1
|
Leng JG, Sharples TR, Fournier M, McKendrick KG, Craciunescu L, Paterson MJ, Costen ML. Inelastic scattering of NO(A 2Σ +) + CO 2: rotation-rotation pair-correlated differential cross sections. Faraday Discuss 2024; 251:279-295. [PMID: 38757419 DOI: 10.1039/d3fd00162h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
A crossed beam velocity-map ion-imaging apparatus has been used to determine differential cross sections (DCSs) for the rotationally inelastic scattering of NO(A2Σ+, v = 0, j = 0.5) with CO2, as a function of both NO(A, v = 0, N') final state and the coincident final rotational energy of the CO2. The DCSs are dominated by forward-peaked scattering for all N', with significant rotational excitation of CO2, and a small backward scattered peak is also observed for all final N'. However, no rotational rainbow scattering is observed and there is no evidence for significant product rotational angular momentum polarization. New ab initio potential energy surface calculations at the PNO-CCSD(T)-F12b level of theory report strong attractive forces at long ranges with significant anisotropy relative to both NO and CO2. The absence of rotational rainbow scattering is consistent with removal of low-impact-parameter collisions via electronic quenching, in agreement with the literature quenching rates of NO(A) by CO2 and recent electronic structure calculations. We propose that high-impact-parameter collisions, that do not lead to quenching, experience strong anisotropic attractive forces that lead to significant rotational excitation in both NO and CO2, depolarizing product angular momentum while leading to forward and backward glory scattering.
Collapse
Affiliation(s)
- Joseph G Leng
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK.
| | - Thomas R Sharples
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK.
| | - Martin Fournier
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK.
| | - Kenneth G McKendrick
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK.
| | - Luca Craciunescu
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK.
| | - Martin J Paterson
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK.
| | - Matthew L Costen
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK.
| |
Collapse
|
2
|
Dantus M. Ultrafast studies of elusive chemical reactions in the gas phase. Science 2024; 385:eadk1833. [PMID: 39116221 DOI: 10.1126/science.adk1833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 06/11/2024] [Indexed: 08/10/2024]
Abstract
The chemical composition of the interstellar medium and planetary atmospheres is constantly in flux as atoms and molecules collide and interact with high-energy particles such as electrons, protons, and photons. These transformative processes ultimately lead to the coalescence of molecules and eventually the birth of stars. Our understanding of these chemical ecosystems relies on models that synthesize data from gas-phase experiments, providing insights into reaction cross sections. This Review examines efforts to delve into the fundamental bond-forming and bond-breaking dynamics that occur during bimolecular and electron-initiated reactions. These experiments involve clever approaches to establish a time reference and the collision geometry necessary for tracking atomic motion with femtosecond time resolution. Findings from these efforts enhance present models and improve predictions for molecule-molecule and electron-molecule collisions.
Collapse
Affiliation(s)
- Marcos Dantus
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
- Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
3
|
Plomp V, Wang XD, Kłos J, Dagdigian PJ, Lique F, Onvlee J, van de Meerakker SY. Imaging Resonance Effects in C + H 2 Collisions Using a Zeeman Decelerator. J Phys Chem Lett 2024; 15:4602-4611. [PMID: 38640083 PMCID: PMC11071073 DOI: 10.1021/acs.jpclett.3c03379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/05/2024] [Accepted: 04/05/2024] [Indexed: 04/21/2024]
Abstract
An intriguing phenomenon in molecular collisions is the occurrence of scattering resonances, which originate from bound and quasi-bound states supported by the interaction potential at low collision energies. The resonance effects in the scattering behavior are extraordinarily sensitive to the interaction potential, and their observation provides one of the most stringent tests for theoretical models. We present high-resolution measurements of state-resolved angular scattering distributions for inelastic collisions between Zeeman-decelerated C(3P1) atoms and para-H2 molecules at collision energies ranging from 77 cm-1 down to 0.5 cm-1. Rapid variations in the angular distributions were observed, which can be attributed to the consecutive reduction of contributing partial waves and effects of scattering resonances. The measurements showed excellent agreement with distributions predicted by ab initio quantum scattering calculations. However, discrepancies were found at specific collision energies, which most likely originate from an incorrectly predicted quasi-bound state. These observations provide exciting prospects for further high-precision and low-energy investigations of scattering processes that involve paramagnetic species.
