1
|
Li MY, Jiang J, Li JG, Niu H, Ying YL, Tian R, Long YT. Nanopore approaches for single-molecule temporal omics: promises and challenges. Nat Methods 2025; 22:241-253. [PMID: 39558099 DOI: 10.1038/s41592-024-02492-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 09/18/2024] [Indexed: 11/20/2024]
Abstract
The great molecular heterogeneity within single cells demands omics analysis from a single-molecule perspective. Moreover, considering the perpetual metabolism and communication within cells, it is essential to determine the time-series changes of the molecular library, rather than obtaining data at only one time point. Thus, there is an urgent need to develop a single-molecule strategy for this omics analysis to elucidate the biosystem heterogeneity and temporal dynamics. In this Perspective, we explore the potential application of nanopores for single-molecule temporal omics to characterize individual molecules beyond mass, in both a single-molecule and high-throughput manner. Accordingly, recent advances in nanopores available for single-molecule temporal omics are reviewed from the view of single-molecule mass identification, revealing single-molecule heterogeneity and illustrating temporal evolution. Furthermore, we discuss the primary challenges associated with using nanopores for single-molecule temporal omics in complex biological samples, and present the potential strategies and notes to respond to these challenges.
Collapse
Affiliation(s)
- Meng-Yin Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, China.
| | - Jie Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Jun-Ge Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Hongyan Niu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, China
| | - Yi-Lun Ying
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, China
| | - Ruijun Tian
- Department of Chemistry, School of Science, Southern University of Science and Technology, Shenzhen, China
| | - Yi-Tao Long
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
| |
Collapse
|
2
|
Xu W, Lin Z, Kim CJ, Wang Z, Wang T, Cortez-Jugo C, Caruso F. Assembly and biological functions of metal-biomolecule network nanoparticles formed by metal-phosphonate coordination. SCIENCE ADVANCES 2024; 10:eads9542. [PMID: 39671490 PMCID: PMC11641004 DOI: 10.1126/sciadv.ads9542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/06/2024] [Indexed: 12/15/2024]
Abstract
Metal-organic networks have attracted widespread interest owing to their hybrid physicochemical properties. Natural biomolecules represent attractive building blocks for these materials because of their inherent biological function and high biocompatibility; however, assembling them into coordination network materials, especially nanoparticles (NPs), is challenging. Herein, we exploit the coordination between metal ions and phosphonate groups, which are present in many biomolecules, to form metal-biomolecule network (MBN) NPs in aqueous solution at room temperature. Various phosphonate-containing biomolecules, including plant phytate, DNA, and proteins, were used to assemble MBN NPs with tunable physicochemical properties (e.g., size). In addition to excellent biocompatibility and high cargo-loading efficiency (>95%), these two-component MBN NPs have various biological functionalities, including endosomal escape, immune regulation, and molecular recognition, thus offering advantages over nonbiomolecular-based coordination materials. This work expands our understanding of metal-organic chemistry with the emerging class of metal-biomolecule systems and provides a pathway for incorporating biofunctionalities into advanced coordination materials for diverse fields.
Collapse
Affiliation(s)
| | | | - Chan-Jin Kim
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Zhaoran Wang
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Tianzheng Wang
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Christina Cortez-Jugo
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
3
|
Wang X, Xiong L, Zhu Y, Liu S, Zhao W, Wu X, Seydimemet M, Li L, Ding P, Lin X, Liu J, Wang X, Duan Z, Lu W, Suo Y, Cui M, Yue J, Jin R, Zheng M, Xu Y, Mei L, Hu H, Lu X. Covalent DNA-Encoded Library Workflow Drives Discovery of SARS-CoV-2 Nonstructural Protein Inhibitors. J Am Chem Soc 2024; 146:33983-33996. [PMID: 39574309 DOI: 10.1021/jacs.4c12992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
The COVID-19 pandemic, exacerbated by persistent viral mutations, underscored the urgent need for diverse inhibitors targeting multiple viral proteins. In this study, we utilized covalent DNA-encoded libraries to discover innovative triazine-based covalent inhibitors for the 3-chymotrypsin-like protease (3CLpro, Nsp5) and the papain-like protease (PLpro) domains of Nsp3, as well as novel non-nucleoside covalent inhibitors for the nonstructural protein 12 (Nsp12, RdRp). Optimization through molecular docking and medicinal chemistry led to the development of LU9, a nonpeptide 3CLpro inhibitor with an IC50 of 0.34 μM, and LU10, whose crystal structure showed a distinct binding mode within the 3CLpro active site. The X-ray cocrystal structure of SARS-CoV-2 PLpro in complex with XD5 uncovered a previously unexplored binding site adjacent to the catalytic pocket. Additionally, a non-nucleoside covalent Nsp12 inhibitor XJ5 achieved a potency of 0.12 μM following comprehensive structure-activity relationship analysis and optimization. Molecular dynamics revealed a potential binding mode. These compounds offer valuable chemical probes for target validation and represent promising candidates for the development of SARS-CoV-2 antiviral therapies.
