1
|
Acar M, Tatini D, Ninham BW, Rossi F, Marchettini N, Lo Nostro P. The Lyotropic Nature of Halates: An Experimental Study. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238519. [PMID: 36500616 PMCID: PMC9739596 DOI: 10.3390/molecules27238519] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022]
Abstract
Unlike halides, where the kosmotropicity decreases from fluoride to iodide, the kosmotropic nature of halates apparently increases from chlorate to iodate, in spite of the lowering in the static ionic polarizability. In this paper, we present an experimental study that confirms the results of previous simulations. The lyotropic nature of aqueous solutions of sodium halates, i.e., NaClO3, NaBrO3, and NaIO3, is investigated through density, conductivity, viscosity, and refractive index measurements as a function of temperature and salt concentration. From the experimental data, we evaluate the activity coefficients and the salt polarizability and assess the anions' nature in terms of kosmotropicity/chaotropicity. The results clearly indicate that iodate behaves as a kosmotrope, while chlorate is a chaotrope, and bromate shows an intermediate nature. This experimental study confirms that, in the case of halates XO3-, the kosmotropic-chaotropic ranking reverses with respect to halides. We also discuss and revisit the role of the anion's polarizability in the interpretation of Hofmeister phenomena.
Collapse
Affiliation(s)
- Mert Acar
- Department of Chemistry “Ugo Schiff” and CSGI, University of Florence, 50019 Firenze, Italy
| | - Duccio Tatini
- Department of Chemistry “Ugo Schiff” and CSGI, University of Florence, 50019 Firenze, Italy
| | - Barry W. Ninham
- Materials Physics (Formerly Department of Applied Mathematics), Research School of Physics, Australian National University, Canberra, ACT 2600, Australia
- School of Science, University of New South Wales, Northcott Drive, Campbell, Canberra, ACT 2612, Australia
| | - Federico Rossi
- Department of Earth, Environmental and Physical Sciences, University of Siena, 53100 Siena, Italy
| | - Nadia Marchettini
- Department of Earth, Environmental and Physical Sciences, University of Siena, 53100 Siena, Italy
| | - Pierandrea Lo Nostro
- Department of Chemistry “Ugo Schiff” and CSGI, University of Florence, 50019 Firenze, Italy
- Correspondence: ; Tel.: +39-055-4573010
| |
Collapse
|
2
|
Physicochemical characterization of green sodium oleate-based formulations. Part 2. Effect of anions. J Colloid Interface Sci 2022; 617:399-408. [DOI: 10.1016/j.jcis.2022.01.135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 11/23/2022]
|
3
|
Sun L, Gong J, Xu B, Wang Y, Ding X, Zhang Y, Liu C, Zhao L, Xu B. Ion-Specific Effects on Vesicle-to-Micelle Transitions of an Amino Acid Surfactant Probed by Chemical Trapping. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:6295-6304. [PMID: 35476409 DOI: 10.1021/acs.langmuir.1c03415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ion-specific effects widely exist in biological and chemical systems and cannot be explained by classical theories. The complexity of ion-specific effects in protein systems at the molecular level necessitates the use of mimetic models involving smaller molecules, such as amino acids, oligopeptides, and other organic molecules bearing amide bonds. Therefore, it is of theoretical value to determine the effect of additional salts on the aggregation transitions of acyl amino acid surfactants. Herein, the effects of specific tetraalkylammonium ions (TAA+) on sodium lauroyl glycinate (SLG) aggregation were studied by dynamic light scattering (DLS) and transmission electron microscopy. Although previous studies have shown that the kosmotropic TAA+ ions tend to induce micellar growth or micelle-to-vesicle transitions of some anionic surfactants, TAA+ addition in the present study induced partial vesicle-to-micelle transitions in SLG solutions. The chemical trapping (CT) method was employed to estimate changes in the interfacial molarities of water, amide bonds, and carboxylate groups during such transitions. The vesicle-to-micelle transitions were accompanied by a marked rise in interfacial water molarity and a decline in interfacial amide bonds molarity, suggesting that the hydrated TAA+ entered the interfacial region and disrupted hydrogen bonding, thus preventing the SLG monomers from packing tightly. Molecular dynamic simulation was also performed to demonstrate the salt-induced cleavage of amide-amide bonds between SLG headgroups. Furthermore, both CT and DLS results show that the ability of tetraalkylammonium cations to induce such transitions increased with increasing size and hydrophobicity of the cation, which follows the Hofmeister series. The current study offers critical molecular-level evidence for understanding the specific effects of tetraalkylammonium ions on the aggregation transitions of an acyl amino acid surfactant.