Collapse
Affiliation(s)
- Vikram Plomp
- Radboud
University, Institute for Molecules and Materials, Heijendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Xu-Dong Wang
- Radboud
University, Institute for Molecules and Materials, Heijendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Jacek Kłos
- University
of Maryland, Department of Physics,
Joint Quantum Institute, College
Park, Maryland 20742, United States of America
| | - Paul J. Dagdigian
- Johns
Hopkins University, Department of Chemistry, Baltimore, Maryland 21218, United States
of America
| | - François Lique
- Université
de Rennes, Institut de Physique
de Rennes, 263 avenue
du Général Leclerc, Rennes CEDEX 35042, France
| | - Jolijn Onvlee
- Radboud
University, Institute for Molecules and Materials, Heijendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | | |
Collapse
|
4
|
Luxford TM, Sharples TR, Fournier M, Soulié C, Paterson MJ, McKendrick KG, Costen ML. Differential Cross Sections for Pair-Correlated Rotational Energy Transfer in NO(A 2Σ +) + N 2, CO, and O 2: Signatures of Quenching Dynamics. J Phys Chem A 2023; 127:6251-6266. [PMID: 37481777 PMCID: PMC10405210 DOI: 10.1021/acs.jpca.3c03606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/07/2023] [Indexed: 07/25/2023]
Abstract
A crossed molecular beam, velocity-map ion-imaging apparatus has been used to determine differential cross sections (DCSs), as a function of collider final internal energy, for rotationally inelastic scattering of NO(A2Σ+, v = 0, j = 0.5f1) with N2, CO, and O2, at average collision energies close to 800 cm-1. DCSs are strongly forward scattered for all three colliders for all observed NO(A) final rotational states, N'. For collisions with N2 and CO, the fraction of NO(A) that is scattered sideways and backward increases with increasing N', as does the internal rotational excitation of the colliders, with N2 having the highest internal excitation. In contrast, the DCSs for collisions with O2 are essentially only forward scattered, with little rotational excitation of the O2. The sideways and backward scattering expected from low-impact-parameter collisions, and the rotational excitation expected from the orientational dependence of published van der Waals potential energy surfaces (PESs), are absent in the observed NO(A) + O2 results. This is consistent with the removal of these short-range scattering trajectories via facile electronic quenching of NO(A) by O2, in agreement with the literature determination of the coupled NO-O2 PESs and the associated conical intersections. In contrast, collisions at high-impact parameter that predominately sample the attractive van der Waals minimum do not experience quenching and are inelastically forward scattered with low rotational excitation.
Collapse
|
5
|
Plomp V, Onvlee J, Lique F, van de Meerakker SYT. Low-Energy Collisions of Zeeman-Decelerated NH Radicals with He Atoms. J Phys Chem A 2023; 127:2306-2313. [PMID: 36884215 PMCID: PMC10026067 DOI: 10.1021/acs.jpca.2c08712] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
We report an experimental study of state-to-state inelastic scattering of NH (X 3Σ-, N = 0, j = 1) radicals with He atoms. Using a crossed molecular beam apparatus that combines a Zeeman decelerator and velocity map imaging, we study both integral and differential cross sections in the N = 0, j = 1 → N = 2, j = 3 inelastic channel. We developed various new REMPI schemes to state-selectively detect NH radicals, and tested their performance in terms of sensitivity and ion recoil velocity. We found a 1 + 2' + 1' REMPI scheme using the A 3Π ← X 3Σ- resonant transition, which yields acceptable recoil velocities and is more than an order of magnitude more sensitive than conventional one-color REMPI schemes to detect NH. We used this REMPI scheme to probe state-to-state integral and differential cross sections around the channel opening at 97.7 cm-1, as well as at higher energies where structure in the scattering images could be resolved. The experimental results are in excellent agreement with the predictions from quantum scattering calculations which are based on an ab initio NH-He potential energy surface.