Collapse
Affiliation(s)
- Xudong Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Liwei Xiong
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, P. R. China
| | - Ying Zhu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Sixiu Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wenfeng Zhao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China
| | - Xinyuan Wu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Mengnisa Seydimemet
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Linjie Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China
| | - Peiqi Ding
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, P. R. China
| | - Xian Lin
- Suzhou Institute of Materia Medica, No. 108 Yuxin Road, Suzhou, Jiangsu 215123, P. R. China
| | - Jiaxiang Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China
| | - Xuan Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China
| | - Zhiqiang Duan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China
| | - Weiwei Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China
| | - Yanrui Suo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Mengqing Cui
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China
| | - Jinfeng Yue
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China
| | - Rui Jin
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China
| | - Mingyue Zheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yechun Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, P. R. China
| | - Lianghe Mei
- Suzhou Institute of Materia Medica, No. 108 Yuxin Road, Suzhou, Jiangsu 215123, P. R. China
| | - Hangchen Hu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, P. R. China
| | - Xiaojie Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| |
Collapse
|
4
|
Kubyshkin V, Mykhailiuk PK. Proline Analogues in Drug Design: Current Trends and Future Prospects. J Med Chem 2024; 67:20022-20055. [PMID: 39605166 DOI: 10.1021/acs.jmedchem.4c01987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Proline analogues are versatile chemical building blocks that enable modular construction of small-molecule drugs and pharmaceutical peptides. Over the past 15 years, the FDA has approved over 15 drugs containing proline analogues in their structures, five in the last three years alone (daridorexant, trofinetide, nirmatrelvir, rezafungin, danicopan). This perspective offers an analysis of the most common types of proline analogues currently trending in drug design. We focus on examples of fluoroprolines, α-methylproline, bicyclic proline analogues, and aminoprolines, while also highlighting proline analogues that remain underrepresented. We supplement our analysis with physicochemical information regarding the specific molecular properties of these moieties. Additionally, we discuss several intriguing cases where nonproline residues were replaced with proline analogues as a strategy to eliminate unwanted hydrogen bond donor sites. In conclusion, we present some suggestions for the future exploration of this promising class of molecular entities in drug discovery.
Collapse
|
5
|
Dockerill M, Sabale PM, Russo F, Barluenga S, Winssinger N. Translation of Deoxyribonucleic Acid into Synthetic Alpha Helical Peptides for Darwinian Evolution. JACS AU 2024; 4:4013-4022. [PMID: 39483244 PMCID: PMC11522901 DOI: 10.1021/jacsau.4c00738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/09/2024] [Accepted: 09/09/2024] [Indexed: 11/03/2024]
Abstract
DNA-encoded libraries connect the phenotypes of synthetic molecules to a DNA barcode; however, most libraries do not tap into the potential of Darwinian evolution. Herein, we report a DNA-templated synthesis (DTS) architecture to make peptides that are stabilized into α-helical conformations via head-to-tail supramolecular cyclization. Using a pilot library targeting MDM2, we show that repeated screening can amplify a binder from the lowest abundance in the library to a ranking that correlates to binding affinity. The study also highlights the need to design libraries such that the chemistry avoids biases from the heterogeneous yield in DTS.
Collapse
Affiliation(s)
- Millicent Dockerill
- Department of Organic Chemistry,
Faculty of Sciences, University of Geneva, Geneva 1211, Switzerland
| | - Pramod M. Sabale
- Department of Organic Chemistry,
Faculty of Sciences, University of Geneva, Geneva 1211, Switzerland
| | - Francesco Russo
- Department of Organic Chemistry,
Faculty of Sciences, University of Geneva, Geneva 1211, Switzerland
| | - Sofia Barluenga
- Department of Organic Chemistry,
Faculty of Sciences, University of Geneva, Geneva 1211, Switzerland
| | - Nicolas Winssinger
- Department of Organic Chemistry,
Faculty of Sciences, University of Geneva, Geneva 1211, Switzerland
| |
Collapse
|
6
|
Huang Q, Gu Y, Qin A, Ma P, Xu H, Zhang S. FSO 2N 3-Mediated On-DNA Diazo-Transfer Chemistry. ACS Med Chem Lett 2024; 15:1591-1597. [PMID: 39291003 PMCID: PMC11403730 DOI: 10.1021/acsmedchemlett.4c00307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/17/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
DNA-encoded library (DEL) is a powerful hit selection technique in both basic science and innovative drug discovery. In this study, we report a robust and straightforward DNA-compatible diazo-transfer reaction utilizing FSO2N3 as the diazo-transfer reagent in solution. This reaction demonstrates high conversions and facile operation while being metal-free and maintaining high levels of DNA fidelity. It is also compatible with a wide range of substrates, allowing for convenient access to both aliphatic and aromatic amines. Consequently, it will further enrich the DEL chemistry toolbox.
