and increased iron in the substantia nigra (SN). Magnetization transfer contrast (MTC) is widely used for NM visualization but has limitations in brain coverage and scan time. This study aimed to develop a new approach called Proton-density Enhanced Neuromelanin Contrast in Low flip angle gradient echo (PENCIL) imaging to visualize NM in the SN. METHODS This study included 30 PD subjects and 50 healthy controls (HCs) scanned at 3T. PENCIL and MTC images were acquired. NM volume in the SN pars compacta (SNpc), normalized image contrast (Cnorm), and contrast-to-noise ratio (CNR) were calculated. The change of NM volume in the SNpc with age was analyzed using the HC data. A group analysis compared differences between PD subjects and HCs. Receiver operating characteristic (ROC) analysis and area under the curve (AUC) calculations were used to evaluate the diagnostic performance of NM volume and CNR in the SNpc. RESULTS PENCIL provided similar visualization and structural information of NM compared to MTC. In HCs, PENCIL showed higher NM volume in the SNpc than MTC, but this difference was not observed in PD subjects. PENCIL had higher CNR, while MTC had higher Cnorm. Both methods revealed a similar pattern of NM volume in SNpc changes with age. There were no significant differences in AUCs between NM volume in SNpc measured by PENCIL and MTC. Both methods exhibited comparable diagnostic performance in this regard. CONCLUSIONS PENCIL imaging provided improved CNR compared to MTC and showed similar diagnostic performance for differentiating PD subjects from HCs. The major advantage is PENCIL has rapid whole-brain coverage and, when using STAGE imaging, offers a one-stop quantitative assessment of tissue properties.
Collapse
Affiliation(s)
- Peng Liu
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai 200025, China
| | - Xinhui Wang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai 200025, China
| | - Youmin Zhang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai 200025, China
| | - Pei Huang
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai 200025, China
| | - Zhijia Jin
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai 200025, China
| | - Zenghui Cheng
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai 200025, China
| | - Yongsheng Chen
- Department of Neurology, Wayne State University School of Medicine, 4201St. Antoine, Detroit, MI 48201, USA
| | - Qiuyun Xu
- SpinTech MRI, Bingham Farms, MI 48025, USA
| | | | - Yu Liu
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai 200025, China
| | - Shengdi Chen
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai 200025, China
| | - Naying He
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai 200025, China.
| | - Fuhua Yan
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai 200025, China; Faculty of Medical Imaging Technology, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - E Mark Haacke
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai 200025, China; Department of Neurology, Wayne State University School of Medicine, 4201St. Antoine, Detroit, MI 48201, USA; Department of Radiology, Wayne State University School of Medicine, 3990 John R Street, MRI Concourse, Detroit, MI 48201, USA.
| |
Collapse
|
26
|
Wiesman AI, Madge V, Fon EA, Dagher A, Collins DL, Baillet S. Associations between neuromelanin depletion and cortical rhythmic activity in Parkinson's disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.16.24302958. [PMID: 38405952 PMCID: PMC10889029 DOI: 10.1101/2024.02.16.24302958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Background and Objectives Parkinson's disease (PD) is marked by the death of neuromelanin-rich dopaminergic and noradrenergic cells in the substantia nigra (SN) and the locus coeruleus (LC), respectively, resulting in motor and cognitive impairments. While SN dopamine dysfunction has clear neurophysiological effects, the impact of reduced LC norepinephrine signaling on brain activity in PD remains to be established. Methods We used neuromelanin-sensitive T1-weighted MRI (NPD = 58; NHC = 27) and task-free magnetoencephalography (NPD = 58; NHC = 65) to identify neuropathophysiological factors related to the degeneration of the LC and SN in patients with PD. Results We found pathological increases in rhythmic alpha (8 - 12 Hz) activity in patients with decreased LC neuromelanin, with a stronger association in patients with worse attentional impairments. This negative alpha-LC neuromelanin relationship is also stronger in fronto-motor cortices, which are regions with high densities of norepinephrine transporters in the healthy brain, and where alpha activity is negatively related to attention scores. These observations support a noradrenergic association between LC integrity and alpha band activity. Our data also show that rhythmic beta (15 - 29 Hz) activity in the left somato-motor cortex decreases with lower levels of SN neuromelanin; the same regions where beta activity reflects axial motor symptoms. Discussion Together, our findings clarify the association of well-documented alterations of rhythmic neurophysiology in PD with cortical and subcortical neurochemical systems. Specifically, attention-related alpha activity reflects dysfunction of the noradrenergic system, and beta activity with relevance to motor impairments reflects dopaminergic dysfunction.
Collapse
Affiliation(s)
- Alex I. Wiesman
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Victoria Madge
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Edward A. Fon
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Alain Dagher
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | - D Louis Collins
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Sylvain Baillet
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | | | | |
Collapse
|
27
|
Kawazoe T, Sugaya K, Nakata Y, Okitsu M, Takahashi K. Two distinct degenerative types of nigrostriatal dopaminergic neuron in the early stage of parkinsonian disorders. Clin Park Relat Disord 2024; 10:100242. [PMID: 38405025 PMCID: PMC10883825 DOI: 10.1016/j.prdoa.2024.100242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/27/2024] Open
Abstract
Introduction The present study characterized the degeneration of nigrostriatal dopaminergic neurons in the early stages of parkinsonian disorders using integrative neuroimaging analysis with neuromelanin-sensitive MRI and 123I-FP-CIT dopamine transporter (DAT) SPECT. Methods Thirty-one, 30, and 29 patients with progressive supranuclear palsy (PSP), corticobasal syndrome (CBS) with abnormal specific binding ratio (SBR) in either hemisphere (mean ± 2SD), and parkinsonism-predominant multiple system atrophy (MSA-P), respectively, were enrolled. Neuromelanin-related contrast (NRC) in the substantia nigra (NRCSN) and locus coeruleus (NRCLC) and the SBR of DAT SPECT were measured. All the patients underwent both examinations simultaneously within five years after symptom onset. After adjusting for interhemispheric asymmetry on neuromelanin-related MRI contrast using the Z-score, linear regression analysis of the NRCSN and SBR was performed for the most- and least-affected hemispheres, as defined by the interhemispheric differences per variable (SBR, NRCSN, standardized [SBR + NRCSN]) in each patient. Results Although the variables did not differ significantly between PSP and CBS, a significant correlation was found for CBS in the most-affected hemisphere for all the definitions, including the clinically defined, most-affected hemisphere. No significant correlation was found between the NRCSN and SBR for any of the definitions in either PSP or MSA-P. Conclusion Together with the findings of our previous study of dementia with Lewy bodies (DLB) and Parkinson's disease (PD), the present findings indicated that neural degeneration in the disorders examined may be categorized by the significance of the NRCSN-SBR correlation in PD and CBS and its non-significance in DLB, PSP, and MSA-P.
Collapse
Affiliation(s)
- Tomoya Kawazoe
- Department of Neurology, Tokyo Metropolitan Neurological Hospital (TMNH), Tokyo, Japan
| | - Keizo Sugaya
- Department of Neurology, Tokyo Metropolitan Neurological Hospital (TMNH), Tokyo, Japan
| | | | - Masato Okitsu
- Department of Neurology, Tokyo Metropolitan Neurological Hospital (TMNH), Tokyo, Japan
| | - Kazushi Takahashi
- Department of Neurology, Tokyo Metropolitan Neurological Hospital (TMNH), Tokyo, Japan
| |
Collapse
|
28
|
de Laat B, Hoye J, Stanley G, Hespeler M, Ligi J, Mohan V, Wooten DW, Zhang X, Nguyen TD, Key J, Colonna G, Huang Y, Nabulsi N, Patel A, Matuskey D, Morris ED, Tinaz S. Intense exercise increases dopamine transporter and neuromelanin concentrations in the substantia nigra in Parkinson's disease. NPJ Parkinsons Dis 2024; 10:34. [PMID: 38336768 PMCID: PMC10858031 DOI: 10.1038/s41531-024-00641-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 01/15/2024] [Indexed: 02/12/2024] Open
Abstract
Parkinson's disease (PD) is characterized by a progressive loss of dopaminergic neurons. Exercise has been reported to slow the clinical progression of PD. We evaluated the dopaminergic system of patients with mild and early PD before and after a six-month program of intense exercise. Using 18F-FE-PE2I PET imaging, we measured dopamine transporter (DAT) availability in the striatum and substantia nigra. Using NM-MRI, we evaluated the neuromelanin content in the substantia nigra. Exercise reversed the expected decrease in DAT availability into a significant increase in both the substantia nigra and putamen. Exercise also reversed the expected decrease in neuromelanin concentration in the substantia nigra into a significant increase. These findings suggest improved functionality in the remaining dopaminergic neurons after exercise. Further research is needed to validate our findings and to pinpoint the source of any true neuromodulatory and neuroprotective effects of exercise in PD in large clinical trials.