Collapse
Affiliation(s)
- Vikram Plomp
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Jolijn Onvlee
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - François Lique
- Institut de Physique de Rennes, Université de Rennes 1, 263 avenue du Général Leclerc, 35042 Rennes CEDEX, France
| | | |
Collapse
|
6
|
Wright SC, Doppelbauer M, Hofsäss S, Christian Schewe H, Sartakov B, Meijer G, Truppe S. Cryogenic buffer gas beams of AlF, CaF, MgF, YbF, Al, Ca, Yb and NO – a comparison. Mol Phys 2022. [DOI: 10.1080/00268976.2022.2146541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sidney C. Wright
- Fritz Haber Institute of the Max Planck Society, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
7
|
Tang G, Besemer M, Onvlee J, Karman T, van der Avoird A, Groenenboom GC, van de Meerakker SYT. Correlated rotational excitations in NO–CO inelastic collisions. J Chem Phys 2022; 156:214304. [DOI: 10.1063/5.0092561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a joint experimental and theoretical study of rotationally inelastic collisions between NO ( X2Π1/2, ν = 0, j = 1/2, f) radicals and CO ( X1Σ+, ν = 0, j = 0) molecules at a collision energy of 220 cm−1. State-to-state scattering images for excitation of NO radicals into various final states were measured with high resolution by combining the Stark deceleration and velocity map imaging techniques. The high image resolution afforded the observation of correlated rotational excitations of NO–CO pairs, which revealed a number of striking scattering phenomena. The so-called “parity-pair” transitions in NO are found to have similar differential cross sections, independent of the concurrent excitation of CO, extending this well-known effect for collisions between NO and rare gas atoms into the realm of bimolecular collisions. Forward scattering is found for collisions that induce a large amount of rotational energy transfer (in either NO, CO, or both), which require low impact parameters to induce sufficient energy transfer. This observation is interpreted in terms of the recently discovered hard collision glory scattering mechanism, which predicts the forward bending of initially backward receding trajectories if the energy uptake in the collision is substantial in relation to the collision energy. The experimental results are in good agreement with the predictions from coupled-channels quantum scattering calculations based on an ab initio NO–CO potential energy surface.
Collapse
Affiliation(s)
- Guoqiang Tang
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Matthieu Besemer
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Jolijn Onvlee
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Tijs Karman
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Ad van der Avoird
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Gerrit C. Groenenboom
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | | |
Collapse
|
8
|
Christianen A, Cirac JI, Schmidt R. Chemistry of a Light Impurity in a Bose-Einstein Condensate. PHYSICAL REVIEW LETTERS 2022; 128:183401. [PMID: 35594082 DOI: 10.1103/physrevlett.128.183401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/30/2022] [Accepted: 04/04/2022] [Indexed: 06/15/2023]
Abstract
Similar to an electron in a solid, an impurity in an atomic Bose-Einstein condensate (BEC) is dressed by excitations from the medium, forming a polaron quasiparticle with modified properties. This impurity can also undergo chemical recombination with atoms from the BEC, a process resonantly enhanced when universal three-body Efimov bound states cross the continuum. To study the interplay between these phenomena, we use a Gaussian state variational method able to describe both Efimov physics and arbitrarily many excitations of the BEC. We show that the polaron cloud contributes to bound state formation, leading to a shift of the Efimov resonance to smaller interaction strengths. This shifted scattering resonance marks the onset of a polaronic instability towards the decay into large Efimov clusters and fast recombination, offering a remarkable example of chemistry in a quantum medium.
Collapse
Affiliation(s)
- Arthur Christianen
- Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Strasse 1, D-85748 Garching, Germany
- Munich Center for Quantum Science and Technology (MCQST), Schellingstraße 4, D-80799 Munich, Germany
| | - J Ignacio Cirac
- Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Strasse 1, D-85748 Garching, Germany
- Munich Center for Quantum Science and Technology (MCQST), Schellingstraße 4, D-80799 Munich, Germany
| | - Richard Schmidt
- Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Strasse 1, D-85748 Garching, Germany
- Munich Center for Quantum Science and Technology (MCQST), Schellingstraße 4, D-80799 Munich, Germany
- Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark
| |
Collapse
|
9
|
Glory scattering in deeply inelastic molecular collisions. Nat Chem 2022; 14:664-669. [DOI: 10.1038/s41557-022-00907-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 02/04/2022] [Indexed: 11/08/2022]
|
10
|
Wu LY, Miossec C, Heazlewood BR. Low-temperature reaction dynamics of paramagnetic species in the gas phase. Chem Commun (Camb) 2022; 58:3240-3254. [PMID: 35188499 PMCID: PMC8902758 DOI: 10.1039/d1cc06394d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/12/2022] [Indexed: 12/12/2022]
Abstract
Radicals are abundant in a range of important gas-phase environments. They are prevalent in the atmosphere, in interstellar space, and in combustion processes. As such, understanding how radicals react is essential for the development of accurate models of the complex chemistry occurring in these gas-phase environments. By controlling the properties of the colliding reactants, we can also gain insights into how radical reactions occur on a fundamental level. Recent years have seen remarkable advances in the breadth of experimental methods successfully applied to the study of reaction dynamics involving paramagnetic species-from improvements to the well-known crossed molecular beams approach to newer techniques involving magnetically guided and decelerated beams. Coupled with ever-improving theoretical methods, quantum features are being observed and interesting insights into reaction dynamics are being uncovered in an increasingly diverse range of systems. In this highlight article, we explore some of the exciting recent developments in the study of chemical dynamics involving paramagnetic species. We focus on low-energy reactive collisions involving neutral radical species, where the reaction parameters are controlled. We conclude by identifying some of the limitations of current methods and exploring possible new directions for the field.
