1
|
Tian H, Yuan Y, Zhang K. Application of sensory nerve quantitative tests to analyze the subtypes of motor disorders in Parkinson's disease. Neuroreport 2024; 35:361-365. [PMID: 38526953 PMCID: PMC10965128 DOI: 10.1097/wnr.0000000000002016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 01/27/2024] [Indexed: 03/27/2024]
Abstract
This study investigated the sensory nerve function in people with different subtypes of Parkinson's disease (PD), which included the tremor-dominant (TD) group (n = 30), postural instability and gait disorder (PIGD) group (n = 33), and healthy-controls (HC) group (n = 33). Sural nerve's current perception threshold (CPT) and pain tolerance threshold (PTT) in both feet were measured at different frequencies. Results were evaluated using the mini-mental state examination (MMSE), Hoehn Yahr scale (H-Y) , and 3-meter timed-up-and-go-test (TUGT). The MMSE scores of the TD and HC groups were higher than those of the PIGD group (TD < HC). The 3-meter TUGT scores of the PIGD group were higher than theTD and HC groups (TD > HC). The PIGD patients experienced a significantly shorter disease duration and higher H-Y score than the TD patients ( P < 0.05). The values of 2 KHz CPT of left-side (CPTL), 2KHz CPT of right-side (CPTR), and 5 Hz CPTR in the PIGD group were significantly higher compared to the TD and HC groups ( P < 0.05, Bonferroni correction). Additionally, the values of 250 Hz CPTL, 5 Hz CPTL, 250 Hz CPTR, 2 kHz PTT of left-side (PTTL), 250 Hz PTTL, and 5 Hz PTTL in the PIGD group were significantly elevated relative to the TD group ( P < 0.05, Bonferroni correction). Distinctive current threshold perception and PTT of the sural nerve can be observed in patients with varying PD subtypes, and sensory nerve conduction threshold electrical diagnostic testing can detect these discrepancies in sensory nerve function.
Collapse
Affiliation(s)
- Hongxue Tian
- Nanjing Medical University, Nanjing
- Department of Neurology, The Affiliated Kezhou People’s Hospital of Nanjing Medical University, Kezhou
| | - Yongsheng Yuan
- Nanjing Medical University, Nanjing
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Kezhong Zhang
- Nanjing Medical University, Nanjing
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
2
|
Palamarchuk IS, Slavich GM, Vaillancourt T, Rajji TK. Stress-related cellular pathophysiology as a crosstalk risk factor for neurocognitive and psychiatric disorders. BMC Neurosci 2023; 24:65. [PMID: 38087196 PMCID: PMC10714507 DOI: 10.1186/s12868-023-00831-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/24/2023] [Indexed: 12/18/2023] Open
Abstract
In this narrative review, we examine biological processes linking psychological stress and cognition, with a focus on how psychological stress can activate multiple neurobiological mechanisms that drive cognitive decline and behavioral change. First, we describe the general neurobiology of the stress response to define neurocognitive stress reactivity. Second, we review aspects of epigenetic regulation, synaptic transmission, sex hormones, photoperiodic plasticity, and psychoneuroimmunological processes that can contribute to cognitive decline and neuropsychiatric conditions. Third, we explain mechanistic processes linking the stress response and neuropathology. Fourth, we discuss molecular nuances such as an interplay between kinases and proteins, as well as differential role of sex hormones, that can increase vulnerability to cognitive and emotional dysregulation following stress. Finally, we explicate several testable hypotheses for stress, neurocognitive, and neuropsychiatric research. Together, this work highlights how stress processes alter neurophysiology on multiple levels to increase individuals' risk for neurocognitive and psychiatric disorders, and points toward novel therapeutic targets for mitigating these effects. The resulting models can thus advance dementia and mental health research, and translational neuroscience, with an eye toward clinical application in cognitive and behavioral neurology, and psychiatry.
Collapse
Affiliation(s)
- Iryna S Palamarchuk
- Centre for Addiction and Mental Health, 1001 Queen Street West, Toronto, ON, M6J1H4, Canada.
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Sunnybrook Health Sciences Centre, Division of Neurology, Toronto, ON, Canada.