Collapse
Affiliation(s)
- Bart de Laat
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA.
- Department of Psychiatry, Yale University, New Haven, CT, USA.
| | - Jocelyn Hoye
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Gelsina Stanley
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | | | | | | | | | | | - Thanh D Nguyen
- Department of Radiology, Weil Cornell Medicine, New York, NY, USA
| | - Jose Key
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Giulia Colonna
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Yiyun Huang
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Nabeel Nabulsi
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Amar Patel
- Department of Neurology, Yale University, New Haven, CT, USA
| | - David Matuskey
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
- Department of Psychiatry, Yale University, New Haven, CT, USA
- Department of Neurology, Yale University, New Haven, CT, USA
| | - Evan D Morris
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
- Department of Psychiatry, Yale University, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Sule Tinaz
- Department of Neurology, Yale University, New Haven, CT, USA
| |
Collapse
|
29
|
Watanabe H, Dijkstra JM, Nagatsu T. Parkinson's Disease: Cells Succumbing to Lifelong Dopamine-Related Oxidative Stress and Other Bioenergetic Challenges. Int J Mol Sci 2024; 25:2009. [PMID: 38396687 PMCID: PMC10888576 DOI: 10.3390/ijms25042009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
The core pathological event in Parkinson's disease (PD) is the specific dying of dopamine (DA) neurons of the substantia nigra pars compacta (SNc). The reasons why SNc DA neurons are especially vulnerable and why idiopathic PD has only been found in humans are still puzzling. The two main underlying factors of SNc DA neuron vulnerability appear related to high DA production, namely (i) the toxic effects of cytoplasmic DA metabolism and (ii) continuous cytosolic Ca2+ oscillations in the absence of the Ca2+-buffer protein calbindin. Both factors cause oxidative stress by producing highly reactive quinones and increasing intra-mitochondrial Ca2+ concentrations, respectively. High DA expression in human SNc DA neuron cell bodies is suggested by the abundant presence of the DA-derived pigment neuromelanin, which is not found in such abundance in other species and has been associated with toxicity at higher levels. The oxidative stress created by their DA production system, despite the fact that the SN does not use unusually high amounts of energy, explains why SNc DA neurons are sensitive to various genetic and environmental factors that create mitochondrial damage and thereby promote PD. Aging increases multiple risk factors for PD, and, to a large extent, PD is accelerated aging. To prevent PD neurodegeneration, possible approaches that are discussed here are (1) reducing cytoplasmic DA accumulation, (2) blocking cytoplasmic Ca2+ oscillations, and (3) providing bioenergetic support.
Collapse
Affiliation(s)
- Hirohisa Watanabe
- Department of Neurology, School of Medicine, Fujita Health University, Toyoake 470-1192, Aichi, Japan
| | - Johannes M. Dijkstra
- Center for Medical Science, Fujita Health University, Toyoake 470-1192, Aichi, Japan
| | - Toshiharu Nagatsu
- Center for Research Promotion and Support, Fujita Health University, Toyoake 470-1192, Aichi, Japan;
| |
Collapse
|
30
|
Wengler K, Baker SC, Velikovskaya A, Fogelson A, Girgis RR, Reyes-Madrigal F, Lee S, de la Fuente-Sandoval C, Ojeil N, Horga G. Generalizability and Out-of-Sample Predictive Ability of Associations Between Neuromelanin-Sensitive Magnetic Resonance Imaging and Psychosis in Antipsychotic-Free Individuals. JAMA Psychiatry 2024; 81:198-208. [PMID: 37938847 PMCID: PMC10633403 DOI: 10.1001/jamapsychiatry.2023.4305] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/08/2023] [Indexed: 11/10/2023]
Abstract
Importance The link between psychosis and dopaminergic dysfunction is established, but no generalizable biomarkers with clear potential for clinical adoption exist. Objective To replicate previous findings relating neuromelanin-sensitive magnetic resonance imaging (NM-MRI), a proxy measure of dopamine function, to psychosis severity in antipsychotic-free individuals in the psychosis spectrum and to evaluate the out-of-sample predictive ability of NM-MRI for psychosis severity. Design, Setting, and Participants This cross-sectional study recruited participants from 2019 to 2023 in the New York City area (main samples) and Mexico City area (external validation sample). The main samples consisted of 42 antipsychotic-free patients with schizophrenia, 53 antipsychotic-free individuals at clinical high risk for psychosis (CHR), and 52 matched healthy controls. An external validation sample consisted of 16 antipsychotic-naive patients with schizophrenia. Main Outcomes and Measures NM-MRI contrast within a subregion of the substantia nigra previously linked to psychosis severity (a priori psychosis region of interest [ROI]) and psychosis severity measured using the Positive and Negative Syndrome Scale (PANSS) in schizophrenia and the Structured Interview for Psychosis-Risk Syndromes (SIPS) in CHR. The cross-validated performance of linear support vector regression to predict psychosis severity across schizophrenia and CHR was assessed, and a final trained model was tested on the external validation sample. Results Of the 163 included participants, 76 (46.6%) were female, and the mean (SD) age was 29.2 (10.4) years. In the schizophrenia sample, higher PANSS positive total scores correlated with higher mean NM-MRI contrast in the psychosis ROI (t37 = 2.24, P = .03; partial r = 0.35; 95% CI, 0.05 to 0.55). In the CHR sample, no significant association was found between higher SIPS positive total score and NM-MRI contrast in the psychosis ROI (t48 = -0.55, P = .68; partial r = -0.08; 95% CI, -0.36 to 0.23). The 10-fold cross-validated prediction accuracy of psychosis severity was above chance in held-out test data (mean r = 0.305, P = .01; mean root-mean-square error [RMSE] = 1.001, P = .005). External validation prediction accuracy was also above chance (r = 0.422, P = .046; RMSE = 0.882, P = .047). Conclusions and Relevance This study provided a direct ROI-based replication of the in-sample association between NM-MRI contrast and psychosis severity in antipsychotic-free patients with schizophrenia. In turn, it failed to replicate such association in CHR individuals. Most critically, cross-validated machine-learning analyses provided a proof-of-concept demonstration that NM-MRI patterns can be used to predict psychosis severity in new data, suggesting potential for developing clinically useful tools.
Collapse
Affiliation(s)
- Kenneth Wengler
- Department of Psychiatry, Columbia University, New York, New York
- New York State Psychiatric Institute, New York
| | - Seth C. Baker
- New York State Psychiatric Institute, New York
- University at Buffalo Jacobs School of Medicine and Biological Sciences, Buffalo, New York
| | | | | | - Ragy R. Girgis
- Department of Psychiatry, Columbia University, New York, New York
- New York State Psychiatric Institute, New York
| | - Francisco Reyes-Madrigal
- Laboratory of Experimental Psychiatry & Neuropsychiatry Department, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Seonjoo Lee
- Department of Psychiatry, Columbia University, New York, New York
- New York State Psychiatric Institute, New York
- Department of Biostatistics, Columbia University, New York, New York
| | - Camilo de la Fuente-Sandoval
- Laboratory of Experimental Psychiatry & Neuropsychiatry Department, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | | | - Guillermo Horga
- Department of Psychiatry, Columbia University, New York, New York
- New York State Psychiatric Institute, New York
| |
Collapse
|
31
|
Trujillo P, Aumann MA, Claassen DO. Neuromelanin-sensitive MRI as a promising biomarker of catecholamine function. Brain 2024; 147:337-351. [PMID: 37669320 PMCID: PMC10834262 DOI: 10.1093/brain/awad300] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/17/2023] [Accepted: 08/20/2023] [Indexed: 09/07/2023] Open
Abstract
Disruptions to dopamine and noradrenergic neurotransmission are noted in several neurodegenerative and psychiatric disorders. Neuromelanin-sensitive (NM)-MRI offers a non-invasive approach to visualize and quantify the structural and functional integrity of the substantia nigra and locus coeruleus. This method may aid in the diagnosis and quantification of longitudinal changes of disease and could provide a stratification tool for predicting treatment success of pharmacological interventions targeting the dopaminergic and noradrenergic systems. Given the growing clinical interest in NM-MRI, understanding the contrast mechanisms that generate this signal is crucial for appropriate interpretation of NM-MRI outcomes and for the continued development of quantitative MRI biomarkers that assess disease severity and progression. To date, most studies associate NM-MRI measurements to the content of the neuromelanin pigment and/or density of neuromelanin-containing neurons, while recent studies suggest that the main source of the NM-MRI contrast is not the presence of neuromelanin but the high-water content in the dopaminergic and noradrenergic neurons. In this review, we consider the biological and physical basis for the NM-MRI contrast and discuss a wide range of interpretations of NM-MRI. We describe different acquisition and image processing approaches and discuss how these methods could be improved and standardized to facilitate large-scale multisite studies and translation into clinical use. We review the potential clinical applications in neurological and psychiatric disorders and the promise of NM-MRI as a biomarker of disease, and finally, we discuss the current limitations of NM-MRI that need to be addressed before this technique can be utilized as a biomarker and translated into clinical practice and offer suggestions for future research.