Collapse
Affiliation(s)
- Lok Yiu Wu
- The Oliver Lodge, Department of Physics, University of Liverpool, Oxford Street, Liverpool, L69 7ZE, UK.
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| | - Chloé Miossec
- The Oliver Lodge, Department of Physics, University of Liverpool, Oxford Street, Liverpool, L69 7ZE, UK.
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| | - Brianna R Heazlewood
- The Oliver Lodge, Department of Physics, University of Liverpool, Oxford Street, Liverpool, L69 7ZE, UK.
| |
Collapse
|
11
|
Plomp V, Wang XD, Lique F, Kłos J, Onvlee J, van de Meerakker SYT. High-Resolution Imaging of C + He Collisions using Zeeman Deceleration and Vacuum-Ultraviolet Detection. J Phys Chem Lett 2021; 12:12210-12217. [PMID: 34928163 PMCID: PMC8724800 DOI: 10.1021/acs.jpclett.1c03643] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/13/2021] [Indexed: 05/25/2023]
Abstract
High-resolution measurements of angular scattering distributions provide a sensitive test for theoretical descriptions of collision processes. Crossed beam experiments employing a decelerator and velocity map imaging have proven successful to probe collision cross sections with extraordinary resolution. However, a prerequisite to exploit these possibilities is the availability of a near-threshold state-selective ionization scheme to detect the collision products, which for many species is either absent or inefficient. We present the first implementation of recoil-free vacuum ultraviolet (VUV) based detection in scattering experiments involving a decelerator and velocity map imaging. This allowed for high-resolution measurements of state-resolved angular scattering distributions for inelastic collisions between Zeeman-decelerated carbon C(3P1) atoms and helium atoms. We fully resolved diffraction oscillations in the angular distributions, which showed excellent agreement with the distributions predicted by quantum scattering calculations. Our approach offers exciting prospects to investigate a large range of scattering processes with unprecedented precision.
Collapse
Affiliation(s)
- Vikram Plomp
- Radboud
University, Institute for Molecules and
Materials, Heijendaalseweg
135, 6525 AJ Nijmegen, The Netherlands
| | - Xu-Dong Wang
- Radboud
University, Institute for Molecules and
Materials, Heijendaalseweg
135, 6525 AJ Nijmegen, The Netherlands
| | - François Lique
- Université
de Rennes, Institut de Physique de Rennes, 263 avenue du Général
Leclerc, Rennes 35042 CEDEX, France
| | - Jacek Kłos
- University
of Maryland, Department of Physics, Joint
Quantum Institute, College Park, Maryland 20742, United States of America
| | - Jolijn Onvlee
- Radboud
University, Institute for Molecules and
Materials, Heijendaalseweg
135, 6525 AJ Nijmegen, The Netherlands
| | | |
Collapse
|
12
|
Zuo J, Guo H. Time-independent quantum theory on vibrational inelastic scattering between atoms and open-shell diatomic molecules: Applications to NO + Ar and NO + H scattering. J Chem Phys 2020; 153:144306. [PMID: 33086802 DOI: 10.1063/5.0026637] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A full-dimensional rigorous quantum mechanical treatment of non-reactive inelastic scattering of an open-shell diatom [e.g., NO(2Π)] with a structureless and spinless atom is presented within the time-independent close-coupling framework. The inclusion of the diatomic vibrational degree of freedom allows the investigation of transitions between different vibrational manifolds, in addition to those between different rotational, spin-orbit, and Λ-doublet states. This method is applied to the scattering of vibrationally excited NO(2Π) with Ar and H (with its spin ignored). The former has negligible vibrational inelasticity, thanks to the weak interaction between the two collisional partners. This conclusion justifies the commonly used two-dimensional approximation in treating NO scattering with rare gas atoms. The latter, on the other hand, is shown to undergo significant vibrational relaxation, even in the ultra-cold regime, owing to a chemically bonded (HNO) complex on the lowest-lying singlet potential energy surfaces.