Collapse
Affiliation(s)
- Lijie Sun
- Department of Daily Chemical Engineering, Beijing Technology and Business University, No. 11 Fucheng Road, Beijing 100048, People's Republic of China
| | - Jiani Gong
- Department of Daily Chemical Engineering, Beijing Technology and Business University, No. 11 Fucheng Road, Beijing 100048, People's Republic of China
| | - Bo Xu
- McIntire School of Commerce, University of Virginia, Charlottesville, Virginia 22903, United States
| | - Yuzhao Wang
- Department of Daily Chemical Engineering, Beijing Technology and Business University, No. 11 Fucheng Road, Beijing 100048, People's Republic of China
| | - Xiaoxuan Ding
- Department of Daily Chemical Engineering, Beijing Technology and Business University, No. 11 Fucheng Road, Beijing 100048, People's Republic of China
| | - Yongliang Zhang
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854, United States
| | - Changyao Liu
- Department of Daily Chemical Engineering, Beijing Technology and Business University, No. 11 Fucheng Road, Beijing 100048, People's Republic of China
| | - Li Zhao
- Department of Daily Chemical Engineering, Beijing Technology and Business University, No. 11 Fucheng Road, Beijing 100048, People's Republic of China
| | - Baocai Xu
- Department of Daily Chemical Engineering, Beijing Technology and Business University, No. 11 Fucheng Road, Beijing 100048, People's Republic of China
| |
Collapse
|
4
|
Madeira PP, Rocha IL, Rosa ME, Freire MG, Coutinho JA. On the aggregation of bovine serum albumin. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
5
|
Gregory KP, Wanless EJ, Webber GB, Craig VSJ, Page AJ. The electrostatic origins of specific ion effects: quantifying the Hofmeister series for anions. Chem Sci 2021; 12:15007-15015. [PMID: 34976339 PMCID: PMC8612401 DOI: 10.1039/d1sc03568a] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/15/2021] [Indexed: 12/23/2022] Open
Abstract
Life as we know it is dependent upon water, or more specifically salty water. Without dissolved ions, the interactions between biological molecules are insufficiently complex to support life. This complexity is intimately tied to the variation in properties induced by the presence of different ions. These specific ion effects, widely known as Hofmeister effects, have been known for more than 100 years. They are ubiquitous throughout the chemical, biological and physical sciences. The origin of these effects and their relative strengths is still hotly debated. Here we reconsider the origins of specific ion effects through the lens of Coulomb interactions and establish a foundation for anion effects in aqueous and non-aqueous environments. We show that, for anions, the Hofmeister series can be explained and quantified by consideration of site-specific electrostatic interactions. This can simply be approximated by the radial charge density of the anion, which we have calculated for commonly reported ions. This broadly quantifies previously unpredictable specific ion effects, including those known to influence solution properties, virus activities and reaction rates. Furthermore, in non-aqueous solvents, the relative magnitude of the anion series is dependent on the Lewis acidity of the solvent, as measured by the Gutmann Acceptor Number. Analogous SIEs for cations bear limited correlation with their radial charge density, highlighting a fundamental asymmetry in the origins of specific ion effects for anions and cations, due to competing non-Coulombic phenomena.
Collapse
Affiliation(s)
- Kasimir P Gregory
- Discipline of Chemistry, School of Environmental and Life Sciences, The University of Newcastle Callaghan New South Wales 2308 Australia
| | - Erica J Wanless
- Discipline of Chemistry, School of Environmental and Life Sciences, The University of Newcastle Callaghan New South Wales 2308 Australia
| | - Grant B Webber
- School of Engineering, The University of Newcastle Callaghan New South Wales 2308 Australia
| | - Vincent S J Craig
- Department of Applied Mathematics, Research School of Physics, Australian National University Canberra ACT 0200 Australia
| | - Alister J Page
- Discipline of Chemistry, School of Environmental and Life Sciences, The University of Newcastle Callaghan New South Wales 2308 Australia
| |
Collapse
|
6
|
Kaur S, Pramanik S, Day VW, Bowman-James K. Snapshots of "crystalline" salt-water solutions of inositol hexaphosphate conformers. Dalton Trans 2021; 50:480-484. [PMID: 33367339 DOI: 10.1039/d0dt03775c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Supramolecular insight to intra- and inter-ionic interactions in two inositol hexaphosphate conformers as a function of pH was enabled by NMR and crystallographic studies. These findings also shed light on the complex interactive roles of extended salt-water arrays through the crystal "solution" lattice.