Collapse
Affiliation(s)
- Qianping Huang
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai 201210, P.R. China
| | - Yuang Gu
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai 201210, P.R. China
| | - An Qin
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Peixiang Ma
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Hongtao Xu
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai 201210, P.R. China
| | - Shuning Zhang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| |
Collapse
|
7
|
Puglioli S, Fabbri M, Comacchio C, Alvigini L, De Luca R, Oehler S, Gilardoni E, Bassi G, Cazzamalli S, Neri D, Favalli N. Permutational Encoding Strategy Accelerates HIT Validation from Single-Stranded DNA-Encoded Libraries. Bioconjug Chem 2024; 35:1033-1043. [PMID: 38963407 DOI: 10.1021/acs.bioconjchem.4c00233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
DNA-Encoded Libraries (DELs) allow the parallel screening of millions of compounds for various applications, including de novo discovery or affinity maturation campaigns. However, library construction and HIT resynthesis can be cumbersome, especially when library members present an unknown stereochemistry. We introduce a permutational encoding strategy suitable for the construction of highly pure single-stranded single-pharmacophore DELs, designed to distinguish isomers at the sequencing level (e.g., stereoisomers, regio-isomers, and peptide sequences). This approach was validated by synthesizing a mock 921,600-member 4-amino-proline single-stranded DEL ("DEL1"). While screening DEL1 against different targets, high-throughput sequencing results showed selective enrichment of the most potent stereoisomers, with enrichment factors that outperform conventional encoding strategies. The versatility of our methodology was additionally validated by encoding 24 scaffolds derived from different permutations of the amino acid sequence of a previously described cyclic peptide targeting Fibroblast Activation Protein (FAP-2286). The resulting library ("DEL2") was interrogated against human FAP, showing selective enrichment of five cyclic peptides. We observed a direct correlation between enrichment factors and on-DNA binding affinities. The presented encoding methodology accelerates drug discovery by facilitating library synthesis and streamlining HIT resynthesis while enhancing enrichment factors at the DEL sequencing level. This facilitates the identification of HIT candidates prior to medicinal chemistry and affinity maturation campaigns.
Collapse
Affiliation(s)
- Sara Puglioli
- R&D Department, Philochem AG, Libernstrasse 3, Otelfingen, ZH CH-8112, Switzerland
| | - Mosè Fabbri
- R&D Department, Philochem AG, Libernstrasse 3, Otelfingen, ZH CH-8112, Switzerland
| | - Claudia Comacchio
- R&D Department, Philochem AG, Libernstrasse 3, Otelfingen, ZH CH-8112, Switzerland
| | - Laura Alvigini
- R&D Department, Philochem AG, Libernstrasse 3, Otelfingen, ZH CH-8112, Switzerland
| | - Roberto De Luca
- R&D Department, Philochem AG, Libernstrasse 3, Otelfingen, ZH CH-8112, Switzerland
| | - Sebastian Oehler
- R&D Department, Philochem AG, Libernstrasse 3, Otelfingen, ZH CH-8112, Switzerland
| | - Ettore Gilardoni
- R&D Department, Philochem AG, Libernstrasse 3, Otelfingen, ZH CH-8112, Switzerland
| | - Gabriele Bassi
- R&D Department, Philochem AG, Libernstrasse 3, Otelfingen, ZH CH-8112, Switzerland
| | - Samuele Cazzamalli
- R&D Department, Philochem AG, Libernstrasse 3, Otelfingen, ZH CH-8112, Switzerland
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, Vladimir-Prelog-Weg 1-5/10, Zürich CH-8093, Switzerland
- Philogen S.p.A., Via Bellaria, 35, Sovicille, SI IT-53018, Italy
| | - Nicholas Favalli
- R&D Department, Philochem AG, Libernstrasse 3, Otelfingen, ZH CH-8112, Switzerland
| |
Collapse
|
8
|
Keller M, Petrov D, Gloger A, Dietschi B, Jobin K, Gradinger T, Martinelli A, Plais L, Onda Y, Neri D, Scheuermann J. Highly pure DNA-encoded chemical libraries by dual-linker solid-phase synthesis. Science 2024; 384:1259-1265. [PMID: 38870307 DOI: 10.1126/science.adn3412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 05/07/2024] [Indexed: 06/15/2024]
Abstract
The first drugs discovered using DNA-encoded chemical library (DEL) screens have entered late-stage clinical development. However, DEL technology as a whole still suffers from poor chemical purity resulting in suboptimal performance. In this work, we report a technique to overcome this issue through self-purifying release of the DEL after magnetic bead-based synthesis. Both the first and last building blocks of each assembled library member were linked to the beads by tethers that could be cleaved by mutually orthogonal chemistry. Sequential cleavage of the first and last tether, with washing in between, ensured that the final library comprises only the fully complete compounds. The outstanding purity attained by this approach enables a direct correlation of chemical display and encoding, allows for an increased chemical reaction scope, and facilitates the use of more diversity elements while achieving greatly improved signal-to-noise ratios in selections.
