1
|
Sekar M, Sreedharan R, Premkumar E, Purushothaman R, Gandhi T. An expedient ruthenium(II) catalyzed multicomponent access to phthalazinones bearing trisubstituted alkenes. Org Biomol Chem 2025; 23:2411-2417. [PMID: 39898827 DOI: 10.1039/d4ob01890g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Nitrogen based heterocycles bearing trisubstituted alkenes are prodigious and indispensable motifs in pharmaceuticals, clinical candidates and functional materials. Herein, we developed a tandem one-pot ruthenium-catalyzed multicomponent reaction to access phthalazinones bearing trisubstituted alkenes by employing readily available hydrazines, 2-formyl-benzoic acid and alkynes. The key highlights of this work are its atom economy and greenness, with water as the only byproduct. This reaction exhibits high functional group tolerance and is also scalable to gram-scale synthesis. Remarkably, the current protocol is applied to a four-component reaction involving in situ nitro reduction by utilizing TFE (2,2,2-trifluoroethanol) as a liquid hydrogen carrier, along with imine formation and esterification. A series of control experiments were conducted to elucidate the reaction mechanism. Importantly, the possible intermediates were confirmed by mass spectrometry. Moreover, the products obtained show strong emission properties that are aligning well with DFT calculations.
Collapse
Affiliation(s)
- Manikandan Sekar
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology-Vellore, Tamil Nadu-632014, India.
| | - Ramdas Sreedharan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology-Vellore, Tamil Nadu-632014, India.
| | - Egambaram Premkumar
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology-Vellore, Tamil Nadu-632014, India.
| | - Rajeshwaran Purushothaman
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology-Vellore, Tamil Nadu-632014, India.
| | - Thirumanavelan Gandhi
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology-Vellore, Tamil Nadu-632014, India.
| |
Collapse
|
2
|
Colombo E, Coppini DA, Borsoi S, Fasano V, Bucci R, Bonato F, Bonandi E, Vasile F, Pieraccini S, Passarella D. Total Synthesis of an Epothilone Analogue Based on the Amide-Triazole Bioisosterism. Chempluschem 2024; 89:e202400413. [PMID: 38924276 DOI: 10.1002/cplu.202400413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 06/28/2024]
Abstract
Epothilones are 16-membered macrolides that act as microtubule-targeting agents to tackle cancer. Many synthetic analogues have been investigated for their activity, yet often based on macrolide structures. A notable exception is Ixabepilone, an azalide whose metabolic stability and pharmacokinetics are significantly improved. Exploiting the amide-triazole bioisosterism, in this work we report the synthesis of the first generation of epothilones lacking the macrolide or azalide structure, with the ester or amide linkage replaced by a triazole unit. Together with the synthesis of this new analogue, computational and biological evaluations have been performed too.
Collapse
Affiliation(s)
- Eleonora Colombo
- Department of Chemistry, University of Milan, Via Golgi 19, 20133, Milano, Italy
| | - Davide A Coppini
- Department of Chemistry, University of Milan, Via Golgi 19, 20133, Milano, Italy
| | - Simone Borsoi
- Department of Chemistry, University of Milan, Via Golgi 19, 20133, Milano, Italy
| | - Valerio Fasano
- Department of Chemistry, University of Milan, Via Golgi 19, 20133, Milano, Italy
| | - Raffaella Bucci
- Department of Pharmaceutical Science, University of Milan, Via Venezian 21, 20133, Milano, Italy
| | - Francesca Bonato
- Department of Chemistry, University of Milan, Via Golgi 19, 20133, Milano, Italy
| | - Elisa Bonandi
- Department of Chemistry, University of Milan, Via Golgi 19, 20133, Milano, Italy
| | - Francesca Vasile
- Department of Chemistry, University of Milan, Via Golgi 19, 20133, Milano, Italy
| | - Stefano Pieraccini
- Department of Chemistry, University of Milan, Via Golgi 19, 20133, Milano, Italy
| | - Daniele Passarella
- Department of Chemistry, University of Milan, Via Golgi 19, 20133, Milano, Italy
| |
Collapse
|
3
|
Wang H, Jie X, Su T, Wu Q, Kuang J, Sun Z, Zhao Y, Chong Q, Guo Y, Zhang Z, Meng F. Cobalt-Catalyzed Chemo- and Stereoselective Transfer Semihydrogenation of 1,3-Dienes with Water as a Hydrogen Source. J Am Chem Soc 2024; 146:23476-23486. [PMID: 39110419 DOI: 10.1021/jacs.4c06925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
(Z)-1,2-Disubstituted, trisubstituted, and tetrasubstituted alkenes are not only important units in medicinal chemistry, natural product synthesis, and material science but also useful intermediates in organic synthesis. Development of catalytic stereoselective transformations to access multisubstituted alkenes with various substitution patterns from easily accessible modular starting materials and readily available catalysts is a crucial goal in the field of catalysis. Water is an ideal hydrogen source for catalytic transfer hydrogenation despite of the high difficulty to activate water. Here, we report a cobalt-catalyzed protocol for regio- and stereoselective transfer semihydrogenation of 1,3-dienes to construct a broad scope of (Z)-1,2-disubstituted, (Z)-, (E)-trisubstituted, and tetrasubstituted alkenes in high stereoselectivity with H2O as the hydrogen source. Mechanistic studies revealed that the reactions proceeded through a unique Co(I)/Co(III) cycle and involved a 1,4-cobalt shift process, which is an unprecedented reaction pathway, providing a new platform for modular synthesis of multisubstituted alkenes as well as opportunities for designing novel reaction modes and pushing forward the advancement in organocobalt chemistry.