Collapse
Affiliation(s)
- Sandeep Kaur
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, USA.
| | - Subhamay Pramanik
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, USA.
| | - Victor W Day
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, USA.
| | - Kristin Bowman-James
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, USA.
| |
Collapse
|
7
|
Budroni MA, Rossi F, Marchettini N, Wodlei F, Lo Nostro P, Rustici M. Hofmeister Effect in Self-Organized Chemical Systems. J Phys Chem B 2020; 124:9658-9667. [PMID: 32989990 DOI: 10.1021/acs.jpcb.0c06956] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We studied the effect of spectator ions in the prototype of far-from-equilibrium self-organized chemical systems, the Belousov-Zhabotinsky (BZ) reaction. In particular, we investigated the specific ion effect of alkali metal cations, connoted for their kosmotropic and chaotropic properties. By means of combined experimental and numerical approaches, we could show a neat and robust evidence for the Hofmeister effect in this system. Spectator cations induce a marked increment of the induction period that preludes regular oscillations and decrease the oscillation amplitude following the sequence Li+ < Na+ ≪ K+ ∼ Cs+. These ions affect the system kinetics by interfering in the interaction between the oxidized form of the catalyst and the organic substrate, responsible for resetting the BZ system to pre-autocatalytic (reduced) conditions. The specific ion effect on these key reactive steps is systematically characterized and correlated with different parameters which describe the interaction of the cations with the solvent.
Collapse
Affiliation(s)
- Marcello A Budroni
- Department of Chemistry and Pharmacy, University of Sassari, Sassari (SS) 07100, Italy
| | - Federico Rossi
- Department of Earth, Environmental and Physical Sciences-DEEP Sciences, University of Siena, Siena (SI) 53100, Italy
| | - Nadia Marchettini
- Department of Earth, Environmental and Physical Sciences-DEEP Sciences, University of Siena, Siena (SI) 53100, Italy
| | - Florian Wodlei
- Department of Chemistry and Pharmacy, University of Sassari, Sassari (SS) 07100, Italy
| | - Pierandrea Lo Nostro
- Department of Chemistry, University of Florence, Sesto Fiorentino (FI) 50019, Italy
| | - Mauro Rustici
- Department of Chemistry and Pharmacy, University of Sassari, Sassari (SS) 07100, Italy
| |
Collapse
|
8
|
Muralidharan A, Pratt LR, Chaudhari MI, Rempe SB. Quasi-Chemical Theory with Cluster Sampling from Ab Initio Molecular Dynamics: Fluoride (F -) Anion Hydration. J Phys Chem A 2018; 122:9806-9812. [PMID: 30475612 DOI: 10.1021/acs.jpca.8b08474] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Accurate predictions of the hydration free energy for anions typically has been more challenging than that for cations. Hydrogen bond donation to the anion in hydrated clusters such as F(H2O) n - can lead to delicate structures. Consequently, the energy landscape contains many local minima, even for small clusters, and these minima present a challenge for computational optimization. Utilization of cluster experimental results for the free energies of gas-phase clusters shows that even though anharmonic effects are interesting they need not be of troublesome magnitudes for careful applications of quasi-chemical theory to ion hydration. Energy-optimized cluster structures for anions can leave the central ion highly exposed, and application of implicit solvation models to these structures can incur more serious errors than those for metal cations. Utilizing cluster structures sampled from ab initio molecular dynamics simulations substantially fixes those issues.
Collapse
Affiliation(s)
- A Muralidharan
- Department of Chemical and Biomolecular Engineering , Tulane University , New Orleans , Louisiana 70118 , United States
| | - L R Pratt
- Department of Chemical and Biomolecular Engineering , Tulane University , New Orleans , Louisiana 70118 , United States
| | - M I Chaudhari
- Center for Biological and Engineering Sciences , Sandia National Laboratories , Albuquerque , New Mexico 87185 , United States
| | - S B Rempe
- Center for Biological and Engineering Sciences , Sandia National Laboratories , Albuquerque , New Mexico 87185 , United States
| |
Collapse
|