1
|
Barberis M, Rojas López A. Metabolic imbalance driving immune cell phenotype switching in autoimmune disorders: Tipping the balance of T- and B-cell interactions. Clin Transl Med 2024; 14:e1626. [PMID: 38500390 PMCID: PMC10948951 DOI: 10.1002/ctm2.1626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 02/18/2024] [Accepted: 02/25/2024] [Indexed: 03/20/2024] Open
Abstract
The interplay between the immune system and the metabolic state of a cell is intricate. In all phases of an immune response, the corresponding metabolic changes shall occur to support its modulation, in addition to the signalling through the cytokine environment and immune receptor stimulation. While autoimmune disorders may develop because of a metabolic imbalance that modulates switching between T-cell phenotypes, the effects that the interaction between T and B cells have on one another's cellular metabolism are yet to be understood in disease context. Here, we propose a perspective which highlights the potential of targeting metabolism to modulate T- and B-cell subtypes populations as well as T-B and B-T cell interactions to successfully treat autoimmune disorders. Specifically, we envision how metabolic changes can tip the balance of immune cells interactions, through definite mechanisms in both health and disease, to explain phenotype switches of B and T cells. Within this scenario, we highlight targeting metabolism that link inflammation, immunometabolism, epigenetics and ageing, is critical to understand inflammatory disorders. The combination of treatments targeting immune cells that cause (T/B) cell phenotype imbalances, and the metabolic pathways involved, may increase the effectiveness of treatment of autoimmune disorders, and/or ameliorate their symptoms to improve patients' quality of life.
Collapse
Affiliation(s)
- Matteo Barberis
- Molecular Systems BiologySchool of BiosciencesFaculty of Health and Medical SciencesUniversity of SurreyGuildfordSurreyUK
- Centre for Mathematical and Computational Biology, CMCBUniversity of SurreyGuildfordSurreyUK
- Synthetic Systems Biology and Nuclear OrganizationSwammerdam Institute for Life SciencesUniversity of AmsterdamAmsterdamThe Netherlands
| | - Alejandra Rojas López
- Molecular Systems BiologySchool of BiosciencesFaculty of Health and Medical SciencesUniversity of SurreyGuildfordSurreyUK
- Centre for Mathematical and Computational Biology, CMCBUniversity of SurreyGuildfordSurreyUK
| |
Collapse
|
2
|
Niarakis A, Thakar J, Barberis M, Rodríguez Martínez M, Helikar T, Birtwistle M, Chaouiya C, Calzone L, Dräger A. Computational modelling in health and disease: highlights of the 6th annual SysMod meeting. Bioinformatics 2022. [DOI: 10.1093/bioinformatics/btac609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Summary
The Community of Special Interest (COSI) in Computational Modelling of Biological Systems (SysMod) brings together interdisciplinary scientists interested in combining data-driven computational modelling, multi-scale mechanistic frameworks, large-scale -omics data and bioinformatics. SysMod’s main activity is an annual meeting at the Intelligent Systems for Molecular Biology (ISMB) conference, a meeting for computer scientists, biologists, mathematicians, engineers and computational and systems biologists. The 2021 SysMod meeting was conducted virtually due to the ongoing COVID-19 pandemic (coronavirus disease 2019). During the 2-day meeting, the development of computational tools, approaches and predictive models was discussed, along with their application to biological systems, emphasizing disease mechanisms. This report summarizes the meeting.
Availability and implementation
All resources and further information are freely accessible at https://sysmod.info.
Collapse
Affiliation(s)
- Anna Niarakis
- GenHotel, Department of Biology, Univ Évry, University of Paris-Saclay, Genopole , 91025 Évry, France
- Lifeware Group, Inria Saclay-île de France , Palaiseau 91120, France
| | - Juilee Thakar
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry , Rochester, NY, USA
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry , Rochester, NY, USA
| | - Matteo Barberis
- Systems Biology, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey , GU2 7XH Guildford, Surrey, UK
- Centre for Mathematical and Computational Biology, CMCB, University of Surrey , GU2 7XH Guildford, Surrey, UK
- Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences University of Amsterdam , 1098 XH Amsterdam, The Netherlands
| | | | - Tomáš Helikar
- Department of Biochemistry, University of Nebraska-Lincoln , Lincoln, NE68588-0664, USA
| | - Marc Birtwistle
- Department of Chemical and Biomolecular Engineering, Clemson University , Clemson, SC 29634, USA
- Department of Bioengineering, Clemson University , Clemson, SC 29634, USA
| | | | - Laurence Calzone
- Institut Curie, PSL Research University , Paris, France
- INSERM, U900 , Paris, France
- MINES ParisTech , Paris, France
| | - Andreas Dräger
- Computational Systems Biology of Infections and Antimicrobial-Resistant Pathogens, Institute for Bioinformatics and Medical Informatics (IBMI), Eberhard Karl University of Tübingen , 72076 Tübingen, Germany
- Department of Computer Science, Eberhard Karl University of Tübingen , 72076 Tübingen, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen , Tübingen 72076, Germany
- Cluster of Excellence ‘Controlling Microbes to Fight Infections,’ Eberhard Karl University of Tübingen , Tübingen 72076, Germany
| |
Collapse
|
3
|
Adler SO, Spiesser TW, Uschner F, Münzner U, Hahn J, Krantz M, Klipp E. A yeast cell cycle model integrating stress, signaling, and physiology. FEMS Yeast Res 2022; 22:6592118. [PMID: 35617157 PMCID: PMC9246278 DOI: 10.1093/femsyr/foac026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/22/2022] [Accepted: 05/23/2022] [Indexed: 11/25/2022] Open
Abstract
The cell division cycle in eukaryotic cells is a series of highly coordinated molecular interactions that ensure that cell growth, duplication of genetic material, and actual cell division are precisely orchestrated to give rise to two viable progeny cells. Moreover, the cell cycle machinery is responsible for incorporating information about external cues or internal processes that the cell must keep track of to ensure a coordinated, timely progression of all related processes. This is most pronounced in multicellular organisms, but also a cardinal feature in model organisms such as baker's yeast. The complex and integrative behavior is difficult to grasp and requires mathematical modeling to fully understand the quantitative interplay of the single components within the entire system. Here, we present a self-oscillating mathematical model of the yeast cell cycle that comprises all major cyclins and their main regulators. Furthermore, it accounts for the regulation of the cell cycle machinery by a series of external stimuli such as mating pheromones and changes in osmotic pressure or nutrient quality. We demonstrate how the external perturbations modify the dynamics of cell cycle components and how the cell cycle resumes after adaptation to or relief from stress.
