1
|
Liu H, Tang K, Zeng H, Chen L, Liang H, Jia Y. Desymmetrization strategy in natural product total synthesis. Chem Soc Rev 2025. [PMID: 40423236 DOI: 10.1039/d5cs00092k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2025]
Abstract
Desymmetrization strategies have emerged as practical methods for the efficient construction of desired molecules from readily accessible symmetrical precursors. This approach has found widespread application in natural product total synthesis as it simplifies the materials preparation, enables the precise control of chirality formation, and inspires innovative retrosynthetic analysis. Here, we summarize recent advances (2014-2024) of the applications of desymmetrization strategies in natural product total synthesis, and showcase their advantages in designing new reactions and synthetic strategies, with the aim to foster their wider application in total synthesis.
Collapse
Affiliation(s)
- Haichao Liu
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Guangxi Key Laboratory of Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, Guangxi, P. R. China.
| | - Kai Tang
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Guangxi Key Laboratory of Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, Guangxi, P. R. China.
| | - Hao Zeng
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Guangxi Key Laboratory of Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, Guangxi, P. R. China.
| | - Lijun Chen
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China.
| | - Hong Liang
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Guangxi Key Laboratory of Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, Guangxi, P. R. China.
| | - Yanxing Jia
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China.
| |
Collapse
|
2
|
Bian JQ, Qin L, Fan LW, Fu J, Cheng YF, Zhang YF, Song Q, Wang PF, Li ZL, Gu QS, Yu P, Tang JB, Liu XY. Cu(I)-catalysed chemo-, regio-, and stereoselective radical 1,2-carboalkynylation with two different terminal alkynes. Nat Commun 2025; 16:4922. [PMID: 40425579 PMCID: PMC12117167 DOI: 10.1038/s41467-025-60012-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 05/12/2025] [Indexed: 05/29/2025] Open
Abstract
Transition-metal-catalysed asymmetric multicomponent reactions with two similar substrates often suffer from the lack of strategies to control the chemo-, regio-, and stereoselectivity of these substrates due to the close similarity in the chemical structures and properties of each reagent. Here, we describe a Cu(I)-catalysed asymmetric radical 1,2-carboalkynylation of two different terminal alkynes and alkyl halides with high chemo-, regio-, and stereoselectivity by using sterically bulky chiral tridentate anionic N,N,P-ligands and modulating alkynes with different electronic properties to circumvent above-mentioned challenges. This method features good substrate scope, high functional group tolerance of two different terminal alkynes, and diverse alkyl halides, providing universal access to a series of useful axially chiral 1,3-enyne building blocks.
Collapse
Affiliation(s)
- Jun-Qian Bian
- Shenzhen Key Laboratory of Cross-Coupling Reactions, Southern University of Science and Technology, 518055, Shenzhen, China
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangming Advanced Research Institute, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Li Qin
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangming Advanced Research Institute, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Li-Wen Fan
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangming Advanced Research Institute, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Jiajia Fu
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangming Advanced Research Institute, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Yong-Feng Cheng
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangming Advanced Research Institute, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Yu-Feng Zhang
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangming Advanced Research Institute, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Qiao Song
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangming Advanced Research Institute, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Peng-Fei Wang
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangming Advanced Research Institute, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Zhong-Liang Li
- Dongguan Key Laboratory of Interdisciplinary Science for Advanced Materials and Large-Scale Scientific Facilities, School of Physical Sciences, Great Bay University, 523000, Dongguan, China
| | - Qiang-Shuai Gu
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangming Advanced Research Institute, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Peng Yu
- Eastern Institute for Advanced Study Eastern Institute of Technology, 315200, Ningbo, Zhejiang, China
| | - Jun-Bin Tang
- Shenzhen Key Laboratory of Cross-Coupling Reactions, Southern University of Science and Technology, 518055, Shenzhen, China.
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangming Advanced Research Institute, Southern University of Science and Technology, 518055, Shenzhen, China.