Collapse
Affiliation(s)
- Paula Trujillo
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Megan A Aumann
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Daniel O Claassen
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| |
Collapse
|
32
|
Lakhani DA, Zhou X, Tao S, Patel V, Wen S, Okromelidze L, Greco E, Lin C, Westerhold EM, Straub S, Wszolek ZK, Tipton PW, Uitti RJ, Grewal SS, Middlebrooks EH. Diagnostic utility of 7T neuromelanin imaging of the substantia nigra in Parkinson's disease. NPJ Parkinsons Dis 2024; 10:13. [PMID: 38191546 PMCID: PMC10774294 DOI: 10.1038/s41531-024-00631-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/02/2024] [Indexed: 01/10/2024] Open
Abstract
Parkinson's disease (PD) is a prevalent neurodegenerative disorder that presents a diagnostic challenge due to symptom overlap with other disorders. Neuromelanin (NM) imaging is a promising biomarker for PD, but adoption has been limited, in part due to subpar performance at standard MRI field strengths. We aimed to evaluate the diagnostic utility of ultra-high field 7T NM-sensitive imaging in the diagnosis of PD versus controls and essential tremor (ET), as well as NM differences among PD subtypes. A retrospective case-control study was conducted including PD patients, ET patients, and controls. 7T NM-sensitive 3D-GRE was acquired, and substantia nigra pars compacta (SNpc) volumes, contrast ratios, and asymmetry indices were calculated. Statistical analyses, including general linear models and ROC curves, were employed. Twenty-one PD patients, 13 ET patients, and 18 controls were assessed. PD patients exhibited significantly lower SNpc volumes compared to non-PD subjects. SNpc total volume showed 100% sensitivity and 96.8% specificity (AUC = 0.998) for differentiating PD from non-PD and 100% sensitivity and 95.2% specificity (AUC = 0.996) in differentiating PD from ET. Contrast ratio was not significantly different between PD and non-PD groups (p = 0.07). There was also significantly higher asymmetry index in SNpc volume in PD compared to non-PD cohorts (p < 0.001). NM signal loss in PD predominantly involved the inferior, posterior, and lateral aspects of SNpc. Akinetic-rigid subtype showed more significant NM signal loss compared to tremor dominant subtype (p < 0.001). 7T NM imaging demonstrates potential as a diagnostic tool for PD, including potential distinction between subtypes, allowing improved understanding of disease progression and subtype-related characteristics.
Collapse
Affiliation(s)
- Dhairya A Lakhani
- Department of Radiology, Johns Hopkins University, Baltimore, MD, USA
- Department of Radiology, Mayo Clinic, Jacksonville, FL, USA
| | - Xiangzhi Zhou
- Department of Radiology, Mayo Clinic, Jacksonville, FL, USA
| | - Shengzhen Tao
- Department of Radiology, Mayo Clinic, Jacksonville, FL, USA
| | - Vishal Patel
- Department of Radiology, Mayo Clinic, Jacksonville, FL, USA
| | - Sijin Wen
- Department of Biostatistics, West Virginia University, Morgantown, WV, USA
| | | | - Elena Greco
- Department of Radiology, Mayo Clinic, Jacksonville, FL, USA
| | - Chen Lin
- Department of Radiology, Mayo Clinic, Jacksonville, FL, USA
| | | | - Sina Straub
- Department of Radiology, Mayo Clinic, Jacksonville, FL, USA
| | | | | | - Ryan J Uitti
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | | | - Erik H Middlebrooks
- Department of Radiology, Mayo Clinic, Jacksonville, FL, USA.
- Department of Neurosurgery, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
33
|
Holmes S, Tinaz S. Neuroimaging Biomarkers in Parkinson's Disease. ADVANCES IN NEUROBIOLOGY 2024; 40:617-663. [PMID: 39562459 DOI: 10.1007/978-3-031-69491-2_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Idiopathic Parkinson's disease (PD) is a neurodegenerative disorder that affects multiple systems in the body and is characterized by a variety of motor and non-motor (e.g., psychiatric, autonomic) symptoms. As the fastest growing neurological disorder expected to affect over 12 million people globally by 2040 (Dorsey, Bloem JAMA Neurol 75(1):9-10. https://doi.org/10.1001/jamaneurol.2017.3299 . PMID: 29131880, 2018), PD poses an enormous individual and public health burden. Currently, there are no therapies that can slow down the disease progression in PD, and existing therapies are limited to symptomatic treatment. Importantly, people in the prodromal phase who are at high risk of developing PD can now be identified, which makes disease prevention an achievable goal. An in-depth understanding of the pathological processes in PD is crucial for prevention and treatment development. Advanced multimodal neuroimaging techniques provide unique biomarkers that can further our understanding of PD at multiple levels ranging from neurotransmitters to neural networks. These neuroimaging biomarkers also have value in clinical application, for example, in the differential diagnosis of PD. As the field continues to advance, neuroimaging biomarkers are expected to become more specific, more widely accessible, and can be readily incorporated into translational research for treatment development in PD.
Collapse
Affiliation(s)
- Sophie Holmes
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Sule Tinaz
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
34
|
Matt RA, Martin RS, Evans AK, Gever JR, Vargas GA, Shamloo M, Ford AP. Locus Coeruleus and Noradrenergic Pharmacology in Neurodegenerative Disease. Handb Exp Pharmacol 2024; 285:555-616. [PMID: 37495851 DOI: 10.1007/164_2023_677] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Adrenoceptors (ARs) throughout the brain are stimulated by noradrenaline originating mostly from neurons of the locus coeruleus, a brainstem nucleus that is ostensibly the earliest to show detectable pathology in neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. The α1-AR, α2-AR, and β-AR subtypes expressed in target brain regions and on a range of cell populations define the physiological responses to noradrenaline, which includes activation of cognitive function in addition to modulation of neurometabolism, cerebral blood flow, and neuroinflammation. As these heterocellular functions are critical for maintaining brain homeostasis and neuronal health, combating the loss of noradrenergic tone from locus coeruleus degeneration may therefore be an effective treatment for both cognitive symptoms and disease modification in neurodegenerative indications. Two pharmacologic approaches are receiving attention in recent clinical studies: preserving noradrenaline levels (e.g., via reuptake inhibition) and direct activation of target adrenoceptors. Here, we review the expression and role of adrenoceptors in the brain, the preclinical studies which demonstrate that adrenergic stimulation can support cognitive function and cerebral health by reversing the effects of noradrenaline depletion, and the human data provided by pharmacoepidemiologic analyses and clinical trials which together identify adrenoceptors as promising targets for the treatment of neurodegenerative disease.
