1
|
Buchanan D, Mori S, Chadli A, Panda SS. Natural Cyclic Peptides: Synthetic Strategies and Biomedical Applications. Biomedicines 2025; 13:240. [PMID: 39857823 PMCID: PMC11763372 DOI: 10.3390/biomedicines13010240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/12/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Natural cyclic peptides, a diverse class of bioactive compounds, have been isolated from various natural sources and are renowned for their extensive structural variability and broad spectrum of medicinal properties. Over 40 cyclic peptides or their derivatives are currently approved as medicines, underscoring their significant therapeutic potential. These compounds are employed in diverse roles, including antibiotics, antifungals, antiparasitics, immune modulators, and anti-inflammatory agents. Their unique ability to combine high specificity with desirable pharmacokinetic properties makes them valuable tools in addressing unmet medical needs, such as combating drug-resistant pathogens and targeting challenging biological pathways. Due to the typically low concentrations of cyclic peptides in nature, effective synthetic strategies are indispensable for their acquisition, characterization, and biological evaluation. Cyclization, a critical step in their synthesis, enhances metabolic stability, bioavailability, and receptor binding affinity. Advances in synthetic methodologies-such as solid-phase peptide synthesis (SPPS), chemoenzymatic approaches, and orthogonal protection strategies-have transformed cyclic peptide production, enabling greater structural complexity and precision. This review compiles recent progress in the total synthesis and biological evaluation of natural cyclic peptides from 2017 onward, categorized by cyclization strategies: head-to-tail; head-to-side-chain; tail-to-side-chain; and side-chain-to-side-chain strategies. Each account includes retrosynthetic analyses, synthetic advancements, and biological data to illustrate their therapeutic relevance and innovative methodologies. Looking ahead, the future of cyclic peptides in drug discovery is bright. Emerging trends, including integrating computational tools for rational design, novel cyclization techniques to improve pharmacokinetic profiles, and interdisciplinary collaboration among chemists, biologists, and computational scientists, promise to expand the scope of cyclic peptide-based therapeutics. These advancements can potentially address complex diseases and advance the broader field of biological drug development.
Collapse
Affiliation(s)
- Devan Buchanan
- Department of Chemistry and Biochemistry, Augusta University, Augusta, GA 30912, USA; (D.B.); (S.M.)
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA;
| | - Shogo Mori
- Department of Chemistry and Biochemistry, Augusta University, Augusta, GA 30912, USA; (D.B.); (S.M.)
| | - Ahmed Chadli
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA;
| | - Siva S. Panda
- Department of Chemistry and Biochemistry, Augusta University, Augusta, GA 30912, USA; (D.B.); (S.M.)
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
2
|
Liu H, Zhang H, IJzerman AP, Guo D. The translational value of ligand-receptor binding kinetics in drug discovery. Br J Pharmacol 2024; 181:4117-4129. [PMID: 37705429 DOI: 10.1111/bph.16241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/27/2023] [Accepted: 09/01/2023] [Indexed: 09/15/2023] Open
Abstract
The translation of in vitro potency of a candidate drug, as determined by traditional pharmacology metrics (such as EC50/IC50 and KD/Ki values), to in vivo efficacy and safety is challenging. Residence time, which represents the duration of drug-target interaction, can be part of a more comprehensive understanding of the dynamic nature of drug-target interactions in vivo, thereby enabling better prediction of drug efficacy and safety. As a consequence, a prolonged residence time may help in achieving sustained pharmacological activity, while transient interactions with shorter residence times may be favourable for targets associated with side effects. Therefore, integration of residence time into the early stages of drug discovery and development has yielded a number of clinical candidates with promising in vivo efficacy and safety profiles. Insights from residence time research thus contribute to the translation of in vitro potency to in vivo efficacy and safety. Further research and advances in measuring and optimizing residence time will bring a much-needed addition to the drug discovery process and the development of safer and more effective drugs. In this review, we summarize recent research progress on residence time, highlighting its importance from a translational perspective.