- Eastern Institute for Advanced Study Eastern Institute of Technology, 315200, Ningbo, Zhejiang, China.
| | - Xin-Yuan Liu
- Shenzhen Key Laboratory of Cross-Coupling Reactions, Southern University of Science and Technology, 518055, Shenzhen, China.
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangming Advanced Research Institute, Southern University of Science and Technology, 518055, Shenzhen, China.
| |
Collapse
|
3
|
Huang J, Ai X, Zhou S, Li Z, Qi M, You Y, Yuan K. Pd(II)/Cu(I) Co-catalyzed Dual C-H Functionalization of Indoles at C2 and C3 Positions Using Bifunctional Arylsulfonyl Reagents. Org Lett 2025. [PMID: 40391682 DOI: 10.1021/acs.orglett.5c01413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
A Pd(II)/Cu(I) co-catalyzed dual C-H functionalization strategy enables the one-pot synthesis of C2/C3-difunctionalized indoles using arylsulfonyl reagents. In this method, Cu(I) reduces S(VI) reagents to generate arylsulfonyl radicals, which react with Pd(II) to form electrophilic Ar-Pd(III) intermediates. These intermediates regioselectively arylate indoles at the C2 position, followed by Cu(II)-mediated C-H functionalization at the C3 position, to deliver the final products. This synergistic method enhances efficiency, reduces waste, and streamlines complex indole functionalization.
Collapse
Affiliation(s)
- Jiahui Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Xiujuan Ai
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Shuai Zhou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Zixin Li
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Mengying Qi
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Yuantao You
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Kedong Yuan
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| |
Collapse
|
4
|
Yuan CK, Pan YN, Qin YX, Sun WY, Lu Y. Cobalt-Catalyzed Diester Formation with CO at Atmospheric Pressure via Three-Component Reactions. J Org Chem 2025; 90:6589-6595. [PMID: 40293400 DOI: 10.1021/acs.joc.5c00645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
We propose a cobalt-catalyzed three-component reaction conducted under mild conditions. Following the carbonyl insertion at atmospheric pressure, the reaction proceeds via a nucleophilic attack by alcohols to form diesters. Notably, the scope of nucleophilic reagents can be extended to include a range of anilines. Furthermore, the products of this transformation serve as crucial synthetic building blocks for diverse organic synthesis processes, with subsequent derivatizations yielding promising results.
Collapse
Affiliation(s)
- Cheng-Kai Yuan
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Micro-structures, Nanjing University, Nanjing 210023, China
| | - Yan-Nian Pan
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Micro-structures, Nanjing University, Nanjing 210023, China
| | - Yi-Xi Qin
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Micro-structures, Nanjing University, Nanjing 210023, China
| | - Wei-Yin Sun
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Micro-structures, Nanjing University, Nanjing 210023, China
| | - Yi Lu
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Micro-structures, Nanjing University, Nanjing 210023, China
| |
Collapse
|
5
|
Wang S, Shang Y, Wang M, Lai J, Jie X, Su W. Unlocking Reactivity of Unprotected Oximes via Green-Light-Driven Dual Copper/Organophotoredox Catalysis. Angew Chem Int Ed Engl 2025; 64:e202501806. [PMID: 40055987 DOI: 10.1002/anie.202501806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/18/2025] [Accepted: 03/07/2025] [Indexed: 03/18/2025]
Abstract
Oximes are widely used precursors in synthetic chemistry due to their broad availability and versatile chemical properties, in which N─O bond fragmentation represents a key reactivity mode. However, these transformations typically require the use of oxygen-protected oximes, and a general strategy to directly utilize free oximes remains challenging due to their vulnerability to side reaction pathways, rendering low tendency towards N─OH bond cleavage. Here a unified platform is reported to achieve direct cyclization of unprotected oximes with enals, as well as other coupling partners through dual copper/organophotoredox catalysis under green light irradiation. This protocol enables concurrent activation of both N─OH and α-C(sp3)─H bonds of free oximes to form multisubstituted pyridines with exceeding structural diversity and functional group tolerance. In this process, Rose Bengal serves as a hydrogen atom transfer agent to generate radical intermediates. In the meanwhile, copper catalyst activates of free oximes via single-electron reduction-induced N─O bond fragmentation and controls the selectivity for intermediate trapping. The synthetic utility of this approach is further demonstrated by its successful applications in late-stage modification of biologically active compounds and rapid assembly of solvatochromic fluorescent materials.