Collapse
Affiliation(s)
| | | | - Andrew K Evans
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA, USA
| | | | | | - Mehrdad Shamloo
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA, USA
| | | |
Collapse
|
35
|
Savoie FA, Arpin DJ, Vaillancourt DE. Magnetic Resonance Imaging and Nuclear Imaging of Parkinsonian Disorders: Where do we go from here? Curr Neuropharmacol 2024; 22:1583-1605. [PMID: 37533246 PMCID: PMC11284713 DOI: 10.2174/1570159x21666230801140648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 08/04/2023] Open
Abstract
Parkinsonian disorders are a heterogeneous group of incurable neurodegenerative diseases that significantly reduce quality of life and constitute a substantial economic burden. Nuclear imaging (NI) and magnetic resonance imaging (MRI) have played and continue to play a key role in research aimed at understanding and monitoring these disorders. MRI is cheaper, more accessible, nonirradiating, and better at measuring biological structures and hemodynamics than NI. NI, on the other hand, can track molecular processes, which may be crucial for the development of efficient diseasemodifying therapies. Given the strengths and weaknesses of NI and MRI, how can they best be applied to Parkinsonism research going forward? This review aims to examine the effectiveness of NI and MRI in three areas of Parkinsonism research (differential diagnosis, prodromal disease identification, and disease monitoring) to highlight where they can be most impactful. Based on the available literature, MRI can assist with differential diagnosis, prodromal disease identification, and disease monitoring as well as NI. However, more work is needed, to confirm the value of MRI for monitoring prodromal disease and predicting phenoconversion. Although NI can complement or be a substitute for MRI in all the areas covered in this review, we believe that its most meaningful impact will emerge once reliable Parkinsonian proteinopathy tracers become available. Future work in tracer development and high-field imaging will continue to influence the landscape for NI and MRI.
Collapse
Affiliation(s)
- Félix-Antoine Savoie
- Department of Applied Physiology and Kinesiology, Laboratory for Rehabilitation Neuroscience, University of Florida, Gainesville, FL, USA
| | - David J. Arpin
- Department of Applied Physiology and Kinesiology, Laboratory for Rehabilitation Neuroscience, University of Florida, Gainesville, FL, USA
| | - David E. Vaillancourt
- Department of Applied Physiology and Kinesiology, Laboratory for Rehabilitation Neuroscience, University of Florida, Gainesville, FL, USA
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| |
Collapse
|
36
|
Shaff N, Erhardt E, Nitschke S, Julio K, Wertz C, Vakhtin A, Caprihan A, Suarez‐Cedeno G, Deligtisch A, Richardson SP, Mayer AR, Ryman SG. Comparison of automated and manual quantification methods for neuromelanin-sensitive MRI in Parkinson's disease. Hum Brain Mapp 2024; 45:e26544. [PMID: 38041476 PMCID: PMC10789205 DOI: 10.1002/hbm.26544] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 12/03/2023] Open
Abstract
Neuromelanin-sensitive magnetic resonance imaging quantitative analysis methods have provided promising biomarkers that can noninvasively quantify degeneration of the substantia nigra in patients with Parkinson's disease. However, there is a need to systematically evaluate the performance of manual and automated quantification approaches. We evaluate whether spatial, signal-intensity, or subject specific abnormality measures using either atlas based or manually traced identification of the substantia nigra better differentiate patients with Parkinson's disease from healthy controls using logistic regression models and receiver operating characteristics. Inference was performed using bootstrap analyses to calculate 95% confidence interval bounds. Pairwise comparisons were performed by generating 10,000 permutations, refitting the models, and calculating a paired difference between metrics. Thirty-one patients with Parkinson's disease and 22 healthy controls were included in the analyses. Signal intensity measures significantly outperformed spatial and subject specific abnormality measures, with the top performers exhibiting excellent ability to differentiate patients with Parkinson's disease and healthy controls (balanced accuracy = 0.89; area under the curve = 0.81; sensitivity =0.86; and specificity = 0.83). Atlas identified substantia nigra metrics performed significantly better than manual tracing metrics. These results provide clear support for the use of automated signal intensity metrics and additional recommendations. Future work is necessary to evaluate whether the same metrics can best differentiate atypical parkinsonism, perform similarly in de novo and mid-stage cohorts, and serve as longitudinal monitoring biomarkers.
Collapse
Affiliation(s)
| | - Erik Erhardt
- Department of Mathematics and StatisticsUniversity of New MexicoAlbuquerqueNew MexicoUSA
| | | | - Kayla Julio
- The Mind Research NetworkAlbuquerqueNew MexicoUSA
| | | | | | | | - Gerson Suarez‐Cedeno
- Nene and Jamie Koch Comprehensive Movement Disorder Center, Department of NeurologyUniversity of New MexicoAlbuquerqueNew MexicoUSA
| | - Amanda Deligtisch
- Nene and Jamie Koch Comprehensive Movement Disorder Center, Department of NeurologyUniversity of New MexicoAlbuquerqueNew MexicoUSA
| | - Sarah Pirio Richardson
- Nene and Jamie Koch Comprehensive Movement Disorder Center, Department of NeurologyUniversity of New MexicoAlbuquerqueNew MexicoUSA
- New Mexico VA Health Care SystemAlbuquerqueNew MexicoUSA
| | | | - Sephira G. Ryman
- The Mind Research NetworkAlbuquerqueNew MexicoUSA
- Nene and Jamie Koch Comprehensive Movement Disorder Center, Department of NeurologyUniversity of New MexicoAlbuquerqueNew MexicoUSA
| |
Collapse
|
37
|
Huenchuguala S, Segura-Aguilar J. On the Role of Iron in Idiopathic Parkinson's Disease. Biomedicines 2023; 11:3094. [PMID: 38002094 PMCID: PMC10669582 DOI: 10.3390/biomedicines11113094] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/04/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
The transition metal characteristics of iron allow it to play a fundamental role in several essential aspects of human life such as the transport of oxygen through hemoglobin or the transport of electrons in the mitochondrial respiratory chain coupled to the synthesis of ATP. However, an excess or deficiency of iron is related to certain pathologies. The maintenance of iron homeostasis is essential to avoid certain pathologies related to iron excess or deficiency. The existence of iron deposits in postmortem tissues of Parkinson's patients has been interpreted as evidence that iron plays a fundamental role in the degenerative process of the nigrostriatal system in this disease. The use of iron chelators has been successful in the treatment of diseases such as transfusion-dependent thalassemia and pantothenate kinase-associated neurodegeneration. However, a clinical study with the iron chelator deferiprone in patients with Parkinson's disease has not shown positive effects but rather worsened clinical symptoms. This suggests that iron may not play a role in the degenerative process of Parkinson's disease.
Collapse
Affiliation(s)
- Sandro Huenchuguala
- Escuela de Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Santiago 8370003, Chile
| | - Juan Segura-Aguilar
- Molecular & Clinical Pharmacology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago 8380453, Chile
| |
Collapse
|
38
|
Oshima S, Fushimi Y, Miyake KK, Nakajima S, Sakata A, Okuchi S, Hinoda T, Otani S, Numamoto H, Fujimoto K, Shima A, Nambu M, Sawamoto N, Takahashi R, Ueno K, Saga T, Nakamoto Y. Denoising approach with deep learning-based reconstruction for neuromelanin-sensitive MRI: image quality and diagnostic performance. Jpn J Radiol 2023; 41:1216-1225. [PMID: 37256470 PMCID: PMC10613599 DOI: 10.1007/s11604-023-01452-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/16/2023] [Indexed: 06/01/2023]
Abstract
PURPOSE Neuromelanin-sensitive MRI (NM-MRI) has proven useful for diagnosing Parkinson's disease (PD) by showing reduced signals in the substantia nigra (SN) and locus coeruleus (LC), but requires a long scan time. The aim of this study was to assess the image quality and diagnostic performance of NM-MRI with a shortened scan time using a denoising approach with deep learning-based reconstruction (dDLR). MATERIALS AND METHODS We enrolled 22 healthy volunteers, 22 non-PD patients and 22 patients with PD who underwent NM-MRI, and performed manual ROI-based analysis. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) in ten healthy volunteers were compared among images with a number of excitations (NEX) of 1 (NEX1), NEX1 images with dDLR (NEX1 + dDLR) and 5-NEX images (NEX5). Acquisition times for NEX1 and NEX5 were 3 min 12 s and 15 min 58 s, respectively. Diagnostic performances using the contrast ratio (CR) of the SN (CR_SN) and LC (CR_LC) and those by visual assessment for differentiating PD from non-PD were also compared between NEX1 and NEX1 + dDLR. RESULTS Image quality analyses revealed that SNRs and CNRs of the SN and LC in NEX1 + dDLR were significantly higher than in NEX1, and comparable to those in NEX5. In diagnostic performance analysis, areas under the receiver operating characteristic curve (AUC) using CR_SN and CR_LC of NEX1 + dDLR were 0.87 and 0.75, respectively, which had no significant difference with those of NEX1. Visual assessment showed improvement of diagnostic performance by applying dDLR. CONCLUSION Image quality for NEX1 + dDLR was comparable to that of NEX5. dDLR has the potential to reduce scan time of NM-MRI without degrading image quality. Both 1-NEX NM-MRI with and without dDLR showed high AUCs for diagnosing PD by CR. The results of visual assessment suggest advantages of dDLR. Further tuning of dDLR would be expected to provide clinical merits in diagnosing PD.