- Temerty Faculty of Medicine, Toronto Dementia Research Alliance, University of Toronto, Toronto, ON, Canada.
| | - George M Slavich
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA
| | - Tracy Vaillancourt
- Counselling Psychology, Faculty of Education, University of Ottawa, Ottawa, ON, Canada
- School of Psychology, Faculty of Social Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Tarek K Rajji
- Centre for Addiction and Mental Health, 1001 Queen Street West, Toronto, ON, M6J1H4, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Temerty Faculty of Medicine, Toronto Dementia Research Alliance, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
3
|
Barboza VR, Kubota GT, da Silva VA, Barbosa LM, Arnaut D, Rodrigues ALDL, Galhardoni R, Cury RG, Barbosa ER, Brunoni AR, Teixeira MJ, de Andrade DC. Parkinson's Disease-related Pains are Not Equal: Clinical, Somatosensory and Cortical Excitability Findings in Individuals With Nociceptive Pain. THE JOURNAL OF PAIN 2023; 24:2186-2198. [PMID: 37442404 DOI: 10.1016/j.jpain.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/21/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023]
Abstract
Chronic pain is a frequent and burdensome nonmotor symptom of Parkinson's disease (PD). PD-related chronic pain can be classified as nociceptive, neuropathic, or nociplastic, the former being the most frequent subtype. However, differences in neurophysiologic profiles between these pain subtypes, and their potential prognostic and therapeutic implications have not been explored yet. This is a cross-sectional study on patients with PD (PwP)-related chronic pain (ie, started with or was aggravated by PD). Subjects were assessed for clinical and pain characteristics through questionnaires and underwent quantitative sensory tests and motor corticospinal excitability (CE) evaluations. Data were then compared between individuals with nociceptive and non-nociceptive (ie, neuropathic or nociplastic) pains. Thirty-five patients were included (51.4% male, 55.7 ± 11.0 years old), 20 of which had nociceptive pain. Patients with nociceptive PD-related pain had lower warm detection threshold (WDT, 33.34 ± 1.39 vs 34.34 ± 1.72, P = .019) and mechanical detection threshold (MDT, 2.55 ± 1.54 vs 3.86 ± .97, P = .007) compared to those with non-nociceptive pains. They also presented a higher proportion of low rest motor threshold values than the non-nociceptive pain ones (64.7% vs 26.6%, P = .048). In non-nociceptive pain patients, there was a negative correlation between WDT and non-motor symptoms scores (r = -.612, P = .045) and a positive correlation between MDT and average pain intensity (r = .629, P = .038), along with neuropathic pain symptom scores (r = .604, P = .049). It is possible to conclude that PD-related chronic pain subtypes have distinctive somatosensory and CE profiles. These preliminary data may help better frame previous contradictory findings in PwP and may have implications for future trial designs aiming at developing individually-tailored therapies. PERSPECTIVE: This work showed that PwP-related nociceptive chronic pain may have distinctive somatosensory and CE profiles than those with non-nociceptive pain subtypes. These data may help shed light on previous contradictory findings in PwP and guide future trials aiming at developing individually-tailored management strategies.
Collapse
Affiliation(s)
| | | | | | | | - Debora Arnaut
- Pain Center, Department of Neurology, University of São Paulo, São Paulo, São Paulo, Brazil
| | | | - Ricardo Galhardoni
- Pain Center, Department of Neurology, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Rubens Gisbert Cury
- Movement Disorders Group, Department of Neurology, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Egberto Reis Barbosa
- Movement Disorders Group, Department of Neurology, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Andre Russowsky Brunoni
- Laboratory of Neuroscience and National Institute of Biomarkers in Psychiatry, Department and Institute of Psychiatry, University of São Paulo Medical School, São Paulo, São Paulo, Brazil; Center for Clinical and Epidemiological Research & Interdisciplinary Center for Applied Neuromodulation, University Hospital, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Manoel Jacobsen Teixeira
- Pain Center, Department of Neurology, University of São Paulo, São Paulo, São Paulo, Brazil; Movement Disorders Group, Department of Neurology, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Daniel Ciampi de Andrade
- Pain Center, Department of Neurology, University of São Paulo, São Paulo, São Paulo, Brazil; Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg E, Denmark
| |
Collapse
|
4
|
de Andrade DC, Mylius V, Perez-Lloret S, Cury RG, Bannister K, Moisset X, Taricani Kubota G, Finnerup NB, Bouhassira D, Chaudhuri KR, Graven-Nielsen T, Treede RD. Pain in Parkinson disease: mechanistic substrates, main classification systems, and how to make sense out of them. Pain 2023; 164:2425-2434. [PMID: 37318012 DOI: 10.1097/j.pain.0000000000002968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/02/2023] [Indexed: 06/16/2023]