Collapse
Affiliation(s)
- Junxiang Zuo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| |
Collapse
|
13
|
Jansen P, Merkt F. Manipulating beams of paramagnetic atoms and molecules using inhomogeneous magnetic fields. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2020; 120-121:118-148. [PMID: 33198967 DOI: 10.1016/j.pnmrs.2020.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
We review methods to manipulate the motion of pulsed supersonic atomic and molecular beams using time-independent and -dependent inhomogeneous magnetic fields. In addition, we discuss current and possible future applications and research directions.
Collapse
Affiliation(s)
- Paul Jansen
- Laboratory of Physical Chemistry, ETH Zurich, CH-8093 Zurich, Switzerland.
| | - Frédéric Merkt
- Laboratory of Physical Chemistry, ETH Zurich, CH-8093 Zurich, Switzerland
| |
Collapse
|
14
|
Zou J, Osterwalder A. Investigation of the low-energy stereodynamics in the Ne( 3P 2) + N 2, CO reactions. J Chem Phys 2020; 153:104306. [PMID: 32933296 DOI: 10.1063/5.0022053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We report on an experimental investigation of the low-energy stereodynamics of the energy transfer reactions Ne(3P2) + X, producing Ne(1S) + X+ and [Ne-X]+ (X = N2 or CO). Collision energies in the range 0.2 K-700 K are obtained by using the merged beam technique. Two kinds of product ions are generated by Penning and associative ionization, respectively. The intermediate product [Ne-X]+ in vibrationally excited states can predissociate into bare ions (X+). The experimental ratio of the NeX+ and X+ product ion yields is similar for both molecules at high collision energies but diverge at collision energies below 100 K. This difference is explained by the first excited electronic state of the product ions, which is accessible in the case of CO but lies too high in energy in the case of N2.
Collapse
Affiliation(s)
- Junwen Zou
- Institute for Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Andreas Osterwalder
- Institute for Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
15
|
Tang G, Besemer M, de Jongh T, Shuai Q, van der Avoird A, Groenenboom GC, van de Meerakker SYT. Correlations in rotational energy transfer for NO-D 2 inelastic collisions. J Chem Phys 2020; 153:064301. [PMID: 35287454 DOI: 10.1063/5.0019472] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a combined experimental and theoretical study of state-to-state inelastic collisions between NO (X 2Π1/2, j = 1/2, f) radicals and D2 (j = 0, 1, 2, 3) molecules at collision energies of 100 cm-1 and 750 cm-1. Using the combination of Stark deceleration and velocity map imaging, we fully resolve pair-correlated excitations in the scattered molecules. Both spin-orbit conserving and spin-orbit changing transitions in the NO radical are measured, while the coincident rotational excitation (j = 0 → j = 2) and rotational de-excitation (j = 2 → j = 0 and j = 3 → j = 1) in D2 are observed. De-excitation of D2 shows a strong dependence on the spin-orbit excitation of NO. We observe translation-to-rotation energy transfer as well as direct rotation-to-rotation energy transfer at the lowest collision energy probed. The experimental results are in good agreement with cross sections obtained from quantum coupled-channels calculations based on recent NO-D2 potential energy surfaces. The observed trends in the correlated scattering cross sections are understood in terms of the NO-D2 quadrupole-quadrupole interaction.