Collapse
Affiliation(s)
- Hongli Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Haoran Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Adriaan P IJzerman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, The Netherlands
| | - Dong Guo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
3
|
Zhang W, Wang J, Shan C. The eEF1A protein in cancer: Clinical significance, oncogenic mechanisms, and targeted therapeutic strategies. Pharmacol Res 2024; 204:107195. [PMID: 38677532 DOI: 10.1016/j.phrs.2024.107195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/09/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
Eukaryotic elongation factor 1A (eEF1A) is among the most abundant proteins in eukaryotic cells. Evolutionarily conserved across species, eEF1A is in charge of translation elongation for protein biosynthesis as well as a plethora of non-translational moonlighting functions for cellular homeostasis. In malignant cells, however, eEF1A becomes a pleiotropic driver of cancer progression via a broad diversity of pathways, which are not limited to hyperactive translational output. In the past decades, mounting studies have demonstrated the causal link between eEF1A and carcinogenesis, gaining deeper insights into its multifaceted mechanisms and corroborating its value as a prognostic marker in various cancers. On the other hand, an increasing number of natural and synthetic compounds were discovered as anticancer eEF1A-targeting inhibitors. Among them, plitidepsin was approved for the treatment of multiple myeloma whereas metarrestin was currently under clinical development. Despite significant achievements in these two interrelated fields, hitherto there lacks a systematic examination of the eEF1A protein in the context of cancer research. Therefore, the present work aims to delineate its clinical implications, molecular oncogenic mechanisms, and targeted therapeutic strategies as reflected in the ever expanding body of literature, so as to deepen mechanistic understanding of eEF1A-involved tumorigenesis and inspire the development of eEF1A-targeted chemotherapeutics and biologics.
Collapse
Affiliation(s)
- Weicheng Zhang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, People's Republic of China.
| | - Jiyan Wang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, People's Republic of China
| | - Changliang Shan
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, People's Republic of China.
| |
Collapse
|
4
|
Owens SL, Ahmed SR, Lang RM, Stewart LE, Mori S. Natural Products That Contain Higher Homologated Amino Acids. Chembiochem 2024; 25:e202300822. [PMID: 38487927 PMCID: PMC11386549 DOI: 10.1002/cbic.202300822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/13/2024] [Indexed: 04/11/2024]
Abstract
This review focuses on discussing natural products (NPs) that contain higher homologated amino acids (homoAAs) in the structure as well as the proposed and characterized biosynthesis of these non-proteinogenic amino acids. Homologation of amino acids includes the insertion of a methylene group into its side chain. It is not a very common modification found in NP biosynthesis as approximately 450 homoAA-containing NPs have been isolated from four bacterial phyla (Cyanobacteria, Actinomycetota, Myxococcota, and Pseudomonadota), two fungal phyla (Ascomycota and Basidiomycota), and one animal phylum (Porifera), except for a few examples. Amino acids that are found to be homologated and incorporated in the NP structures include the following ten amino acids: alanine, arginine, cysteine, isoleucine, glutamic acid, leucine, phenylalanine, proline, serine, and tyrosine, where isoleucine, leucine, phenylalanine, and tyrosine share the comparable enzymatic pathway. Other amino acids have their individual homologation pathway (arginine, proline, and glutamic acid for bacteria), likely utilize the primary metabolic pathway (alanine and glutamic acid for fungi), or have not been reported (cysteine and serine). Despite its possible high potential in the drug discovery field, the biosynthesis of homologated amino acids has a large room to explore for future combinatorial biosynthesis and metabolic engineering purpose.