Abstract
ABSTRACT Parkinson disease (PD) affects up to 2% of the general population older than 65 years and is a major cause of functional loss. Chronic pain is a common nonmotor symptom that affects up to 80% of patients with (Pw) PD both in prodromal phases and during the subsequent stages of the disease, negatively affecting patient's quality of life and function. Pain in PwPD is rather heterogeneous and may occur because of different mechanisms. Targeting motor symptoms by dopamine replacement or with neuromodulatory approaches may only partially control PD-related pain. Pain in general has been classified in PwPD according to the motor signs, pain dimensions, or pain subtypes. Recently, a new classification framework focusing on chronic pain was introduced to group different types of PD pains according to mechanistic descriptors: nociceptive, neuropathic, or neither nociceptive nor neuropathic. This is also in line with the International Classification of Disease-11 , which acknowledges the possibility of chronic secondary musculoskeletal or nociceptive pain due to disease of the CNS. In this narrative review and opinion article, a group of basic and clinical scientists revise the mechanism of pain in PD and the challenges faced when classifying it as a stepping stone to discuss an integrative view of the current classification approaches and how clinical practice can be influenced by them. Knowledge gaps to be tackled by coming classification and therapeutic efforts are presented, as well as a potential framework to address them in a patient-oriented manner.
Collapse
Affiliation(s)
- Daniel Ciampi de Andrade
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - Veit Mylius
- Department of Neurology, Centre for Neurorehabilitation, Valens, Switzerland
- Department of Neurology, Philipps University, Marburg, Germany
- Department of Neurology, Kantonsspital, St. Gallen, Switzerland
| | - Santiago Perez-Lloret
- Observatorio de Salud Pública, Universidad Católica Argentina, Consejo de Investigaciones Científicas y Técnicas (UCA-CONICET), Buenos Aires, Argentina
- Facultad de Medicina, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina
- Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Rubens G Cury
- Movement Disorders Center, Department of Neurology, University of Sao Paulo, Sao Paulo, Brazil
| | - Kirsty Bannister
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Xavier Moisset
- Université Clermont Auvergne, CHU de Clermont-Ferrand, Inserm, Neuro-Dol, Clermont-Ferrand, France
| | - Gabriel Taricani Kubota
- Department of Neurology, Centre for Neurorehabilitation, Valens, Switzerland
- Pain Center, University of Sao Paulo Clinics Hospital, Sao Paulo, Brazil
- Center for Pain Treatment, Institute of Cancer of the State of Sao Paulo, University of Sao Paulo Clinics Hospital, Sao Paulo, Brazil
| | - Nanna B Finnerup
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - Didier Bouhassira
- Inserm U987, APHP, UVSQ, Paris-Saclay University, Ambroise Pare Hospital, Boulogne-Billancourt, France
| | - Kallol Ray Chaudhuri
- Division of Neuroscience, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- Parkinson Foundation Centre of Excellence in Care and Research, King's College Hospital NHS Foundation Trust, London, United Kingdom
| | - Thomas Graven-Nielsen
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - Rolf-Detlef Treede
- Department of Neurophysiology, Mannheim Center for Translational Neurosciences, Heidelberg University, Mannheim, Germany
| |
Collapse
|
5
|
Wang Q, Chen Y, Li L, Li C, Li L, Cao H, Yang H. Barriers to home exercise for patients with Parkinson's disease: a qualitative study. BMJ Open 2023; 13:e061932. [PMID: 36754554 PMCID: PMC9923294 DOI: 10.1136/bmjopen-2022-061932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Abstract
OBJECTIVE This study aimed to explore the barriers to home exercise for patients with Parkinson's disease (PwPDs) and to provide guidelines for healthcare providers to build and implement home exercise strategies for PwPDs. DESIGN A qualitative descriptive method was used. Semistructured interviews were conducted and thematic analysis was employed. SETTING The study was conducted at the Department of Neurology at a grade 3 Class A general hospital in China. PARTICIPANTS A total of 24 participants were interviewed, including 10 PwPDs, 7 caregivers, 4 nurses, 1head nurse, and 2 Parkinson's clinicians. RESULTS Five themes were identified in this analysis. (1) Psychosomatic stress and low activity; (2) Lack of early rehabilitation authorisation; (3) Poor 'flow' state of home exercise; (4) iInaccessibility of continued service; (5) Sociocultural impact on family coping. CONCLUSION PwPDs, caregivers and specialised medical staff raised the challenges faced by patients' home exercises from different perspectives. We can improve services and integrate resources through the management of multi-disciplinary, early rehabilitation authorisation, exercise experience, continuous service mode, and family coping strategies under different cultures to gradually adjust the home exercise behaviour of PwPDs.