Collapse
Affiliation(s)
- Guoqiang Tang
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Matthieu Besemer
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Tim de Jongh
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Quan Shuai
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Ad van der Avoird
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Gerrit C Groenenboom
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | | |
Collapse
|
16
|
Chen J, Li J, Bowman JM, Guo H. Energy transfer between vibrationally excited carbon monoxide based on a highly accurate six-dimensional potential energy surface. J Chem Phys 2020; 153:054310. [DOI: 10.1063/5.0015101] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jun Chen
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Jun Li
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Joel M. Bowman
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| |
Collapse
|
17
|
Sun ZF, van Hemert MC, Loreau J, van der Avoird A, Suits AG, Parker DH. Molecular square dancing in CO-CO collisions. Science 2020; 369:307-309. [PMID: 32675372 DOI: 10.1126/science.aan2729] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/22/2020] [Indexed: 11/02/2022]
Abstract
Knowledge of rotational energy transfer (RET) involving carbon monoxide (CO) molecules is crucial for the interpretation of astrophysical data. As of now, our nearly perfect understanding of atom-molecule scattering shows that RET usually occurs by only a simple "bump" between partners. To advance molecular dynamics to the next step in complexity, we studied molecule-molecule scattering in great detail for collision between two CO molecules. Using advanced imaging methods and quasi-classical and fully quantum theory, we found that a synchronous movement can occur during CO-CO collisions, whereby a bump is followed by a move similar to a "do-si-do" in square dancing. This resulted in little angular deflection but high RET to both partners, a very unusual combination. The associated conditions suggest that this process can occur in other molecule-molecule systems.
Collapse
Affiliation(s)
- Zhong-Fa Sun
- Department of Molecular and Laser Physics, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, Netherlands.,Anhui Province Key Laboratory of Optoelectric Materials Science and Technology, Department of Physics, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Marc C van Hemert
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, Einsteinweg 55, 2333 CC Leiden, Netherlands
| | - Jérôme Loreau
- Department of Chemistry, KU Leuven, B-3001 Leuven, Belgium
| | - Ad van der Avoird
- Theoretical Chemistry, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, Netherlands
| | - Arthur G Suits
- Department of Chemistry, University of Missouri, Columbia, MO 65211, USA
| | - David H Parker
- Department of Molecular and Laser Physics, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, Netherlands.
| |
Collapse
|
18
|
Margulis B, Narevicius J, Narevicius E. Direct observation of a Feshbach resonance by coincidence detection of ions and electrons in Penning ionization collisions. Nat Commun 2020; 11:3553. [PMID: 32678097 PMCID: PMC7366646 DOI: 10.1038/s41467-020-17393-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/23/2020] [Indexed: 11/09/2022] Open
Abstract
Observation of molecular dynamics with quantum state resolution is one of the major challenges in chemical physics. Complete characterization of collision dynamics leads to the microscopic understanding and unraveling of different quantum phenomena such as scattering resonances. Here we present an experimental approach for observing molecular dynamics involving neutral particles and ions that is capable of providing state-to-state mapping of the dynamics. We use Penning ionization reaction between argon and metastable helium to generate argon ion and ground state helium atom pairs at separation of several angstroms. The energy of an ejected electron carries the information about the initial electronic state of an ion. The coincidence detection of ionic products provides a state resolved description of the post-ionization ion-neutral dynamics. We demonstrate that correlation between the electron and ion energy spectra enables us to directly observe the spin-orbit excited Feshbach resonance state of HeAr+. We measure the lifetime of the quasi-bound HeAr+ A2 state and discuss possible applications of our method.
Collapse
Affiliation(s)
- Baruch Margulis
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Julia Narevicius
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Edvardas Narevicius
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
19
|
Plomp V, Gao Z, Cremers T, Besemer M, van de Meerakker SYT. High-resolution imaging of molecular collisions using a Zeeman decelerator. J Chem Phys 2020; 152:091103. [PMID: 33480725 DOI: 10.1063/1.5142817] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present the first crossed beam scattering experiment using a Zeeman decelerated molecular beam. The narrow velocity spreads of Zeeman decelerated NO (X2Π3/2, j = 3/2) radicals result in high-resolution scattering images, thereby fully resolving quantum diffraction oscillations in the angular scattering distribution for inelastic NO-Ne collisions and product-pair correlations in the radial scattering distribution for inelastic NO-O2 collisions. These measurements demonstrate similar resolution and sensitivity as in experiments using Stark decelerators, opening up possibilities for controlled and low-energy scattering experiments using chemically relevant species such as H and O atoms, O2 molecules, or NH radicals.