Collapse
Affiliation(s)
- Shuping Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P.R. China
- College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian, 350007, P.R. China
| | - Yaping Shang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P.R. China
| | - Mengqi Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P.R. China
| | - Jiawen Lai
- College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian, 350007, P.R. China
| | - Xiaoming Jie
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P.R. China
| | - Weiping Su
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P.R. China
- College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian, 350007, P.R. China
| |
Collapse
|
6
|
Huang J, You Y, Ma Y, He X, Li Y, Kesavan A, Jin C, Shen C, Zhang M, Yuan K. Palladium-Catalyzed Dual Csp 2─Csp 3 Bond Formation: A Versatile Platform for the Synthesis of Benzo-Fused Heterocycles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2500897. [PMID: 40289651 DOI: 10.1002/advs.202500897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 04/10/2025] [Indexed: 04/30/2025]
Abstract
Transition-metal-catalyzed transformations offer a powerful approach to rapidly synthesize complex benzo-fused heterocycles, crucial for drug and material development. However, existing synthetic strategies face challenges such as limited functional group compatibility, reliance on complex ligands, and difficulties in controlling chemoselectivity with prefunctionalized substrates. Herein, a ligand-free Pd(II)/Cu(I) catalytic system is presented that facilitates reactions between arylsulfonyl chlorides and unactivated olefins under mild conditions, enabling the efficient synthesis of saturated benzo-fused six-membered heterocycles. This streamlined strategy employs dual Csp2─Csp3 bond formation, producing diverse N/O-polyheterocycles and allowing late-stage functionalization of bioactive molecules with excellent yields and high chemoselectivity. The key to the success of this reaction is the formation of high-valent Ar-Pd(III) intermediate, which drives the reaction through 1,2-Pd migration and electrophilic C─H arylation. This unique reactivity pathway facilitates the formation of benzo-fused heterocycles while effectively avoiding the β-H elimination typically associated with Heck-type reactions.
Collapse
Affiliation(s)
- Jiahui Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yuantao You
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yijian Ma
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China
| | - Xingying He
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yixiao Li
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Arunachalam Kesavan
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Chengzhi Jin
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Chengshuo Shen
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China
| | - Min Zhang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Kedong Yuan
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| |
Collapse
|
7
|
Guo H, Tan D, Merten C, Loh CCJ. Enantioconvergent and Site-Selective Etherification of Carbohydrate Polyols through Chiral Copper Radical Catalysis. Angew Chem Int Ed Engl 2024; 63:e202409530. [PMID: 39152096 DOI: 10.1002/anie.202409530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/28/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Going beyond currently reported two electron transformations that formed the core backdrop of asymmetric catalytic site-selective carbohydrate polyol functionalizations, we herein report a seminal demonstration of an enantioconvergent copper catalyzed site-selective etherification of minimally protected saccharides through a single-electron radical pathway. Further, this strategy paves a rare strategy, through which a carboxamide scaffold that is present in some glycomimetics of pharmacological relevance, can be selectively introduced. In light of the burgeoning interest in chiral radical catalysis, and the virtual absence of such stereocontrol broadly in carbohydrate synthesis, our strategy showcased the unknown capability of chiral radical copper catalysis as a contemporary tool to address the formidable site-selectivity challenge on a remarkable palette of naturally occurring saccharides. When reducing sugars were employed, a further dynamic kinetic resolution type glycosylation can be activated by the catalytic system to selectively generate the challenging β-O-glycosides.