Collapse
Affiliation(s)
- Sonoko Oshima
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Yasutaka Fushimi
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan.
| | - Kanae Kawai Miyake
- Department of Advanced Medical Imaging Research, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Satoshi Nakajima
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Akihiko Sakata
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Sachi Okuchi
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Takuya Hinoda
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Sayo Otani
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Hitomi Numamoto
- Department of Advanced Medical Imaging Research, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Koji Fujimoto
- Department of Real World Data Research and Development, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Atsushi Shima
- Department of Regenerative Systems Neuroscience, Human Brain Research Center, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Masahito Nambu
- MRI Systems Division, Canon Medical Systems Corporation, 1385 Shimoishigami, Otawara-Shi, Tochigi, 324-0036, Japan
| | - Nobukatsu Sawamoto
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Kentaro Ueno
- Department of Biomedical Statistics and Bioinformatics, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Tsuneo Saga
- Department of Advanced Medical Imaging Research, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Yuji Nakamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| |
Collapse
|
39
|
Riley E, Cicero N, Swallow K, De Rosa E, Anderson A. Locus coeruleus neuromelanin accumulation and dissipation across the lifespan. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.17.562814. [PMID: 37905002 PMCID: PMC10614878 DOI: 10.1101/2023.10.17.562814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
The pigment neuromelanin, produced in the locus coeruleus (LC) as a byproduct of catecholamine synthesis, gives the "blue spot" its name, and both identifies LC neurons and is thought to play an important yet complex role in normal and pathological aging. Using neuromelanin-sensitive T1-weighted turbo spin echo MRI scans we characterized volume and neuromelanin signal intensity in the LC of 96 participants between the ages of 19 and 86. Although LC volume did not change significantly throughout the lifespan, LC neuromelanin signal intensity increased from early adulthood, peaked around age 60 and precipitously declined thereafter. Neuromelanin intensity was greater in the caudal relative to rostral extent and in women relative to men. With regard to function, rostral LC neuromelanin intensity was associated with fluid cognition in older adults (60+) only in those above the 50th percentile of cognitive ability for age. The gradual accumulation of LC neuromelanin across the lifespan, its sudden dissipation in later life, and relation to preserved cognitive function, is consistent with its complex role in normal and pathological aging.
Collapse
Affiliation(s)
| | | | | | - Eve De Rosa
- Department of Psychology, Cornell University
| | | |
Collapse
|
40
|
Ye R, Hezemans FH, O'Callaghan C, Tsvetanov KA, Rua C, Jones PS, Holland N, Malpetti M, Murley AG, Barker RA, Williams-Gray CH, Robbins TW, Passamonti L, Rowe JB. Locus Coeruleus Integrity Is Linked to Response Inhibition Deficits in Parkinson's Disease and Progressive Supranuclear Palsy. J Neurosci 2023; 43:7028-7040. [PMID: 37669861 PMCID: PMC10586538 DOI: 10.1523/jneurosci.0289-22.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 09/07/2023] Open
Abstract
Parkinson's disease (PD) and progressive supranuclear palsy (PSP) both impair response inhibition, exacerbating impulsivity. Inhibitory control deficits vary across individuals and are linked with worse prognosis, and lack improvement on dopaminergic therapy. Motor and cognitive control are associated with noradrenergic innervation of the cortex, arising from the locus coeruleus (LC) noradrenergic system. Here we test the hypothesis that structural variation of the LC explains response inhibition deficits in PSP and PD. Twenty-four people with idiopathic PD, 14 with PSP-Richardson's syndrome, and 24 age- and sex-matched controls undertook a stop-signal task and ultrahigh field 7T magnetization-transfer-weighted imaging of the LC. Parameters of "race models" of go- versus stop-decisions were estimated using hierarchical Bayesian methods to quantify the cognitive processes of response inhibition. We tested the multivariate relationship between LC integrity and model parameters using partial least squares. Both disorders impaired response inhibition at the group level. PSP caused a distinct pattern of abnormalities in inhibitory control with a paradoxically reduced threshold for go responses, but longer nondecision times, and more lapses of attention. The variation in response inhibition correlated with the variability of LC integrity across participants in both clinical groups. Structural imaging of the LC, coupled with behavioral modeling in parkinsonian disorders, confirms that LC integrity is associated with response inhibition and LC degeneration contributes to neurobehavioral changes. The noradrenergic system is therefore a promising target to treat impulsivity in these conditions. The optimization of noradrenergic treatment is likely to benefit from stratification according to LC integrity.SIGNIFICANCE STATEMENT Response inhibition deficits contribute to clinical symptoms and poor outcomes in people with Parkinson's disease and progressive supranuclear palsy. We used cognitive modeling of performance of a response inhibition task to identify disease-specific mechanisms of abnormal inhibitory control. Response inhibition in both patient groups was associated with the integrity of the noradrenergic locus coeruleus, which we measured in vivo using ultra-high field MRI. We propose that the imaging biomarker of locus coeruleus integrity provides a trans-diagnostic tool to explain individual differences in response inhibition ability beyond the classic nosological borders and diagnostic criteria. Our data suggest a potential new stratified treatment approach for Parkinson's disease and progressive supranuclear palsy.
Collapse
Affiliation(s)
- Rong Ye
- Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230032, China
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, Anhui, 230032, China
- Department of Clinical Neurosciences, Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, CB2 0SZ, United Kingdom
| | - Frank H Hezemans
- Department of Clinical Neurosciences, Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, CB2 0SZ, United Kingdom
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, CB2 7EF, United Kingdom
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 GD Nijmegen, The Netherlands
| | - Claire O'Callaghan
- Department of Psychiatry, University of Cambridge, Cambridge, CB2 0SZ, United Kingdom
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney 2050, New South Wales, Australia
| | - Kamen A Tsvetanov
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, CB2 7EF, United Kingdom
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EA, United Kingdom
| | - Catarina Rua
- Department of Clinical Neurosciences, Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, CB2 0SZ, United Kingdom
| | - P Simon Jones
- Department of Clinical Neurosciences, Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, CB2 0SZ, United Kingdom
| | - Negin Holland
- Department of Clinical Neurosciences, Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, CB2 0SZ, United Kingdom
| | - Maura Malpetti
- Department of Clinical Neurosciences, Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, CB2 0SZ, United Kingdom
| | - Alexander G Murley
- Department of Clinical Neurosciences, Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, CB2 0SZ, United Kingdom
| | - Roger A Barker
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0SZ, United Kingdom
- Wellcome-MRC Stem Cell Institute, University of Cambridge, Cambridge, CB2 0AW, United Kingdom
| | - Caroline H Williams-Gray
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0SZ, United Kingdom
| | - Trevor W Robbins
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EA, United Kingdom
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EA, United Kingdom
| | - Luca Passamonti
- Department of Clinical Neurosciences, Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, CB2 0SZ, United Kingdom
- Institute of Molecular Bioimaging and Physiology, National Research Council, 88100, Catanzaro, Italy
| | - James B Rowe
- Department of Clinical Neurosciences, Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, CB2 0SZ, United Kingdom
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, CB2 7EF, United Kingdom
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EA, United Kingdom
| |
Collapse
|
41
|
Cao Q, Han X, Tang D, Qian H, Yan K, Shi X, Li Y, Zhang J. Diagnostic value of combined magnetic resonance imaging techniques in the evaluation of Parkinson disease. Quant Imaging Med Surg 2023; 13:6503-6516. [PMID: 37869346 PMCID: PMC10585559 DOI: 10.21037/qims-23-87] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 08/08/2023] [Indexed: 10/24/2023]
Abstract
Background The incidence of Parkinson disease (PD) has been increasing each year. The development of new magnetic resonance imaging (MRI) technology can help understand its pathogenesis and identify more effective imaging-based biological indicators. Methods The clinical and MRI imaging data of 40 patients with PD and 40 healthy controls were analyzed. All participants underwent susceptibility-weighted imaging (SWI), neuromelanin-sensitive magnetic resonance imaging (NM-MRI), and T2*mapping sequence examination. The diagnostic value of single and combined multiparameter indicators was analyzed using the receiver operating characteristic curve. Results Compared with the healthy control group, the PD group showed significant differences in the disappearance of bilateral "swallow tail sign", the distribution volume of melanocytes in the substantia nigra and the smaller volume in the bilateral substantia nigra, the maximum signal of the locus coeruleus and the smaller and average volume in the bilateral substantia nigra, and the values of T2* and R2* in the bilateral substantia nigra (P<0.01). The maximum and smaller value and the average value of the bilateral locus coeruleus signal were negatively correlated with the disease course duration (P<0.05), and the smaller distribution volume of the melanin neurons in the bilateral substantia nigra was negatively correlated with Hoehn and Yahr (H-Y) grade (P<0.05). In the joint diagnosis with multiple indicators, some composite parameters were found to be negatively correlated with H-Y grading (P<0.05), while others were negatively correlated with disease course duration (P<0.05). Joint use of multiple parameter indicators greatly improved diagnostic efficacy [area under the curve (AUC) =0.958]. Conclusions The distribution volume of melanin in substantia nigra and the maximum value of locus coeruleus signal may be the biological imaging indicators for the early diagnosis, severity, and follow-up evaluation of PD. Compared with a single indicator, composite indicators used in combination with multiple techniques have a significantly better diagnostic efficacy for PD.
