1
|
Wu P, Wei L, Yao R, Liu B, Yang SL, Qiao L, Wang X, Gong W, Liu Y, Cui Y, Dong J. Recent Advances in Crystalline Porous Materials for Antibacterial Applications. Chem Asian J 2025:e202401961. [PMID: 40195822 DOI: 10.1002/asia.202401961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 03/20/2025] [Accepted: 03/24/2025] [Indexed: 04/09/2025]
Abstract
Bacterial infections remain a significant and escalating threat to global health, exacerbated by multidrug-resistant strains that undermine the efficacy of conventional antibiotics. This pressing issue underscores the urgent need for the development of new antimicrobial materials. Among these, molecular-based crystalline porous materials, such as metal-organic frameworks (MOFs), covalent organic frameworks (COFs), hydrogen-bonded organic frameworks (HOFs), and supramolecular assembly frameworks (SAFs), have emerged as a promising class of antibacterial agents. These materials exhibit well-defined crystallinity and tunable structures, offering exceptional versatility for antibacterial applications. Notably, their high surface area, adjustable pore size, and potential for functionalization enable efficient loading and controlled release of antibacterial agents, including metal ions and antibacterial molecules. This review provides a comprehensive analysis of recent advancements in this field, highlighting design strategies, structural diversity, antibacterial mechanisms, and applications. Finally, we discuss the current challenges and outline future opportunities for the practical development and deployment of antibacterial porous materials.
Collapse
Affiliation(s)
- Peijie Wu
- School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Luofei Wei
- School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Rui Yao
- School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Bingyu Liu
- School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Shuai-Liang Yang
- School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Liang Qiao
- School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Xiao Wang
- School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Wei Gong
- School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Yan Liu
- School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Yong Cui
- School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Jinqiao Dong
- School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| |
Collapse
|
2
|
Li H, Chen C, Li Q, Kong XJ, Liu Y, Ji Z, Zou S, Hong M, Wu M. An Ultra-stable Supramolecular Framework Based on Consecutive Side-by-side Hydrogen Bonds for One-step C 2H 4/C 2H 6 Separation. Angew Chem Int Ed Engl 2024; 63:e202401754. [PMID: 38380833 DOI: 10.1002/anie.202401754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/19/2024] [Accepted: 02/19/2024] [Indexed: 02/22/2024]
Abstract
The one-step efficient separation of high-purity C2H4 from C2H4/C2H6 mixtures by hydrogen-bonded organic frameworks (HOFs) faces two problems: lack of strategies for constructing stable pores in HOFs and how to obtain high C2H6 selectivity. Herein, we have developed a microporous Mortise-Tenon-type HOF (MTHOF-1, MT is short for Mortise-Tenon structure) with a new self-assembly mode for C2H4/C2H6 separation. Unlike previous HOFs which usually possess discrete head-to-head hydrogen bonds, MTHOF-1 is assembled by unique consecutive side-by-side hydrogen bonds, which result in mortise-and-tenon pores decorated with orderly arranged amide groups and benzene rings. As expected, MTHOF-1 exhibits excellent stability under various conditions and shows clear separation trends for C2H6/C2H4. The IAST selectivity is as high as 2.15 at 298 K. More importantly, dynamic breakthrough experiments have demonstrated that MTHOF-1 can effectively separate the C2H6/C2H4 feed gas to obtain polymer-grade C2H4 in one step even under high-humidity conditions.
Collapse
Affiliation(s)
- Hengbo Li
- State Key Lab of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Cheng Chen
- State Key Lab of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Qing Li
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Xiang Jian Kong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University Xiamen, Fujian, 361005, China
| | - Yuanzheng Liu
- State Key Lab of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Zhenyu Ji
- State Key Lab of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Shuixiang Zou
- State Key Lab of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Maochun Hong
- State Key Lab of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Mingyan Wu
- State Key Lab of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
3
|
Roy S, Chaturvedi A, Dey S, Puneeth Kumar DRGKR, Pahan S, Panda Mahapatra S, Mandal P, Gopi HN. Anion Tuned Structural Modulation and Nonlinear Optical Effects of Metal-Ion Directed 3 10 -Helix Networks. Chemistry 2023; 29:e202303135. [PMID: 37867145 DOI: 10.1002/chem.202303135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/13/2023] [Accepted: 10/19/2023] [Indexed: 10/24/2023]
Abstract
Metals play an important role in the structure and functions of various proteins. The combination of metal ions and peptides have been emerging as an attractive field to create advanced structures and biomaterials. Here, we are reporting the anion-influenced, silver ion coordinated diverse networks of designed short tripeptide 310 -helices with terminal pyridyl groups. The short peptides adopted classical right-handed, left-handed and 310 EL -helical conformations in the presence of different silver salts. The peptides have displayed conformational flexibility to accommodate different sizes and interactions of anions to yield a variety of metal-coordinated networks. The complexes of metal ions and peptides have shown different porous networks, right- and left-handed helical polymers, transformation of helix into superhelix and 2 : 2 metal-peptide macrocycles. Further, the metal-peptide crystals with inherent dipoles of helical peptides gave striking second harmonic generation response. The optical energy upconversion from NIR to red and green light is demonstrated. Overall, we have shown the utilization of short 310 -helices for the construction of diverse metal-coordinated helical networks and notable non-linear optical effects.