Collapse
Affiliation(s)
- Hao Guo
- Abteilung Chemische Biologie, Max Planck Institut für Molekulare Physiologie, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Straße 4a, 44227, Dortmund, Germany
| | - Dilber Tan
- Organische Chemie II, Fakultät für Chemie und Biochemie, Ruhr-University, Universitätsstraße 150, 44801, Bochum, Germany
| | - Christian Merten
- Organische Chemie II, Fakultät für Chemie und Biochemie, Ruhr-University, Universitätsstraße 150, 44801, Bochum, Germany
| | - Charles C J Loh
- Abteilung Chemische Biologie, Max Planck Institut für Molekulare Physiologie, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Straße 4a, 44227, Dortmund, Germany
- UCD School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
8
|
Kim J, Kim YE, Hong S. Traceless Nucleophile Strategy for C5-Selective C-H Sulfonylation of Pyridines. Angew Chem Int Ed Engl 2024; 63:e202409561. [PMID: 39126202 DOI: 10.1002/anie.202409561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/29/2024] [Accepted: 08/09/2024] [Indexed: 08/12/2024]
Abstract
The functionalization of pyridines is crucial for the rapid construction and derivatization of agrochemicals, pharmaceuticals, and materials. Conventional functionalization approaches have primarily focused on the ortho- and para-positions, while achieving precise meta-selective functionalization, particularly at the C5 position in substituted pyridines, remains a formidable challenge due to the intrinsic electronic properties of pyridines. Herein, we present a new strategy for meta- and C5-selective C-H sulfonylation of N-amidopyridinium salts, which employs a transient enamine-type intermediate generated through a nucleophilic addition to N-amidopyridinium salts. This process harnesses the power of electron donor-acceptor complexes, enabling high selectivity and broad applicability, including the construction of complex pyridines bearing valuable sulfonyl functionalities under mild conditions without the need for an external photocatalyst. The remarkable C5 selectivity, combined with the broad applicability to late-stage functionalization, significantly expands the toolbox for pyridine functionalization, unlocking access to previously unattainable meta-sulfonylated pyridines.
Collapse
Affiliation(s)
- Jieun Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 34141, Daejeon, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), 34141, Daejeon, Republic of Korea
| | - Ye-Eun Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 34141, Daejeon, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), 34141, Daejeon, Republic of Korea
| | - Sungwoo Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 34141, Daejeon, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), 34141, Daejeon, Republic of Korea
| |
Collapse
|
9
|
Lu S, Hu Z, Wang D, Xu T. Halogen-Atom Transfer Enabled Catalytic Enantioselective Coupling to Chiral Trifluoromethylated Alkynes via Dual Nickel and Photocatalysis. Angew Chem Int Ed Engl 2024; 63:e202406064. [PMID: 38619363 DOI: 10.1002/anie.202406064] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 04/16/2024]
Abstract
With halogen-atom transfer as an effective tool, a novel catalytic enantioselective protocol to generate chiral trifluoromethylated alkynes has been established by a cooperative photoredox and nickel catalysis system, providing a straightforward and modular route to access this type of product in good yields and enantioselectivities. The halogen-atom transfer process is essential for the reaction and this novel strategy offers another promising way to utilize alkyl halides with highly negative reduction potentials. It firstly expands nickel-catalyzed asymmetric reductive cross-couplings of organohalides from the traditional single-electron transfer to halogen-atom transfer.