Collapse
Affiliation(s)
- Heng Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Xiaofeng Jie
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Chemistry and Chemical Engineering, Liaoning Normal University, 850 Huanghe Road, Dalian 116029, China
| | - Ting Su
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Qianghui Wu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Jian Kuang
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Zhao Sun
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yingying Zhao
- School of Chemistry and Chemical Engineering, Liaoning Normal University, 850 Huanghe Road, Dalian 116029, China
| | - Qinglei Chong
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yinlong Guo
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Zhihan Zhang
- College of Chemistry, Central China Normal University, 152 Louyu Road, Wuhan, Hubei 430079, China
| | - Fanke Meng
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- Beijing National Laboratory for Molecular Sciences, Beijing 100871, China
- School of Chemistry and Material Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
4
|
Hoveyda AH, Qin C, Sui XZ, Liu Q, Li X, Nikbakht A. Taking Olefin Metathesis to the Limit: Stereocontrolled Synthesis of Trisubstituted Alkenes. Acc Chem Res 2023; 56:2426-2446. [PMID: 37643361 DOI: 10.1021/acs.accounts.3c00341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
ConspectusIn this Account, we share the story of the development of catalytic olefin metathesis processes that efficiently deliver a wide range of acyclic and macrocyclic E- or Z-trisubstituted alkenes. The tale starts with us unveiling, in collaboration with Richard Schrock and his team, the blueprint in 2009 for the design of kinetically controlled Z-selective olefin metathesis reactions. This paved the way for the development of Mo-, W-, and Ru-based catalysts and strategies for synthesizing countless linear and macrocyclic Z-olefins. Six years later, in 2015, we found that abundant Z-alkene feedstocks, such as oleic acid, can be directly transformed to high-value and more difficult-to-access alkenes through a cross-metathesis reaction promoted by a Ru-catechothiolate complex that we had developed; the approach, later coined stereoretentive olefin metathesis, was extended to the synthesis of E-alkenes.It was all about disubstituted alkenes until when in 2017 we addressed the challenge of accessing stereodefined Z- and E-trisubstituted alkenes, key to medicine and materials research. These transformations can be most effectively catalyzed by Mo monoaryloxides pyrrolide (MAP) and chloride (MAC) complexes. A central aspect of the advance is the merging of olefin metathesis, which delivered trisubstituted alkenyl fluorides, chlorides, and bromides with cross-coupling. These catalytic and stereoretentive transformations can be used in various combinations, thereby enabling access to assorted Z- or E-trisubstituted alkene. Ensuing work led to the emergence of other transformations involving substrates that can be purchased with high stereoisomeric purity, notably E- and Z-trihalo alkenes. Trisubstituted olefins, Z or E, bearing a chemoselectively and stereoretentively alterable F,Cl-terminus or B(pin),Cl-terminus may, thus, be easily and reliably synthesized. Methods for stereoretentive preparation of other alkenyl bromide regioisomers and α,β-unsaturated carboxylic and thiol esters, nitriles, and acid fluorides followed, along with stereoretentive ring-closing metathesis reactions that afford macrocyclic trisubstituted olefins. Z- and E-Macrocyclic trisubstituted olefins, including those that contain little or no entropic support for cyclization (minimally functionalized) and/or are disfavored under substrate-controlled conditions, can now be synthesized. The utility of this latest chapter in the history of olefin metathesis has been highlighted by applications to the synthesis of several biologically active compounds, as well as their analogues, such as those marked by one or more site-specifically incorporated fluorine atoms or more active but higher energy and otherwise unobtainable conformers.The investigations discussed here, which represent every stereoretentive method that has been reported thus far for preparing a trisubstituted olefin, underscore the inimitable power of Mo-based catalysts. This Account also showcases a variety of mechanistic attributes─some for the first time, and each instrumental in solving a problem. Extensive knowledge of mechanistic nuances will be needed if we are to address successfully the next challenging problem, namely, the development of catalysts and strategies that may be used to synthesize a wide range of tetrasubstituted alkenes, especially those that are readily modifiable, with high stereoisomeric purity.