Collapse
Affiliation(s)
- Souvik Roy
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, 411008, Pune, India
| | - Aman Chaturvedi
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, 411008, Pune, India
| | - Sanjit Dey
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, 411008, Pune, India
| | - DRGKoppalu R Puneeth Kumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, 411008, Pune, India
| | - Saikat Pahan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, 411008, Pune, India
| | - Souvik Panda Mahapatra
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, 411008, Pune, India
| | - Pankaj Mandal
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, 411008, Pune, India
| | - Hosahudya N Gopi
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, 411008, Pune, India
| |
Collapse
|
4
|
He C, Zou YH, Si DH, Chen ZA, Liu TF, Cao R, Huang YB. A porous metal-organic cage liquid for sustainable CO 2 conversion reactions. Nat Commun 2023; 14:3317. [PMID: 37286561 DOI: 10.1038/s41467-023-39089-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/26/2023] [Indexed: 06/09/2023] Open
Abstract
Porous liquids are fluids with the permanent porosity, which can overcome the poor gas solubility limitations of conventional porous solid materials for three phase gas-liquid-solid reactions. However, preparation of porous liquids still requires the complicated and tedious use of porous hosts and bulky liquids. Herein, we develop a facile method to produce a porous metal-organic cage (MOC) liquid (Im-PL-Cage) by self-assembly of long polyethylene glycol (PEG)-imidazolium chain functional linkers, calixarene molecules and Zn ions. The Im-PL-Cage in neat liquid has permanent porosity and fluidity, endowing it with a high capacity of CO2 adsorption. Thus, the CO2 stored in an Im-PL-Cage can be efficiently converted to the value-added formylation product in the atmosphere, which far exceeds the porous MOC solid and nonporous PEG-imidazolium counterparts. This work offers a new method to prepare neat porous liquids for catalytic transformation of adsorbed gas molecules.
Collapse
Affiliation(s)
- Chang He
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, P. R. China
- College of Ecological Environment and Urban Construction, Fujian University of Technology, 350118, Fuzhou, Fujian, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Yu-Huang Zou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, P. R. China
| | - Duan-Hui Si
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, P. R. China
| | - Zi-Ao Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Tian-Fu Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Rong Cao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, P. R. China.
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China.
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, 350108, Fuzhou, Fujian, P. R. China.
| | - Yuan-Biao Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, P. R. China.
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China.
| |
Collapse
|
5
|
Li Y, Gao H, Jin Y, Zhao R, Huang Y. Peptide-derived coordination frameworks for biomimetic and selective separation. Anal Bioanal Chem 2023:10.1007/s00216-023-04761-0. [PMID: 37233765 DOI: 10.1007/s00216-023-04761-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 05/02/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023]
Abstract
Peptide-derived metal-organic frameworks (PMOFs) have emerged as a class of biomimetic materials with attractive performances in analytical and bioanalytical chemistry. The incorporation of biomolecule peptides gives the frameworks conformational flexibility, guest adaptability, built-in chirality, and molecular recognition ability, which greatly accelerate the applications of PMOFs in enantiomeric separation, affinity separation, and the enrichment of bioactive species from complicated samples. This review focuses on the recent advances in the engineering and applications of PMOFs in selective separation. The unique biomimetic size-, enantio-, and affinity-selective performances for separation are discussed along with the chemical structures and functions of MOFs and peptides. Updates of the applications of PMOFs in adaptive separation of small molecules, chiral separation of drug molecules, and affinity isolation of bioactive species are summarized. Finally, the promising future and remaining challenges of PMOFs for selective separation of complex biosamples are discussed.
Collapse
Affiliation(s)
- Yongming Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Han Gao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yulong Jin
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rui Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanyan Huang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|