Collapse
Affiliation(s)
- Skyler L. Owens
- Department of Chemistry and Biochemistry, Augusta University, 1120 15th Street, Augusta, GA 30912
| | - Shopno R. Ahmed
- Department of Chemistry and Biochemistry, Augusta University, 1120 15th Street, Augusta, GA 30912
| | - Rebecca M. Lang
- Department of Chemistry and Biochemistry, Augusta University, 1120 15th Street, Augusta, GA 30912
| | - Laura E. Stewart
- Department of Chemistry and Biochemistry, Augusta University, 1120 15th Street, Augusta, GA 30912
| | - Shogo Mori
- Department of Chemistry and Biochemistry, Augusta University, 1120 15th Street, Augusta, GA 30912
| |
Collapse
|
5
|
Haase N, Holtkamp W, Christ S, Heinemann D, Rodnina MV, Rudorf S. Decomposing bulk signals to reveal hidden information in processive enzyme reactions: A case study in mRNA translation. PLoS Comput Biol 2024; 20:e1011918. [PMID: 38442108 PMCID: PMC10942256 DOI: 10.1371/journal.pcbi.1011918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 03/15/2024] [Accepted: 02/14/2024] [Indexed: 03/07/2024] Open
Abstract
Processive enzymes like polymerases or ribosomes are often studied in bulk experiments by monitoring time-dependent signals, such as fluorescence time traces. However, due to biomolecular process stochasticity, ensemble signals may lack the distinct features of single-molecule signals. Here, we demonstrate that, under certain conditions, bulk signals from processive reactions can be decomposed to unveil hidden information about individual reaction steps. Using mRNA translation as a case study, we show that decomposing a noisy ensemble signal generated by the translation of mRNAs with more than a few codons is an ill-posed problem, addressable through Tikhonov regularization. We apply our method to the fluorescence signatures of in-vitro translated LepB mRNA and determine codon-position dependent translation rates and corresponding state-specific fluorescence intensities. We find a significant change in fluorescence intensity after the fourth and the fifth peptide bond formation, and show that both codon position and encoded amino acid have an effect on the elongation rate. This demonstrates that our approach enhances the information content extracted from bulk experiments, thereby expanding the range of these time- and cost-efficient methods.
Collapse
Affiliation(s)
- Nadin Haase
- Leibniz University Hannover, Institute of Cell Biology and Biophysics, Hannover, Germany
| | - Wolf Holtkamp
- Max Planck Institute for Multidisciplinary Sciences, Department of Physical Biochemistry, Göttingen, Germany
- Paul-Ehrlich-Institut, Division of Allergology, Langen, Germany
| | - Simon Christ
- Leibniz University Hannover, Institute of Cell Biology and Biophysics, Hannover, Germany
| | - Dag Heinemann
- Leibniz University Hannover, Hannover Centre for Optical Technologies (HOT), Hannover, Germany
- Leibniz University Hannover, Institute of Horticultural Production Systems, Hannover, Germany
- Leibniz University Hannover, PhoenixD Cluster of Excellence, Hannover, Germany
| | - Marina V. Rodnina
- Max Planck Institute for Multidisciplinary Sciences, Department of Physical Biochemistry, Göttingen, Germany
| | - Sophia Rudorf
- Leibniz University Hannover, Institute of Cell Biology and Biophysics, Hannover, Germany
| |
Collapse
|
6
|
Zhang D, Zhu L, Wang F, Li P, Wang Y, Gao Y. Molecular mechanisms of eukaryotic translation fidelity and their associations with diseases. Int J Biol Macromol 2023; 242:124680. [PMID: 37141965 DOI: 10.1016/j.ijbiomac.2023.124680] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/27/2023] [Indexed: 05/06/2023]
Abstract
Converting genetic information into functional proteins is a complex, multi-step process, with each step being tightly regulated to ensure the accuracy of translation, which is critical to cellular health. In recent years, advances in modern biotechnology, especially the development of cryo-electron microscopy and single-molecule techniques, have enabled a clearer understanding of the mechanisms of protein translation fidelity. Although there are many studies on the regulation of protein translation in prokaryotes, and the basic elements of translation are highly conserved in prokaryotes and eukaryotes, there are still great differences in the specific regulatory mechanisms. This review describes how eukaryotic ribosomes and translation factors regulate protein translation and ensure translation accuracy. However, a certain frequency of translation errors does occur in translation, so we describe diseases that arise when the rate of translation errors reaches or exceeds a threshold of cellular tolerance.