Collapse
Affiliation(s)
- Vikram Plomp
- Institute for Molecules and Materials, Radboud University Nijmegen, Heijendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Zhi Gao
- Institute for Molecules and Materials, Radboud University Nijmegen, Heijendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Theo Cremers
- Institute for Molecules and Materials, Radboud University Nijmegen, Heijendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Matthieu Besemer
- Institute for Molecules and Materials, Radboud University Nijmegen, Heijendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | | |
Collapse
|
20
|
Toscano J, Lewandowski HJ, Heazlewood BR. Cold and controlled chemical reaction dynamics. Phys Chem Chem Phys 2020; 22:9180-9194. [DOI: 10.1039/d0cp00931h] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
State-to-state chemical reaction dynamics, with complete control over the reaction parameters, offers unparalleled insight into fundamental reactivity.
Collapse
Affiliation(s)
- Jutta Toscano
- JILA and the Department of Physics
- University of Colorado
- Boulder
- USA
| | | | - Brianna R. Heazlewood
- Physical and Theoretical Chemistry Laboratory (PTCL)
- Department of Chemistry
- University of Oxford
- Oxford
- UK
| |
Collapse
|
21
|
Wang XD, Robertson PA, Cascarini FJJ, Quinn MS, McManus JW, Orr-Ewing AJ. Observation of Rainbows in the Rotationally Inelastic Scattering of NO with CH 4. J Phys Chem A 2019; 123:7758-7767. [PMID: 31442046 DOI: 10.1021/acs.jpca.9b06806] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Using a combination of velocity-map imaging and resonance-enhanced multiphoton ionization detection with crossed molecular beam scattering, the dynamics of rotational energy transfer have been examined for NO in collisions with CH4 at a mean collision energy of 700 cm-1. The images of NO scattered into individual rotational (jNO') and spin-orbit (Ω) levels typically exhibit a single broad maximum that gradually shifts from the forward to the backward scattering direction with increasing rotational excitation (i.e., larger ΔjNO). The rotational rainbow angles calculated with a two-dimensional hard ellipse model show reasonable agreement with the observed angles corresponding to the maxima in the differential cross sections extracted from the images for higher ΔjNO transitions, but there are clear discrepancies for lower ΔjNO (in particular, final rotational levels with jNO' = 7.5 and 8.5). The sharply forward scattered angular distributions for these lower ΔjNO transitions better agree with the predictions of an L-type rainbow model. The more highly rotationally excited NO appears to coincide with low rotational excitation of the co-product CH4, indicating a degree of rotational product-pair anticorrelation in this bimolecular scattering.
Collapse
Affiliation(s)
- Xu-Dong Wang
- School of Chemistry , University of Bristol , Cantock's Close , Bristol , BS8 1TS , United Kingdom
| | - Patrick A Robertson
- School of Chemistry , University of Bristol , Cantock's Close , Bristol , BS8 1TS , United Kingdom
| | - Frederick J J Cascarini
- School of Chemistry , University of Bristol , Cantock's Close , Bristol , BS8 1TS , United Kingdom
| | - Mitchell S Quinn
- School of Chemistry , University of Bristol , Cantock's Close , Bristol , BS8 1TS , United Kingdom
| | - Joseph W McManus
- School of Chemistry , University of Bristol , Cantock's Close , Bristol , BS8 1TS , United Kingdom
| | - Andrew J Orr-Ewing
- School of Chemistry , University of Bristol , Cantock's Close , Bristol , BS8 1TS , United Kingdom
| |
Collapse
|
22
|
Gao Z, Loreau J, van der Avoird A, van de Meerakker SYT. Direct observation of product-pair correlations in rotationally inelastic collisions of ND 3 with D 2. Phys Chem Chem Phys 2019; 21:14033-14041. [PMID: 30649107 DOI: 10.1039/c8cp07109h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present a combined experimental and theoretical study of state-to-state inelastic scattering of ND3(j = 11-) with D2 (j = 0, 1, 2, 3) molecules at collision energies around 800 cm-1. Using a crossed molecular beam apparatus which employs the combination of Stark deceleration and velocity map imaging, we observe the correlated rotational excitations of both collision partners. For D2, both elastic (ΔjD2 = 0), inelastic excitation (j = 0 →j = 2) and inelastic de-excitation (j = 2 →j = 0) processes are observed. For a number of final ND3 states, inelastic channels in which D2 is rotationally excited or de-excited appear surprisingly strong. The experimental results are in excellent agreement with the predictions from quantum scattering calculations which are based on an ab initio ND3-D2 potential energy surface.