Collapse
Affiliation(s)
- Qing Cao
- Department of Radiology, Guangzhou Xinhai Hospital, Guangzhou, China
| | - Xiaowei Han
- Department of Radiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Dongping Tang
- Department of Science and Education, Guangzhou Xinhai Hospital, Guangzhou, China
| | - Hao Qian
- Department of Neurology, Guangzhou Xinhai Hospital, Guangzhou, China
| | - Kun Yan
- Department of Neurology, Guangzhou Xinhai Hospital, Guangzhou, China
| | - Xun Shi
- Department of Nuclear Medicine, The First People’s Hospital of Yancheng, The Fourth Affiliated Hospital of Nantong University, Yancheng, China
| | - Yaowei Li
- Department of Radiology, Guangzhou Xinhai Hospital, Guangzhou, China
| | - Jiangong Zhang
- Department of Nuclear Medicine, The First People’s Hospital of Yancheng, The Fourth Affiliated Hospital of Nantong University, Yancheng, China
| |
Collapse
|
42
|
Grimaldi S, Guye M, Bianciardi M, Eusebio A. Brain MRI Biomarkers in Isolated Rapid Eye Movement Sleep Behavior Disorder: Where Are We? A Systematic Review. Brain Sci 2023; 13:1398. [PMID: 37891767 PMCID: PMC10604962 DOI: 10.3390/brainsci13101398] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
The increasing number of MRI studies focused on prodromal Parkinson's Disease (PD) demonstrates a strong interest in identifying early biomarkers capable of monitoring neurodegeneration. In this systematic review, we present the latest information regarding the most promising MRI markers of neurodegeneration in relation to the most specific prodromal symptoms of PD, namely isolated rapid eye movement (REM) sleep behavior disorder (iRBD). We reviewed structural, diffusion, functional, iron-sensitive, neuro-melanin-sensitive MRI, and proton magnetic resonance spectroscopy studies conducted between 2000 and 2023, which yielded a total of 77 relevant papers. Among these markers, iron and neuromelanin emerged as the most robust and promising indicators for early neurodegenerative processes in iRBD. Atrophy was observed in several regions, including the frontal and temporal cortices, limbic cortices, and basal ganglia, suggesting that neurodegenerative processes had been underway for some time. Diffusion and functional MRI produced heterogeneous yet intriguing results. Additionally, reduced glymphatic clearance function was reported. Technological advancements, such as the development of ultra-high field MRI, have enabled the exploration of minute anatomical structures and the detection of previously undetectable anomalies. The race to achieve early detection of neurodegeneration is well underway.
Collapse
Affiliation(s)
- Stephan Grimaldi
- Department of Neurology and Movement Disorders, APHM, Hôpital Universitaire Timone, 265 rue Saint-Pierre, 13005 Marseille, France
- Centre d’Exploration Métabolique par Résonnance Magnétique, Assistance Publique des Hôpitaux de Marseille, Hôpital Universitaire Timone, 265 rue Saint-Pierre, 13005 Marseille, France
- Center for Magnetic Resonance in Biology and Medicine, Aix Marseille University, Centre National de la Recherche Scientifique, 27 Bd Jean Moulin, 13385 Marseille, France
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, 149 13th St., Charlestown, MA 02129, USA
| | - Maxime Guye
- Centre d’Exploration Métabolique par Résonnance Magnétique, Assistance Publique des Hôpitaux de Marseille, Hôpital Universitaire Timone, 265 rue Saint-Pierre, 13005 Marseille, France
- Center for Magnetic Resonance in Biology and Medicine, Aix Marseille University, Centre National de la Recherche Scientifique, 27 Bd Jean Moulin, 13385 Marseille, France
| | - Marta Bianciardi
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, 149 13th St., Charlestown, MA 02129, USA
- Division of Sleep Medicine, Harvard University, Boston, MA 02114, USA
| | - Alexandre Eusebio
- Department of Neurology and Movement Disorders, APHM, Hôpital Universitaire Timone, 265 rue Saint-Pierre, 13005 Marseille, France
- Institut de Neurosciences de la Timone, Aix Marseille University, Centre National de la Recherche Scientifique, 27 Bd Jean Moulin, 13385 Marseille, France
| |
Collapse
|
43
|
Filo S, Shaharabani R, Bar Hanin D, Adam M, Ben-David E, Schoffman H, Margalit N, Habib N, Shahar T, Mezer AA. Non-invasive assessment of normal and impaired iron homeostasis in the brain. Nat Commun 2023; 14:5467. [PMID: 37699931 PMCID: PMC10497590 DOI: 10.1038/s41467-023-40999-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 08/17/2023] [Indexed: 09/14/2023] Open
Abstract
Strict iron regulation is essential for normal brain function. The iron homeostasis, determined by the milieu of available iron compounds, is impaired in aging, neurodegenerative diseases and cancer. However, non-invasive assessment of different molecular iron environments implicating brain tissue's iron homeostasis remains a challenge. We present a magnetic resonance imaging (MRI) technology sensitive to the iron homeostasis of the living brain (the r1-r2* relaxivity). In vitro, our MRI approach reveals the distinct paramagnetic properties of ferritin, transferrin and ferrous iron ions. In the in vivo human brain, we validate our approach against ex vivo iron compounds quantification and gene expression. Our approach varies with the iron mobilization capacity across brain regions and in aging. It reveals brain tumors' iron homeostasis, and enhances the distinction between tumor tissue and non-pathological tissue without contrast agents. Therefore, our approach may allow for non-invasive research and diagnosis of iron homeostasis in living human brains.
Collapse
Affiliation(s)
- Shir Filo
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Rona Shaharabani
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Daniel Bar Hanin
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Miriam Adam
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eliel Ben-David
- The Department of Radiology, Shaare Zedek Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hanan Schoffman
- The Laboratory of Molecular Neuro-Oncology, Shaare Zedek Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nevo Margalit
- The Department of Neurosurgery, Shaare Zedek Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Naomi Habib
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tal Shahar
- The Laboratory of Molecular Neuro-Oncology, Shaare Zedek Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- The Department of Neurosurgery, Shaare Zedek Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- The Department of Neurosurgery, Tel Aviv Sourasky Medical Center, Affiliated with Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Aviv A Mezer
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
44
|
Seada SA, van der Eerden AW, Boon AJW, Hernandez-Tamames JA. Quantitative MRI protocol and decision model for a 'one stop shop' early-stage Parkinsonism diagnosis: Study design. Neuroimage Clin 2023; 39:103506. [PMID: 37696098 PMCID: PMC10500558 DOI: 10.1016/j.nicl.2023.103506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/21/2023] [Accepted: 09/04/2023] [Indexed: 09/13/2023]
Abstract
Differentiating among early-stage parkinsonisms is a challenge in clinical practice. Quantitative MRI can aid the diagnostic process, but studies with singular MRI techniques have had limited success thus far. Our objective is to develop a multi-modal MRI method for this purpose. In this review we describe existing methods and present a dedicated quantitative MRI protocol, a decision model and a study design to validate our approach ahead of a pilot study. We present example imaging data from patients and a healthy control, which resemble related literature.