Collapse
Affiliation(s)
- Amir H Hoveyda
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
- Supramolecular Science and Engineering Institute, University of Strasbourg, CNRS, 67000 Strasbourg France
| | - Can Qin
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
- Supramolecular Science and Engineering Institute, University of Strasbourg, CNRS, 67000 Strasbourg France
| | - Xin Zhi Sui
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Qinghe Liu
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Xinghan Li
- Supramolecular Science and Engineering Institute, University of Strasbourg, CNRS, 67000 Strasbourg France
| | - Ali Nikbakht
- Supramolecular Science and Engineering Institute, University of Strasbourg, CNRS, 67000 Strasbourg France
| |
Collapse
|
5
|
Kutateladze DA, Mai BK, Dong Y, Zhang Y, Liu P, Buchwald SL. Stereoselective Synthesis of Trisubstituted Alkenes via Copper Hydride-Catalyzed Alkyne Hydroalkylation. J Am Chem Soc 2023; 145:17557-17563. [PMID: 37540777 PMCID: PMC10569085 DOI: 10.1021/jacs.3c06479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2023]
Abstract
Alkenes are ubiquitous in organic chemistry, yet many classes of alkenes remain challenging to access by current synthetic methodology. Herein, we report a copper hydride-catalyzed approach for the synthesis of Z-configured trisubstituted alkenes with high stereo- and regioselectivity via alkyne hydroalkylation. A DTBM-dppf-supported Cu catalyst was found to be optimal, providing a substantial increase in product yield compared to reactions conducted with dppf as the ligand. DFT calculations show that the DTBM substitution leads to the acceleration of alkyne hydrocupration through combined ground and transition state effects related to preventing catalyst dimerization and enhancing catalyst-substrate dispersion interactions, respectively. Alkyne hydroalkylation was successfully demonstrated with methyl and larger alkyl tosylate electrophiles to produce a variety of (hetero)aryl-substituted alkenes in moderate to high yields with complete selectivity for the Z stereochemically configured products. In the formation of the key C-C bond, computational studies revealed a direct SN2 pathway for alkylation of the vinylcopper intermediate with in situ-formed alkyl iodides.
Collapse
Affiliation(s)
- Dennis A Kutateladze
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Binh Khanh Mai
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Yuyang Dong
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Yu Zhang
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Stephen L Buchwald
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
6
|
Koengeter T, Qin C, Mai BK, Liu Q, Mu Y, Liu P, Hoveyda AH. Catalytic Cross-Metathesis Reactions That Afford E- and Z-Trisubstituted Alkenyl Bromides: Scope, Applications, and Mechanistic Insights. J Am Chem Soc 2023; 145:3774-3785. [PMID: 36724200 PMCID: PMC10075319 DOI: 10.1021/jacs.2c13289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Stereochemically defined trisubstituted alkenes with a bromide and a methyl group at a terminus can be readily and stereoretentively derivatized through catalytic cross-coupling, affording unsaturated fragments found in many bioactive natural products. A direct method for generating such entities would be by stereocontrolled catalytic cross-metathesis (CM). Such methods are scarce however. Here, we present a stereoretentive strategy for CM between tri-, Z- or E-di, or monosubstituted olefins and Z- or E-2-bromo-2-butene, affording an assortment of E- or Z-trisubstituted alkenyl bromides. The majority of the transformations were catalyzed by two Mo monoaryloxide pyrrolide (MAP) complexes, one purchasable and the other accessible by well-established protocols. Substrates, such as feedstock trisubstituted olefins, can be purchased; the alkenyl bromide reagents are commercially available or can be prepared in two steps in a multigram scale. The catalytic process can be used to generate products that contain polar moieties, such as an amine or an alcohol, or sterically hindered alkenes that are α- or β-branched. The utility of the approach is highlighted by a brief and stereocontrolled synthesis of an unsaturated fragment of phomactin A and a concise total synthesis of ambrein. An unexpected outcome of these investigations was the discovery of a new role for the presence of a small-molecule alkene in an olefin metathesis reaction. DFT studies indicate that this additive swiftly reacts with a short-lived Mo alkylidene and probably helps circumvent the formation of catalytically inactive square pyramidal metallacyclobutanes, enhancing the efficiency of a transformation.