Collapse
Affiliation(s)
- Stephan O Adler
- Theoretical Biophysics, Humboldt-Universität zu Berlin, Invalidenstr. 42, 10115 Berlin, Germany
| | - Thomas W Spiesser
- Theoretical Biophysics, Humboldt-Universität zu Berlin, Invalidenstr. 42, 10115 Berlin, Germany
| | - Friedemann Uschner
- Theoretical Biophysics, Humboldt-Universität zu Berlin, Invalidenstr. 42, 10115 Berlin, Germany.,Institute for Medical Informatics and Biometry, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Sachsen, Germany
| | - Ulrike Münzner
- Theoretical Biophysics, Humboldt-Universität zu Berlin, Invalidenstr. 42, 10115 Berlin, Germany.,Laboratory of Cell Systems, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, 565-0871, Suita, Osaka, Japan
| | - Jens Hahn
- Theoretical Biophysics, Humboldt-Universität zu Berlin, Invalidenstr. 42, 10115 Berlin, Germany
| | - Marcus Krantz
- Theoretical Biophysics, Humboldt-Universität zu Berlin, Invalidenstr. 42, 10115 Berlin, Germany
| | - Edda Klipp
- Theoretical Biophysics, Humboldt-Universität zu Berlin, Invalidenstr. 42, 10115 Berlin, Germany
| |
Collapse
|
4
|
Barberis M, Mondeel TD. Unveiling Forkhead-mediated regulation of yeast cell cycle and metabolic networks. Comput Struct Biotechnol J 2022; 20:1743-1751. [PMID: 35495119 PMCID: PMC9024378 DOI: 10.1016/j.csbj.2022.03.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/10/2022] [Accepted: 03/29/2022] [Indexed: 11/25/2022] Open
Abstract
Findings from genome-wide ChIP studies on budding yeast Forkheads are interpreted. Power, challenges and limitation of ChIP studies are presented by target gene analysis. Forkheads regulate metabolic targets through which cell division may be coordinated.
Transcription factors are regulators of the cell’s genomic landscape. By switching single genes or entire molecular pathways on or off, transcription factors modulate the precise timing of their activation. The Forkhead (Fkh) transcription factors are evolutionarily conserved to regulate organismal physiology and cell division. In addition to molecular biology and biochemical efforts, genome-wide studies have been conducted to characterize the genomic landscape potentially regulated by Forkheads in eukaryotes. Here, we discuss and interpret findings reported in six genome-wide Chromatin ImmunoPrecipitation (ChIP) studies, with a particular focus on ChIP-chip and ChIP-exo. We highlight their power and challenges to address Forkhead-mediated regulation of the cellular landscape in budding yeast. Expression changes of the targets identified in the binding assays are investigated by taking expression data for Forkhead deletion and overexpression into account. Forkheads are revealed as regulators of the metabolic network through which cell cycle dynamics may be temporally coordinated further, in addition to their well-known role as regulators of the gene cluster responsible for cell division.
Collapse
|
5
|
Cyclin/Forkhead-mediated coordination of cyclin waves: an autonomous oscillator rationalizing the quantitative model of Cdk control for budding yeast. NPJ Syst Biol Appl 2021; 7:48. [PMID: 34903735 PMCID: PMC8668886 DOI: 10.1038/s41540-021-00201-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 11/01/2021] [Indexed: 01/21/2023] Open
Abstract
Networks of interacting molecules organize topology, amount, and timing of biological functions. Systems biology concepts required to pin down 'network motifs' or 'design principles' for time-dependent processes have been developed for the cell division cycle, through integration of predictive computer modeling with quantitative experimentation. A dynamic coordination of sequential waves of cyclin-dependent kinases (cyclin/Cdk) with the transcription factors network offers insights to investigate how incompatible processes are kept separate in time during the eukaryotic cell cycle. Here this coordination is discussed for the Forkhead transcription factors in light of missing gaps in the current knowledge of cell cycle control in budding yeast. An emergent design principle is proposed where cyclin waves are synchronized by a cyclin/Cdk-mediated feed-forward regulation through the Forkhead as a transcriptional timer. This design is rationalized by the bidirectional interaction between mitotic cyclins and the Forkhead transcriptional timer, resulting in an autonomous oscillator that may be instrumental for a well-timed progression throughout the cell cycle. The regulation centered around the cyclin/Cdk-Forkhead axis can be pivotal to timely coordinate cell cycle dynamics, thereby to actuate the quantitative model of Cdk control.
Collapse
|