Collapse
Affiliation(s)
- Qiaohong Wang
- College of Nursing, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Intensive Care Medicine, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yiping Chen
- College of Nursing, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Linbo Li
- College of Nursing, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Chao Li
- College of Nursing, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Li Li
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Huili Cao
- College of Nursing, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Nursing, Linfen Hospital Affiliated to Shanxi Medical University, Linfen, Shanxi, China
| | - Hui Yang
- Department of Nursing, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
6
|
Gunzler DD, Gunzler SA, Briggs FB. Heterogeneous pain trajectories in persons with Parkinson's disease. Parkinsonism Relat Disord 2022; 102:42-50. [DOI: 10.1016/j.parkreldis.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/22/2022] [Accepted: 07/10/2022] [Indexed: 11/28/2022]
|
7
|
New approaches to treatments for sleep, pain and autonomic failure in Parkinson's disease - Pharmacological therapies. Neuropharmacology 2022; 208:108959. [PMID: 35051446 DOI: 10.1016/j.neuropharm.2022.108959] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 01/08/2022] [Accepted: 01/13/2022] [Indexed: 01/07/2023]
Abstract
Non-motor symptoms (NMSs) are highly prevalent throughout the course of Parkinson's disease (PD). Pain, autonomic dysfunction and sleep disturbances remain at the forefront of the most common NMSs; their treatment is challenging and their effect on the quality of life of both patients and caregivers detrimental. Yet, the landscape of clinical trials in PD is still dominated by therapeutic strategies seeking to ameliorate motor symptoms; subsequently, effective strategies to successfully treat NMSs remain a huge unmet need. Wider awareness among industry and researchers is thus essential to give rise to development and delivery of high-quality, large-scale clinical trials in enriched populations of patients with PD-related pain, autonomic dysfunction and sleep. In this review, we discuss recent developments in the field of pharmacological treatment strategies designed or re-purposed to target three key NMSs: pain, autonomic dysfunction and sleep disturbances. We focus on emerging evidence from recent clinical trials and outline some exciting and intriguing findings that call for further investigations.
Collapse
|
8
|
Uniyal A, Tiwari V, Rani M, Tiwari V. Immune-microbiome interplay and its implications in neurodegenerative disorders. Metab Brain Dis 2022; 37:17-37. [PMID: 34357554 DOI: 10.1007/s11011-021-00807-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/22/2021] [Indexed: 12/28/2022]
Abstract
The neurodegeneration and its related CNS pathologies need an urgent toolbox to minimize the global mental health burden. The neuroimmune system critically regulates the brain maturation and survival of neurons across the nervous system. The chronic manipulated immunological drive can accelerate the neuronal pathology hence promoting the burden of neurodegenerative disorders. The gut is home for trillions of microorganisms having a mutual relationship with the host system. The gut-brain axis is a unique biochemical pathway through which the gut residing microbes connects with the brain cells and regulates various physiological and pathological cascades. The gut microbiota and CNS communicate using a common language that synchronizes the tuning of immune cells. The intestinal gut microbial community has a profound role in the maturation of the immune system as well as the development of the nervous system. We have critically summarised the clinical and preclinical reports from the past a decade emphasising that the significant changes in gut microbiota can enhance the host susceptibility towards neurodegenerative disorders. In this review, we have discussed how the gut microbiota-mediated immune response inclines the host physiology towards neurodegeneration and indicated the gut microbiota as a potential future candidate for the management of neurodegenerative disorders.