Collapse
Affiliation(s)
- Samy Abo Seada
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Anke W van der Eerden
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Agnita J W Boon
- Department of Neurology, Erasmus MC, Rotterdam, The Netherlands
| | - Juan A Hernandez-Tamames
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands; Department of Imaging Physics, TU Delft, The Netherlands.
| |
Collapse
|
45
|
García Saborit M, Jara A, Muñoz N, Milovic C, Tepper A, Alliende LM, Mena C, Iruretagoyena B, Ramirez-Mahaluf JP, Diaz C, Nachar R, Castañeda CP, González A, Undurraga J, Crossley N, Tejos C. Quantitative Susceptibility Mapping MRI in Deep-Brain Nuclei in First-Episode Psychosis. Schizophr Bull 2023; 49:1355-1363. [PMID: 37030007 PMCID: PMC10483330 DOI: 10.1093/schbul/sbad041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/10/2023]
Abstract
BACKGROUND Psychosis is related to neurochemical changes in deep-brain nuclei, particularly suggesting dopamine dysfunctions. We used an magnetic resonance imaging-based technique called quantitative susceptibility mapping (QSM) to study these regions in psychosis. QSM quantifies magnetic susceptibility in the brain, which is associated with iron concentrations. Since iron is a cofactor in dopamine pathways and co-localizes with inhibitory neurons, differences in QSM could reflect changes in these processes. METHODS We scanned 83 patients with first-episode psychosis and 64 healthy subjects. We reassessed 22 patients and 21 control subjects after 3 months. Mean susceptibility was measured in 6 deep-brain nuclei. Using linear mixed models, we analyzed the effect of case-control differences, region, age, gender, volume, framewise displacement (FD), treatment duration, dose, laterality, session, and psychotic symptoms on QSM. RESULTS Patients showed a significant susceptibility reduction in the putamen and globus pallidus externa (GPe). Patients also showed a significant R2* reduction in GPe. Age, gender, FD, session, group, and region are significant predictor variables for QSM. Dose, treatment duration, and volume were not predictor variables of QSM. CONCLUSIONS Reduction in QSM and R2* suggests a decreased iron concentration in the GPe of patients. Susceptibility reduction in putamen cannot be associated with iron changes. Since changes observed in putamen and GPe were not associated with symptoms, dose, and treatment duration, we hypothesize that susceptibility may be a trait marker rather than a state marker, but this must be verified with long-term studies.
Collapse
Affiliation(s)
- Marisleydis García Saborit
- Department of Electrical Engineering, Pontificia Universidad Catolica de Chile, Santiago, Chile
- Biomedical Imaging Center, Pontificia Universidad Catolica de Chile, Santiago, Chile
- Millennium Institute for Intelligent Healthcare Engineering, Santiago, Chile
| | - Alejandro Jara
- Department of Statistics, Mathematics Faculty, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Néstor Muñoz
- Department of Electrical Engineering, Pontificia Universidad Catolica de Chile, Santiago, Chile
- Biomedical Imaging Center, Pontificia Universidad Catolica de Chile, Santiago, Chile
- Millennium Institute for Intelligent Healthcare Engineering, Santiago, Chile
| | - Carlos Milovic
- School of Electrical Engineering, Pontificia Universidad Catolica de Valparaiso, Valparaiso, Chile
| | - Angeles Tepper
- Millennium Institute for Intelligent Healthcare Engineering, Santiago, Chile
- Department of Psychiatry, School of Medicine, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Luz María Alliende
- Department of Psychiatry, School of Medicine, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Carlos Mena
- Department of Psychiatry, School of Medicine, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Bárbara Iruretagoyena
- Department of Psychiatry, School of Medicine, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | | | - Camila Diaz
- Pharmacovigilance, Instituto Psiquiátrico Dr. J. Horwitz Barak, Santiago, Chile
| | - Ruben Nachar
- Pharmacovigilance, Instituto Psiquiátrico Dr. J. Horwitz Barak, Santiago, Chile
| | | | - Alfonso González
- Early Intervention Program, Instituto Psiquiátrico Dr J. Horwitz Barak, Santiago, Chile
- School of Medicine, Universidad Finis Terrae, Santiago, Chile
| | - Juan Undurraga
- Early Intervention Program, Instituto Psiquiátrico Dr J. Horwitz Barak, Santiago, Chile
- Department of Neurology and Psychiatry, Faculty of Medicine, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Nicolas Crossley
- Biomedical Imaging Center, Pontificia Universidad Catolica de Chile, Santiago, Chile
- Millennium Institute for Intelligent Healthcare Engineering, Santiago, Chile
- Department of Psychiatry, School of Medicine, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Cristian Tejos
- Department of Electrical Engineering, Pontificia Universidad Catolica de Chile, Santiago, Chile
- Biomedical Imaging Center, Pontificia Universidad Catolica de Chile, Santiago, Chile
- Millennium Institute for Intelligent Healthcare Engineering, Santiago, Chile
| |
Collapse
|
46
|
Krohn F, Lancini E, Ludwig M, Leiman M, Guruprasath G, Haag L, Panczyszyn J, Düzel E, Hämmerer D, Betts M. Noradrenergic neuromodulation in ageing and disease. Neurosci Biobehav Rev 2023; 152:105311. [PMID: 37437752 DOI: 10.1016/j.neubiorev.2023.105311] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/29/2023] [Accepted: 07/07/2023] [Indexed: 07/14/2023]
Abstract
The locus coeruleus (LC) is a small brainstem structure located in the lower pons and is the main source of noradrenaline (NA) in the brain. Via its phasic and tonic firing, it modulates cognition and autonomic functions and is involved in the brain's immune response. The extent of degeneration to the LC in healthy ageing remains unclear, however, noradrenergic dysfunction may contribute to the pathogenesis of Alzheimer's (AD) and Parkinson's disease (PD). Despite their differences in progression at later disease stages, the early involvement of the LC may lead to comparable behavioural symptoms such as preclinical sleep problems and neuropsychiatric symptoms as a result of AD and PD pathology. In this review, we draw attention to the mechanisms that underlie LC degeneration in ageing, AD and PD. We aim to motivate future research to investigate how early degeneration of the noradrenergic system may play a pivotal role in the pathogenesis of AD and PD which may also be relevant to other neurodegenerative diseases.
Collapse
Affiliation(s)
- F Krohn
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - E Lancini
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany.
| | - M Ludwig
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; CBBS Center for Behavioral Brain Sciences, University of Magdeburg, Magdeburg, Germany
| | - M Leiman
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - G Guruprasath
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - L Haag
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - J Panczyszyn
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - E Düzel
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Cognitive Neuroscience, University College London, London UK-WC1E 6BT, UK; CBBS Center for Behavioral Brain Sciences, University of Magdeburg, Magdeburg, Germany
| | - D Hämmerer
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Cognitive Neuroscience, University College London, London UK-WC1E 6BT, UK; CBBS Center for Behavioral Brain Sciences, University of Magdeburg, Magdeburg, Germany; Department of Psychology, University of Innsbruck, A-6020 Innsbruck, Austria
| | - M Betts
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; CBBS Center for Behavioral Brain Sciences, University of Magdeburg, Magdeburg, Germany
| |
Collapse
|
47
|
Dahl MJ, Bachman SL, Dutt S, Düzel S, Bodammer NC, Lindenberger U, Kühn S, Werkle-Bergner M, Mather M. The integrity of dopaminergic and noradrenergic brain regions is associated with different aspects of late-life memory performance. NATURE AGING 2023; 3:1128-1143. [PMID: 37653256 PMCID: PMC10501910 DOI: 10.1038/s43587-023-00469-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 07/14/2023] [Indexed: 09/02/2023]
Abstract
Changes in dopaminergic neuromodulation play a key role in adult memory decline. Recent research has also implicated noradrenaline in shaping late-life memory. However, it is unclear whether these two neuromodulators have distinct roles in age-related cognitive changes. Here, combining longitudinal MRI of the dopaminergic substantia nigra-ventral tegmental area (SN-VTA) and noradrenergic locus coeruleus (LC) in younger (n = 69) and older (n = 251) adults, we found that dopaminergic and noradrenergic integrity are differentially associated with memory performance. While LC integrity was related to better episodic memory across several tasks, SN-VTA integrity was linked to working memory. Longitudinally, we found that older age was associated with more negative change in SN-VTA and LC integrity. Notably, changes in LC integrity reliably predicted future episodic memory. These differential associations of dopaminergic and noradrenergic nuclei with late-life cognitive decline have potential clinical utility, given their degeneration in several age-associated diseases.