Collapse
Affiliation(s)
- Tobias Koengeter
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | - Can Qin
- Supramolecular Science and Engineering Institute, University of Strasbourg, CNRS, 67000 Strasbourg, France
| | - Binh Khanh Mai
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - Qinghe Liu
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | - Yucheng Mu
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - Amir H. Hoveyda
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, USA
- Supramolecular Science and Engineering Institute, University of Strasbourg, CNRS, 67000 Strasbourg, France
| |
Collapse
|
7
|
Qin C, Koengeter T, Zhao F, Mu Y, Liu F, Houk KN, Hoveyda AH. Z-Trisubstituted α,β-Unsaturated Esters and Acid Fluorides through Stereocontrolled Catalytic Cross-Metathesis. J Am Chem Soc 2023; 145:3748-3762. [PMID: 36720176 PMCID: PMC10075318 DOI: 10.1021/jacs.2c13245] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Catalytic cross-metathesis (CM) reactions that can generate trisubstituted alkenes in high stereoisomeric purity are important but remain limited in scope. Here, CM reactions are introduced that generate Z-trisubstituted α-methyl, α,β-unsaturated, alkyl and aryl esters, thiol esters, and acid fluorides. Transformations are promoted by a Mo bis-aryloxide, a monoaryloxide pyrrolide, or a monoaryloxide chloride complex; air-stable and commercially available paraffin tablets containing a Mo complex may also be used. Alkyl, aryl, and silyl carboxylic esters as well as thiol esters and acid fluoride reagents are either purchasable or can be prepared in one step. Products were obtained in 55-95% yield and in 88:12->98:2 Z/E ratio (typically >95:5). The applicability of the approach is highlighted by a two-step conversion of citronellol to an isomintlactone precursor (1.7 g, 73% yield, and 97:3 Z/E) and a single-step transformation of lanosterol acetate to 3-epi-anwuweizic acid (72% yield and 94:6 Z/E). Included are the outcomes of DFT studies, regarding several initially puzzling catalyst activity trends, providing the following information: (1) it is key that a disubstituted Mo alkylidene, generated by a competing homo-metathesis (HM) pathway, can re-enter the productive CM cycle. (2) Whereas in a CM cycle the formation of a molybdacyclobutane is likely turnover-limiting, the collapse of related metallacycles in a HM cycle is probably rate-determining. It is therefore the relative energy barrier required for these steps that determines whether CM or HM is dominant with a particular complex.
Collapse
Affiliation(s)
- Can Qin
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, USA
- Supramolecular Science and Engineering Institute, University of Strasbourg, CNRS, 67000 Strasbourg, France
| | - Tobias Koengeter
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | - Fengyue Zhao
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yucheng Mu
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | - Fang Liu
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - K. N. Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
| | - Amir H. Hoveyda
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, USA
- Supramolecular Science and Engineering Institute, University of Strasbourg, CNRS, 67000 Strasbourg, France
| |
Collapse
|
8
|
Young DW, Chamakuri S. Trisubstituted triumph. Nat Chem 2022; 14:595-597. [PMID: 35668207 DOI: 10.1038/s41557-022-00959-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Damian W Young
- Center for Drug Discovery, Department of Pathology and Immunology, Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, USA.
| | - Srinivas Chamakuri
- Center for Drug Discovery, Department of Pathology and Immunology, Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|