Collapse
Affiliation(s)
- Zhi Gao
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - Jérôme Loreau
- Service de Chimie Quantique et Photophysique, Université libre de Bruxelles, CP 160/09, 1050 Brussels, Belgium.
| | - Ad van der Avoird
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | | |
Collapse
|
23
|
Schmid PC, Miller MI, Greenberg J, Nguyen TL, Stanton JF, Lewandowski HJ. Quantum-state-specific reaction rate measurements for the photo-induced reaction Ca+ + O2 → CaO+ + O. Mol Phys 2019. [DOI: 10.1080/00268976.2019.1622811] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Philipp C. Schmid
- JILA and the Department of Physics, University of Colorado, Boulder, Colorado, USA
| | - Mikhail I. Miller
- JILA and the Department of Physics, University of Colorado, Boulder, Colorado, USA
| | - James Greenberg
- JILA and the Department of Physics, University of Colorado, Boulder, Colorado, USA
| | - Thanh L. Nguyen
- Quantum Theory Project, Departments of Chemistry and Physics, University of Florida, Gainesville, Florida, USA
| | - John F. Stanton
- Quantum Theory Project, Departments of Chemistry and Physics, University of Florida, Gainesville, Florida, USA
| | - H. J. Lewandowski
- JILA and the Department of Physics, University of Colorado, Boulder, Colorado, USA
| |
Collapse
|
24
|
Cremers T, Janssen N, Sweers E, van de Meerakker SYT. Design and construction of a multistage Zeeman decelerator for crossed molecular beams scattering experiments. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2019; 90:013104. [PMID: 30709220 DOI: 10.1063/1.5066062] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 12/13/2018] [Indexed: 06/09/2023]
Abstract
Zeeman deceleration is a relatively new technique used to obtain full control over the velocity of paramagnetic atoms or molecules in a molecular beam. We present a detailed description of a multistage Zeeman decelerator that has recently become operational in our laboratory [Cremers et al., Phys. Rev. A 98, 033406 (2018)] and that is specifically optimized for crossed molecular beams scattering experiments. The decelerator consists of an alternating array of 100 solenoids and 100 permanent hexapoles to guide or decelerate beams of paramagnetic atoms or molecules. The Zeeman decelerator features a modular design that is mechanically easy to extend to arbitrary length and allows for solenoid and hexapole elements that are convenient to replace. The solenoids and associated electronics are efficiently water cooled and allow the Zeeman decelerator to operate at repetition rates exceeding 10 Hz. We characterize the performance of the decelerator using various beams of metastable rare gas atoms. Imaging of the atoms that exit the Zeeman decelerator reveals the transverse focusing properties of the hexapole array in the Zeeman decelerator.
Collapse
Affiliation(s)
- Theo Cremers
- Institute for Molecules and Materials, Radboud University, Heijendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Niek Janssen
- Institute for Molecules and Materials, Radboud University, Heijendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Edwin Sweers
- Institute for Molecules and Materials, Radboud University, Heijendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | | |
Collapse
|
25
|
Gao Z, Karman T, Tang G, van der Avoird A, Groenenboom GC, van de Meerakker SYT. Correlated energy transfer in rotationally and spin-orbit inelastic collisions of NO(X 2Π 1/2, j = 1/2f) with O 2(X 3Σ g-). Phys Chem Chem Phys 2018; 20:12444-12453. [PMID: 29697730 DOI: 10.1039/c8cp01784k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present a combined experimental and theoretical study of state-to-state inelastic scattering of NO(X2Π1/2, j = 1/2f) with O2(X3Σg-) molecules at a collision energy of 480 cm-1, focusing in particular on the observation and interpretation of correlated excitations in both NO and O2. Various final states of the NO radical, in both spin-orbit manifolds, were measured with high resolution using a crossed molecular beam apparatus which employs a combination of Stark deceleration and velocity map imaging. Velocity map imaging directly measures both the angular distribution and the radial velocity distribution of the scattered NO molecules, which probes the kinetic energy uptake or release and hence correlated excitations of NO-O2 pairs. Simultaneous excitations of NO and O2 were resolved for all studied final states of NO. In all cases, the experimental results excellently agree with the results of simulations based on quantum scattering calculations. Trends are discussed by analyzing the scattering wave functions from the calculations.
Collapse
Affiliation(s)
- Zhi Gao
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
26
|
|