Collapse
Affiliation(s)
- Martin J Dahl
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany.
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA.
| | - Shelby L Bachman
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Shubir Dutt
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
- Department of Psychology, University of Southern California, Los Angeles, CA, USA
| | - Sandra Düzel
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Nils C Bodammer
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Ulman Lindenberger
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, London, UK
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany
| | - Simone Kühn
- Lise Meitner Group for Environmental Neuroscience, Max Planck Institute for Human Development, Berlin, Germany
- Department of Psychiatry and Psychotherapy, University Clinic Hamburg-Eppendorf, Hamburg, Germany
| | - Markus Werkle-Bergner
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Mara Mather
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
- Department of Psychology, University of Southern California, Los Angeles, CA, USA
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
48
|
Garcia Santa Cruz B, Husch A, Hertel F. Machine learning models for diagnosis and prognosis of Parkinson's disease using brain imaging: general overview, main challenges, and future directions. Front Aging Neurosci 2023; 15:1216163. [PMID: 37539346 PMCID: PMC10394631 DOI: 10.3389/fnagi.2023.1216163] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/28/2023] [Indexed: 08/05/2023] Open
Abstract
Parkinson's disease (PD) is a progressive and complex neurodegenerative disorder associated with age that affects motor and cognitive functions. As there is currently no cure, early diagnosis and accurate prognosis are essential to increase the effectiveness of treatment and control its symptoms. Medical imaging, specifically magnetic resonance imaging (MRI), has emerged as a valuable tool for developing support systems to assist in diagnosis and prognosis. The current literature aims to improve understanding of the disease's structural and functional manifestations in the brain. By applying artificial intelligence to neuroimaging, such as deep learning (DL) and other machine learning (ML) techniques, previously unknown relationships and patterns can be revealed in this high-dimensional data. However, several issues must be addressed before these solutions can be safely integrated into clinical practice. This review provides a comprehensive overview of recent ML techniques analyzed for the automatic diagnosis and prognosis of PD in brain MRI. The main challenges in applying ML to medical diagnosis and its implications for PD are also addressed, including current limitations for safe translation into hospitals. These challenges are analyzed at three levels: disease-specific, task-specific, and technology-specific. Finally, potential future directions for each challenge and future perspectives are discussed.
Collapse
Affiliation(s)
| | - Andreas Husch
- Imaging AI Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Frank Hertel
- National Department of Neurosurgery, Centre Hospitalier de Luxembourg, Luxembourg, Luxembourg
| |
Collapse
|
49
|
Pagliaccio D, Wengler K, Durham K, Fontaine M, Rueppel M, Becker H, Bilek E, Pieper S, Risdon C, Horga G, Fitzgerald KD, Marsh R. Probing midbrain dopamine function in pediatric obsessive-compulsive disorder via neuromelanin-sensitive magnetic resonance imaging. Mol Psychiatry 2023; 28:3075-3082. [PMID: 37198261 PMCID: PMC10189717 DOI: 10.1038/s41380-023-02105-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/26/2023] [Accepted: 05/03/2023] [Indexed: 05/19/2023]
Abstract
Obsessive-compulsive disorder (OCD) is an impairing psychiatric condition, which often onsets in childhood. Growing research highlights dopaminergic alterations in adult OCD, yet pediatric studies are limited by methodological constraints. This is the first study to utilize neuromelanin-sensitive MRI as a proxy for dopaminergic function among children with OCD. N = 135 youth (6-14-year-olds) completed high-resolution neuromelanin-sensitive MRI across two sites; n = 64 had an OCD diagnosis. N = 47 children with OCD completed a second scan after cognitive-behavioral therapy. Voxel-wise analyses identified that neuromelanin-MRI signal was higher among children with OCD compared to those without (483 voxels, permutation-corrected p = 0.018). Effects were significant within both the substania nigra pars compacta (p = 0.004, Cohen's d = 0.51) and ventral tegmental area (p = 0.006, d = 0.50). Follow-up analyses indicated that more severe lifetime symptoms (t = -2.72, p = 0.009) and longer illness duration (t = -2.22, p = 0.03) related to lower neuromelanin-MRI signal. Despite significant symptom reduction with therapy (p < 0.001, d = 1.44), neither baseline nor change in neuromelanin-MRI signal associated with symptom improvement. Current results provide the first demonstration of the utility of neuromelanin-MRI in pediatric psychiatry, specifically highlighting in vivo evidence for midbrain dopamine alterations in treatment-seeking youth with OCD. Neuromelanin-MRI likely indexes accumulating alterations over time, herein, implicating dopamine hyperactivity in OCD. Given evidence of increased neuromelanin signal in pediatric OCD but negative association with symptom severity, additional work is needed to parse potential longitudinal or compensatory mechanisms. Future studies should explore the utility of neuromelanin-MRI biomarkers to identify early risk prior to onset, parse OCD subtypes or symptom heterogeneity, and explore prediction of pharmacotherapy response.
Collapse
Affiliation(s)
- David Pagliaccio
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA.
- New York State Psychiatric Institute, New York, NY, USA.
| | - Kenneth Wengler
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Katherine Durham
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Martine Fontaine
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Meryl Rueppel
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Hannah Becker
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Emily Bilek
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Sarah Pieper
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Caroline Risdon
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Guillermo Horga
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Kate D Fitzgerald
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Rachel Marsh
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| |
Collapse
|
50
|
Ahmed SY, Hassan FF. Optimizing imaging resolution in brain MRI: understanding the impact of technical factors. J Med Life 2023; 16:920-924. [PMID: 37675169 PMCID: PMC10478647 DOI: 10.25122/jml-2022-0212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/24/2022] [Indexed: 09/08/2023] Open
Abstract
Magnetic resonance imaging (MRI) exams are essential for diagnostic procedures, but their lengthy duration and associated costs limit their accessibility. Shorter scan times would reduce expenses and allow for more MRI exams, expanding the range of diagnostic procedures. This study investigated technical factors that could decrease scan time without compromising image quality, including field-of-view (FOV), phase field of view, phase oversampling, cross-talk, brain MRI imaging resolution, and scan time. Data were collected from September 2021 to June 2022. All patients underwent brain scans in the transverse plane following a standardized protocol using a 1.5-tesla Siemens Avanto MRI scanner. The protocol employed T2-weighted Turbo Spin Echo imaging. Twenty-four cases were included in this study. Initially, all participants underwent brain MRI scans using the original protocols with axial sections. The results indicated that altering the FOV phase and phase oversampling significantly affected the scan time, whereas other factors did not have a direct impact. The original protocol had a scan time of 3.47 minutes with a FOV of 230 mm, 90% FOV phase, and 0% phase oversampling. After implementing the modified protocol, the scan time was reduced to 2.18 minutes with a FOV of 217 mm and 93.98% phase oversampling of 13.96%. Statistical analysis confirmed the high significance of FOV phase and phase oversampling in reducing scan time. By optimizing these technical factors, MRI exams can be performed more efficiently, resulting in shorter scan times and potentially reducing costs. This would enhance patient comfort and enable a greater number of MRI exams, facilitating a more comprehensive range of diagnostic procedures.
Collapse
Affiliation(s)
- Shapol Yousif Ahmed
- Department of Basic Sciences, College of Medicine, Hawler Medical University, Erbil, Iraq
| | | |
Collapse
|