Collapse
Affiliation(s)
- Dejiu Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Lei Zhu
- College of Basic Medical, Qingdao Binhai University, Qingdao, China
| | - Fei Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China.
| | - Yanyan Gao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
7
|
Holm M, Natchiar SK, Rundlet EJ, Myasnikov AG, Watson ZL, Altman RB, Wang HY, Taunton J, Blanchard SC. mRNA decoding in human is kinetically and structurally distinct from bacteria. Nature 2023; 617:200-207. [PMID: 37020024 PMCID: PMC10156603 DOI: 10.1038/s41586-023-05908-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 03/01/2023] [Indexed: 04/07/2023]
Abstract
In all species, ribosomes synthesize proteins by faithfully decoding messenger RNA (mRNA) nucleotide sequences using aminoacyl-tRNA substrates. Current knowledge of the decoding mechanism derives principally from studies on bacterial systems1. Although key features are conserved across evolution2, eukaryotes achieve higher-fidelity mRNA decoding than bacteria3. In human, changes in decoding fidelity are linked to ageing and disease and represent a potential point of therapeutic intervention in both viral and cancer treatment4-6. Here we combine single-molecule imaging and cryogenic electron microscopy methods to examine the molecular basis of human ribosome fidelity to reveal that the decoding mechanism is both kinetically and structurally distinct from that of bacteria. Although decoding is globally analogous in both species, the reaction coordinate of aminoacyl-tRNA movement is altered on the human ribosome and the process is an order of magnitude slower. These distinctions arise from eukaryote-specific structural elements in the human ribosome and in the elongation factor eukaryotic elongation factor 1A (eEF1A) that together coordinate faithful tRNA incorporation at each mRNA codon. The distinct nature and timing of conformational changes within the ribosome and eEF1A rationalize how increased decoding fidelity is achieved and potentially regulated in eukaryotic species.
Collapse
Affiliation(s)
- Mikael Holm
- Department of Structural Biology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - S Kundhavai Natchiar
- Department of Structural Biology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Emily J Rundlet
- Department of Structural Biology, St Jude Children's Research Hospital, Memphis, TN, USA
- Tri-Institutional PhD Program in Chemical Biology, Weill Cornell Medicine, New York, NY, USA
| | - Alexander G Myasnikov
- Department of Structural Biology, St Jude Children's Research Hospital, Memphis, TN, USA
- Dubochet Center for Imaging (DCI), EPFL, Lausanne, Switzerland
| | - Zoe L Watson
- Department of Structural Biology, St Jude Children's Research Hospital, Memphis, TN, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA
| | - Roger B Altman
- Department of Structural Biology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Hao-Yuan Wang
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
| | - Jack Taunton
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
| | - Scott C Blanchard
- Department of Structural Biology, St Jude Children's Research Hospital, Memphis, TN, USA.
- Chemical Biology & Therapeutics, St Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
8
|
Zhang H, Cai J, Yu S, Sun B, Zhang W. Anticancer Small-Molecule Agents Targeting Eukaryotic Elongation Factor 1A: State of the Art. Int J Mol Sci 2023; 24:ijms24065184. [PMID: 36982256 PMCID: PMC10049629 DOI: 10.3390/ijms24065184] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/29/2023] Open
Abstract
Eukaryotic elongation factor 1A (eEF1A) canonically delivers amino acyl tRNA to the ribosomal A site during the elongation stage of protein biosynthesis. Yet paradoxically, the oncogenic nature of this instrumental protein has long been recognized. Consistently, eEF1A has proven to be targeted by a wide assortment of small molecules with excellent anticancer activity, among which plitidepsin has been granted approval for the treatment of multiple myeloma. Meanwhile, metarrestin is currently under clinical development for metastatic cancers. Bearing these exciting advances in mind, it would be desirable to present a systematic up-to-date account of the title topic, which, to the best of our knowledge, has thus far been unavailable in the literature. The present review summarizes recent advances in eEF1A-targeting anticancer agents, both naturally occurring and synthetically crafted, with regard to their discovery or design, target identification, structure–activity relationship, and mode of action. Their structural diversity and differential eEF1A-targeting mechanisms warrant continuing research in pursuit of curing eEF1A-driven malignancy.