Collapse
Affiliation(s)
- Shanya Lu
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, 200092, Shanghai, P. R. of China
| | - Zihao Hu
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, 200092, Shanghai, P. R. of China
| | - Dong Wang
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, 200092, Shanghai, P. R. of China
| | - Tao Xu
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, 200092, Shanghai, P. R. of China
| |
Collapse
|
10
|
Lee WCC, Zhang XP. Metalloradical Catalysis: General Approach for Controlling Reactivity and Selectivity of Homolytic Radical Reactions. Angew Chem Int Ed Engl 2024; 63:e202320243. [PMID: 38472114 PMCID: PMC11097140 DOI: 10.1002/anie.202320243] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/14/2024]
Abstract
Since Friedrich Wöhler's groundbreaking synthesis of urea in 1828, organic synthesis over the past two centuries has predominantly relied on the exploration and utilization of chemical reactions rooted in two-electron heterolytic ionic chemistry. While one-electron homolytic radical chemistry is both rich in fundamental reactivities and attractive with practical advantages, the synthetic application of radical reactions has been long hampered by the formidable challenges associated with the control over reactivity and selectivity of high-energy radical intermediates. To fully harness the untapped potential of radical chemistry for organic synthesis, there is a pressing need to formulate radically different concepts and broadly applicable strategies to address these outstanding issues. In pursuit of this objective, researchers have been actively developing metalloradical catalysis (MRC) as a comprehensive framework to guide the design of general approaches for controlling over reactivity and stereoselectivity of homolytic radical reactions. Essentially, MRC exploits the metal-centered radicals present in open-shell metal complexes as one-electron catalysts for homolytic activation of substrates to generate metal-entangled organic radicals as the key intermediates to govern the reaction pathway and stereochemical course of subsequent catalytic radical processes. Different from the conventional two-electron catalysis by transition metal complexes, MRC operates through one-electron chemistry utilizing stepwise radical mechanisms.
Collapse
Affiliation(s)
- Wan-Chen Cindy Lee
- Department of Chemistry, Boston College, Merkert Chemistry Center, Chestnut Hill, Massachusetts 02467 (USA)
| | - X. Peter Zhang
- Department of Chemistry, Boston College, Merkert Chemistry Center, Chestnut Hill, Massachusetts 02467 (USA)
| |
Collapse
|
11
|
Yi ZY, Wang ZC, Li RN, Li ZH, Duan JJ, Yang XQ, Wang YQ, Chen T, Wang D, Wan LJ. Silver Surface-Assisted Dehydrobrominative Cross-Coupling between Identical Aryl Bromides. J Am Chem Soc 2024. [PMID: 38598684 DOI: 10.1021/jacs.4c00825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Cross-coupling reactions represent an indispensable tool in chemical synthesis. An intriguing challenge in this field is to achieve selective cross-coupling between two precursors with similar reactivity or, to the limit, the identical molecules. Here we report an unexpected dehydrobrominative cross-coupling between 1,3,5-tris(2-bromophenyl)benzene molecules on silver surfaces. Using scanning tunneling microscopy, we examine the reaction process at the single-molecular level, quantify the selectivity of the dehydrobrominative cross-coupling, and reveal the modulation of selectivity by substrate lattice-related catalytic activity or molecular assembly effect. Theoretical calculations indicate that the dehydrobrominative cross-coupling proceeds via regioselective C-H bond activation of debrominated TBPB and subsequent highly selective C-C coupling of the radical-based intermediates. The reaction kinetics plays an important role in the selectivity for the cross-coupling. This work not only expands the toolbox for chemical synthesis but also provides important mechanistic insights into the selectivity of coupling reactions on the surface.
Collapse
Affiliation(s)
- Zhen-Yu Yi
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zi-Cong Wang
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruo-Ning Li
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Hao Li
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun-Jie Duan
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xue-Qing Yang
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yu-Qi Wang
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting Chen
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Dong Wang
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li-Jun Wan
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Cui DQ, Wang YQ, Zhou B, Ye LW. Brønsted-Acid-Catalyzed Enantioselective Desymmetrization of 1,3-Diols: Access to Chiral β-Amino Alcohol Derivatives. Org Lett 2023; 25:9130-9135. [PMID: 38112554 DOI: 10.1021/acs.orglett.3c03525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Herein, we describe a Brønsted-acid-catalyzed enantioselective desymmetrization of 1,3-diols with alkynes through a hydroalkoxylation/hydrolysis process. The reaction leads to the atom-economical synthesis of valuable chiral β-amino alcohols under mild reaction conditions. Further synthetic transformations based on the β-amino alcohol moiety provide divergent approaches toward chiral N-containing heterocycles.