Collapse
Affiliation(s)
- Ankit Uniyal
- Department of Pharmaceutical Engineering and Technology, Neuroscience and Pain Research Laboratory, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Vineeta Tiwari
- Department of Pharmaceutical Engineering and Technology, Neuroscience and Pain Research Laboratory, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Mousmi Rani
- Department of Pharmaceutical Engineering and Technology, Neuroscience and Pain Research Laboratory, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Vinod Tiwari
- Department of Pharmaceutical Engineering and Technology, Neuroscience and Pain Research Laboratory, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
9
|
Zhong L, Ju K, Chen A, Cao H. Circulating CircRNAs Panel Acts as a Biomarker for the Early Diagnosis and Severity of Parkinson's Disease. Front Aging Neurosci 2021; 13:684289. [PMID: 34276342 PMCID: PMC8281126 DOI: 10.3389/fnagi.2021.684289] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/11/2021] [Indexed: 11/17/2022] Open
Abstract
Parkinson’s disease (PD) is a chronic and progressive degenerative disease of the central nervous system. Degenerative neuropathy can occur in patients with PD even before typical clinical symptoms appear in the preclinical stage. Therefore, if the early diagnosis of degenerative diseases can be timely and the correlation with the disease progression can be explored, the disease progression will be slowed down and the quality of life of patients will be improved. In this study, the circRNA microarray was employed to screen the dysregulated circRNA in plasma samples of PD. Four circRNAs (circ_0085869, circ_0004381, circ_0017204, and circ_0090668) were obtained with increased levels in PD patients by cross comparison and preliminary verification in PD comparing with healthy controls. Further validation found the circRNA panel was consistent with the training set. The ROC curve also revealed a high diagnostic ability of circ_0004381 and circ_0017204 in predicting the early stage of PD from healthy controls. circ_0085869, circ_0004381, circ_0017204, and circ_0090668 also presented a high ability to distinguish the late stage of PD from early stage. In conclusion, circulating circRNA panel might be a potential fingerprint for predicting the early diagnosis of PD and may act as a biomarker for disease progression.
Collapse
Affiliation(s)
- Lingling Zhong
- Department of Neurology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - KeJu Ju
- Department of Neurology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Ainian Chen
- Department of Neurology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Hua Cao
- Department of Neurology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, China
| |
Collapse
|
10
|
Rukavina K, Cummins TM, Chaudhuri KR, Bannister K. Pain in Parkinson's disease: Mechanism-based treatment strategies. Curr Opin Support Palliat Care 2021; 15:108-115. [PMID: 33782333 DOI: 10.1097/spc.0000000000000546] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW Chronic pain, highly prevalent throughout the course of Parkinson's disease (PD), has been ranked as one of the top ten most bothersome symptoms people with Parkinson's (PwP) are experiencing. Yet, robust evidence-based treatment strategies are lacking. This unmet need is partly attributable to the multifaceted nature of PD-related pain, which results in part from a complex and poorly understood interplay involving a range of neurotransmitter pathways. Degeneration of nigrostriatal dopaminergic pathways and alterations of central nervous system extra-striatal dopaminergic, noradrenergic, serotoninergic, glutamatergic, opioidergic and endocannabinoid circuits may all promote a heightened experience of pain in PwP. Thus, the potential targets for mechanism-based pain-relieving strategies in PwP are several. These targets are discussed herein. RECENT FINDINGS An increasing number of clinical trials and experimental studies in animal models of PD are being designed with the aim of addressing the pathophysiological mechanism(s) underlying PD-related pain. Overall, recent research findings highlight the analgesic effects of dopaminergic and opioidergic medication for certain subtypes of pain in PwP, whereas proposing novel strategies that involve targeting other neurotransmitter pathways. SUMMARY The origin of pain in PwP remains under investigation. Although our understanding of the mechanisms underpinning persistent pain in PD has improved in recent years, this has not yet translated to clinical alleviation of this most troublesome nonmotor symptom. Patient stratification linked with evidence-based personalized pain-treatment plans for optimal analgesic relief will rely on advances in our understanding of the dopaminergic and nondopaminergic targets outlined in this review.
Collapse
Affiliation(s)
- Katarina Rukavina
- Department of Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK
- Parkinson Foundation Centre of Excellence, King's College Hospital, London, UK
| | - Tatum M Cummins
- Central Modulation of Pain, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - K Ray Chaudhuri
- Department of Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK
- Parkinson Foundation Centre of Excellence, King's College Hospital, London, UK
| | - Kirsty Bannister
- Central Modulation of Pain, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|