Collapse
|
9
|
Zhang H, Tian Y, Yuan X, Xie F, Yu S, Cai J, Sun B, Shan C, Zhang W. Site-directed late-stage diversification of macrocyclic nannocystins facilitating anticancer SAR and mode of action studies. RSC Med Chem 2023; 14:299-312. [PMID: 36846368 PMCID: PMC9945860 DOI: 10.1039/d2md00393g] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Nannocystins are a family of 21-membered cyclodepsipeptides with excellent anticancer activity. However, their macrocyclic architecture poses a significant challenge to structure modification. Herein, this issue is addressed by leveraging the strategy of post-macrocyclization diversification. In particular, a novel serine-incorporating nannocystin was designed so that its appending hydroxyl group could diversify into a wide variety of side chain analogues. Such effort facilitated not only structure-activity correlation at the subdomain of interest, but also the development of a macrocyclic coumarin-labeled fluorescence probe. Uptake experiments indicated good cell permeability of the probe, and endoplasmic reticulum was identified as its subcellular localization site.
Collapse
Affiliation(s)
- Han Zhang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University Tianjin People's Republic of China
| | - Yunfeng Tian
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University Tianjin People's Republic of China
| | - Xiaoya Yuan
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University Tianjin People's Republic of China
| | - Fei Xie
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University Tianjin People's Republic of China
| | - Siqi Yu
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University Tianjin People's Republic of China
| | - Jiayou Cai
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University Tianjin People's Republic of China
| | - Bin Sun
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University Tianjin People's Republic of China
| | - Changliang Shan
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University Tianjin People's Republic of China
| | - Weicheng Zhang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University Tianjin People's Republic of China
| |
Collapse
|
10
|
Kochavi A, Lovecchio D, Faller WJ, Agami R. Proteome diversification by mRNA translation in cancer. Mol Cell 2023; 83:469-480. [PMID: 36521491 DOI: 10.1016/j.molcel.2022.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 12/15/2022]
Abstract
mRNA translation is a highly conserved and tightly controlled mechanism for protein synthesis and is well known to be altered by oncogenes to promote cancer development. This distorted mRNA translation is accompanied by the vulnerability of cancer to inhibitors of key mRNA translation components. Novel studies also suggest that these alternations could be utilized for immunotherapy. Ribosome heterogeneity and alternative responses to nutrient shortages, which aid cancer growth and spread, are proposed to elicit aberrant protein production but may also result in previously unidentified therapeutic targets, such as the presentation of cancer-specific peptides at the surface of cancer cells (neoepitopes). This review will assess the driving forces in tRNA and ribosome function that underlie proteome diversification due to alterations in mRNA translation in cancer cells.
Collapse
Affiliation(s)
- Adva Kochavi
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands; Oncode Institute, the Netherlands
| | - Domenica Lovecchio
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands; Oncode Institute, the Netherlands
| | - William James Faller
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands
| | - Reuven Agami
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands; Oncode Institute, the Netherlands; Erasmus MC, Rotterdam University, Rotterdam, the Netherlands.
| |
Collapse
|
11
|
Oltion K, Carelli JD, Yang T, See SK, Wang HY, Kampmann M, Taunton J. An E3 ligase network engages GCN1 to promote the degradation of translation factors on stalled ribosomes. Cell 2023; 186:346-362.e17. [PMID: 36638793 PMCID: PMC9994462 DOI: 10.1016/j.cell.2022.12.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 11/29/2022] [Accepted: 12/13/2022] [Indexed: 01/14/2023]
Abstract
Ribosomes frequently stall during mRNA translation, resulting in the context-dependent activation of quality control pathways to maintain proteostasis. However, surveillance mechanisms that specifically respond to stalled ribosomes with an occluded A site have not been identified. We discovered that the elongation factor-1α (eEF1A) inhibitor, ternatin-4, triggers the ubiquitination and degradation of eEF1A on stalled ribosomes. Using a chemical genetic approach, we unveiled a signaling network comprising two E3 ligases, RNF14 and RNF25, which are required for eEF1A degradation. Quantitative proteomics revealed the RNF14 and RNF25-dependent ubiquitination of eEF1A and a discrete set of ribosomal proteins. The ribosome collision sensor GCN1 plays an essential role by engaging RNF14, which directly ubiquitinates eEF1A. The site-specific, RNF25-dependent ubiquitination of the ribosomal protein RPS27A/eS31 provides a second essential signaling input. Our findings illuminate a ubiquitin signaling network that monitors the ribosomal A site and promotes the degradation of stalled translation factors, including eEF1A and the termination factor eRF1.