Collapse
Affiliation(s)
- Da-Qiu Cui
- Key Laboratory for Chemical Biology of Fujian Province and State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| | - Yu-Qi Wang
- Key Laboratory for Chemical Biology of Fujian Province and State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| | - Bo Zhou
- Key Laboratory for Chemical Biology of Fujian Province and State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| | - Long-Wu Ye
- Key Laboratory for Chemical Biology of Fujian Province and State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China
- State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| |
Collapse
|
13
|
Xiong B, Si L, Zhu L, Liu Y, Xu W, Tang KW, Yin SF, Qian PC, Wong WY. Copper-Catalyzed Aerobic Oxidative/Decarboxylative Phosphorylation of Aryl Acrylic Acids with P(III)-Nucleophiles. J Org Chem 2023; 88:12502-12518. [PMID: 37579226 DOI: 10.1021/acs.joc.3c01238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
A copper-catalyzed aerobic oxidative/decarboxylative phosphorylation of aryl acrylic acids with P(III)-nucleophiles via the Michaelis-Arbuzov rearrangement for the synthesis of β-ketophosphine oxides, β-ketophosphinates, and β-ketophosphonates is reported. The present reaction could be conducted effectively without the use of a ligand and a base. Various kinds of aryl acrylic acids and P(III)-nucleophiles are tolerated in the transformation, generating the desired β-keto-organophosphorus compounds as a valuable class of phosphorus-containing intermediates with good to excellent yields. In addition, the possible mechanism and kinetic studies for the reaction have been explored by step-by-step control experiments and competitive experiments, and the results proved that this transformation may follow second-order chemical kinetics as well as involve a radical process.
Collapse
Affiliation(s)
- Biquan Xiong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, P. R. China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 00000, P. R. China
| | - Lulu Si
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, P. R. China
| | - Longzhi Zhu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, P. R. China
| | - Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, P. R. China
| | - Weifeng Xu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, P. R. China
| | - Ke-Wen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, P. R. China
| | - Shuang-Feng Yin
- Advanced Catalytic Engineering Research Center of the Ministry of Education, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Peng-Cheng Qian
- Key Laboratory of Environmental Functional Materials Technology and Application of Wenzhou City, Institute of New Materials & Industry Technology, College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035 Zhejiang, P. R. China
| | - Wai-Yeung Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 00000, P. R. China
| |
Collapse
|
14
|
Liu SP, He YH, Guan Z. Photoredox-Catalyzed Radical-Radical Cross-Coupling of Sulfonyl Chlorides with Trifluoroborate Salts. J Org Chem 2023. [PMID: 37490603 DOI: 10.1021/acs.joc.3c01124] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Sulfones are widely found in natural products and drug molecules. Here, we disclose a strategy for direct synthesis of sulfone compounds with diverse structures by visible-light-catalyzed radical-radical cross-coupling of sulfonyl chlorides and trifluoroborate salts. Allyl, benzyl, vinyl, and aryl trifluoroborates can be successfully cross-coupled with (hetero)aryl and alkyl sulfonyl chlorides, respectively. This strategy features redox neutrality, good substrate generality, simple operation, and benign reaction conditions.
Collapse
Affiliation(s)
- Sheng-Ping Liu
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yan-Hong He
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Zhi Guan
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
15
|
Dutta S, Porey A, Guin J. N-Heterocyclic carbene catalyzed desymmetrization of diols: access to enantioenriched oxindoles having a C3-quaternary stereocenter. Chem Commun (Camb) 2023; 59:5771-5774. [PMID: 37096372 DOI: 10.1039/d3cc00489a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Herein, we describe an effective strategy for enantioselective synthesis of oxindoles having a C3-quaternary stereocenter via N-heterocyclic carbene (NHC) catalyzed desymmetrization of diols. The process is based on the catalytic asymmetric transfer acylation of primary alcohols using readily available aldehydes as an acylation agent. The reaction enables easy access to diversely functionalized C3-quaternary oxindoles with excellent enantioselectivity. The synthetic potential of the process is further demonstrated via the preparation of the key intermediate for (-)-esermethole and (-)-physostigmine.