Collapse
Affiliation(s)
- Keely Oltion
- Chemistry and Chemical Biology Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jordan D Carelli
- Chemistry and Chemical Biology Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Tangpo Yang
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Stephanie K See
- Chemistry and Chemical Biology Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Hao-Yuan Wang
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Martin Kampmann
- Institute for Neurodegenerative Diseases, Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Jack Taunton
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
12
|
Juette MF, Carelli JD, Rundlet EJ, Brown A, Shao S, Ferguson A, Wasserman MR, Holm M, Taunton J, Blanchard SC. Didemnin B and ternatin-4 differentially inhibit conformational changes in eEF1A required for aminoacyl-tRNA accommodation into mammalian ribosomes. eLife 2022; 11:e81608. [PMID: 36264623 PMCID: PMC9584604 DOI: 10.7554/elife.81608] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/03/2022] [Indexed: 12/11/2022] Open
Abstract
Rapid and accurate mRNA translation requires efficient codon-dependent delivery of the correct aminoacyl-tRNA (aa-tRNA) to the ribosomal A site. In mammals, this fidelity-determining reaction is facilitated by the GTPase elongation factor-1 alpha (eEF1A), which escorts aa-tRNA as an eEF1A(GTP)-aa-tRNA ternary complex into the ribosome. The structurally unrelated cyclic peptides didemnin B and ternatin-4 bind to the eEF1A(GTP)-aa-tRNA ternary complex and inhibit translation but have different effects on protein synthesis in vitro and in vivo. Here, we employ single-molecule fluorescence imaging and cryogenic electron microscopy to determine how these natural products inhibit translational elongation on mammalian ribosomes. By binding to a common site on eEF1A, didemnin B and ternatin-4 trap eEF1A in an intermediate state of aa-tRNA selection, preventing eEF1A release and aa-tRNA accommodation on the ribosome. We also show that didemnin B and ternatin-4 exhibit distinct effects on the dynamics of aa-tRNA selection that inform on observed disparities in their inhibition efficacies and physiological impacts. These integrated findings underscore the value of dynamics measurements in assessing the mechanism of small-molecule inhibition and highlight potential of single-molecule methods to reveal how distinct natural products differentially impact the human translation mechanism.
Collapse
Affiliation(s)
- Manuel F Juette
- Department of Physiology and Biophysics, Weill Cornell MedicineNew YorkUnited States
| | - Jordan D Carelli
- Chemistry and Chemical Biology Graduate Program, University of California, San FranciscoSan FranciscoUnited States
| | - Emily J Rundlet
- Department of Physiology and Biophysics, Weill Cornell MedicineNew YorkUnited States
- Department of Structural Biology, St. Jude Children's Research HospitalMemphisUnited States
- Tri-Institutional PhD Program in Chemical Biology, Weill Cornell MedicineNew YorkUnited States
| | - Alan Brown
- MRC-LMB, Francis Crick AvenueCambridgeUnited Kingdom
| | - Sichen Shao
- MRC-LMB, Francis Crick AvenueCambridgeUnited Kingdom
| | - Angelica Ferguson
- Department of Physiology and Biophysics, Weill Cornell MedicineNew YorkUnited States
| | - Michael R Wasserman
- Department of Physiology and Biophysics, Weill Cornell MedicineNew YorkUnited States
| | - Mikael Holm
- Department of Physiology and Biophysics, Weill Cornell MedicineNew YorkUnited States
- Department of Structural Biology, St. Jude Children's Research HospitalMemphisUnited States
| | - Jack Taunton
- Chemistry and Chemical Biology Graduate Program, University of California, San FranciscoSan FranciscoUnited States
| | - Scott C Blanchard
- Department of Physiology and Biophysics, Weill Cornell MedicineNew YorkUnited States
- Department of Structural Biology, St. Jude Children's Research HospitalMemphisUnited States
| |
Collapse
|
13
|
Dub PA. Isolating intermediates. Nat Chem 2022; 14:1212-1213. [PMID: 36167840 DOI: 10.1038/s41557-022-01051-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|