Collapse
Affiliation(s)
- Sourav Dutta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India.
| | - Arka Porey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India.
| | - Joyram Guin
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India.
| |
Collapse
|
16
|
Yu ZL, Cheng YF, Liu JR, Yang W, Xu DT, Tian Y, Bian JQ, Li ZL, Fan LW, Luan C, Gao A, Gu QS, Liu XY. Cu(I)-Catalyzed Chemo- and Enantioselective Desymmetrizing C-O Bond Coupling of Acyl Radicals. J Am Chem Soc 2023; 145:6535-6545. [PMID: 36912664 DOI: 10.1021/jacs.3c00671] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Transition-metal-catalyzed enantioselective functionalization of acyl radicals has so far not been realized, probably due to their relatively high reactivity, which renders the chemo- and stereocontrol challenging. Herein, we describe Cu(I)-catalyzed enantioselective desymmetrizing C-O bond coupling of acyl radicals. This reaction is compatible with (hetero)aryl and alkyl aldehydes and, more importantly, displays a very broad scope of challenging alcohol substrates, such as 2,2-disubstituted 1,3-diols, 2-substituted-2-chloro-1,3-diols, 2-substituted 1,2,3-triols, 2-substituted serinols, and meso primary 1,4-diols, providing enantioenriched esters characterized by challenging acyclic tetrasubstituted carbon stereocenters. Partnered by one- or two-step follow-up transformations, this reaction provides a convenient and practical strategy for the rapid preparation of chiral C3 building blocks from readily available alcohols, particularly the industrially relevant glycerol. Mechanistic studies supported the proposed C-O bond coupling of acyl radicals.
Collapse
Affiliation(s)
- Zhang-Long Yu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yong-Feng Cheng
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ji-Ren Liu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wu Yang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Dan-Tong Xu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yu Tian
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jun-Qian Bian
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhong-Liang Li
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Li-Wen Fan
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Cheng Luan
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ang Gao
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qiang-Shuai Gu
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xin-Yuan Liu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
17
|
Shi SH, Yao YF, He J, Li HY, Han SJ, Zhang LL, Zhao Y. Metal-free sulfonylation of quinoxalinones to access 2-sulfonyl-oxylated quinoxalines via oxidative O-S cross coupling. Org Biomol Chem 2023; 21:1903-1909. [PMID: 36757292 DOI: 10.1039/d2ob02304k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
The C2 sulfonylation of quinoxalinones via a metal-free oxidative S-O cross-coupling strategy for synthesizing 2-sulfonyloxylated quinoxalines is established. It effectively solved the long-standing problems in the C2 transformation of quinoxalinones via a metal-free oxidative O-S coupling strategy. Compared with the traditional C2 transformed quinoxalinones-C2 chlorination method, this protocol is mild, facile, and environmentally friendly and exhibits good atomic economy and excellent functional group tolerance. Moreover, the utility of this methodology and the sulfonyloxyl handles was demonstrated through the synthesis of 2-substituted quinoxaline-based bioactive molecules.
Collapse
Affiliation(s)
- Shi-Hui Shi
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, Shaanxi, China.
| | - Yi-Fan Yao
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, Shaanxi, China.
| | - Jiao He
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, Shaanxi, China.
| | - Hao-Yu Li
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, Shaanxi, China.
| | - Shao-Jie Han
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, Shaanxi, China.
| | - Le-Le Zhang
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, Shaanxi, China.
| | - Yu Zhao
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, Shaanxi, China.
| |
Collapse
|
18
|
Han Y, Cui X. Copper-Catalyzed Enantioselective Radical Heteroatomic S—O Cross-Coupling. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202300013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
|