Collapse
Affiliation(s)
- Michelle Keller
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Dimitar Petrov
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Andreas Gloger
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Bastien Dietschi
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Kilian Jobin
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Timon Gradinger
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | | | - Louise Plais
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Yuichi Onda
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Jörg Scheuermann
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
9
|
Müller M, Lucaroni L, Favalli N, Bassi G, Neri D, Cazzamalli S, Oehler S. Discovery of Glutamate Carboxypeptidase III Ligands to Compete the Uptake of [ 177Lu]Lu-PSMA-617 in Healthy Organs. J Med Chem 2024; 67:8247-8260. [PMID: 38716576 DOI: 10.1021/acs.jmedchem.4c00332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Prostate-specific membrane antigen (PSMA)-targeted radio ligand therapeutics (RLTs), such as [177Lu]Lu-PSMA-617 (Pluvicto), have been shown to accumulate in salivary glands and kidneys, potentially leading to undesired side effects. As unwanted accumulation in normal organs may derive from the cross-reactivity of PSMA ligands to glutamate carboxypeptidase III (GCPIII), it may be convenient to block this interaction with GCPIII-selective ligands. Parallel screening of a DNA-encoded chemical library (DEL) against GCPIII and PSMA allowed the identification of GCPIII binders. Structure-activity relationship (SAR) studies resulted in the identification of nanomolar GCPIII ligands with up to 1000-fold selectivity over PSMA. We studied the ability of GCPIII ligands to counteract the binding of [177Lu]Lu-PSMA-617 to human salivary glands by autoradiography and could demonstrate a partial radioprotection.
Collapse
Affiliation(s)
| | | | | | | | - Dario Neri
- Philochem AG, Otelfingen 8112, Switzerland
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zurich), Zurich 8093, Switzerland
- Philogen S.p.A., Siena 53100, Italy
| | | | | |
Collapse
|
10
|
Lucaroni L, Oehler S, Georgiev T, Müller M, Bocci M, De Luca R, Favalli N, Neri D, Cazzamalli S, Prati L. DNA-encoded chemical libraries enable the discovery of potent PSMA-ligands with substantially reduced affinity towards the GCPIII anti-target. Chem Sci 2024; 15:6789-6799. [PMID: 38725500 PMCID: PMC11077555 DOI: 10.1039/d3sc06668a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/17/2024] [Indexed: 05/12/2024] Open
Abstract
Prostate-specific membrane antigen (PSMA) is a tumor-associated protein that has been successfully targeted with small organic ligands and monoclonal antibodies. Pluvicto™ is a PSMA-targeted radioligand therapeutic (RLT) recently approved by the FDA for the treatment of metastatic castration-resistant prostate cancer (2022 FDA marketing authorization). Although a large Phase III clinical trial (VISION trial) demonstrated clinical benefits in patients treated with Pluvicto™, the therapeutic window of the drug is narrowed by its undesired accumulation in healthy organs. Glutamate carboxypeptidase III (GCPIII), an enzyme sharing 70% identity with PSMA, may be responsible for the off-target accumulation of PSMA-RLTs in salivary glands and kidneys. In this work, we designed and synthesized affinity and selectivity maturation DNA-encoded chemical libraries (ASM-DELs) comprising 18'284'658 compounds that were screened in parallel against PSMA and GCPIII with the aim to identify potent and selective PSMA ligands for tumor-targeting applications. Compound A70-B104 was isolated as the most potent and selective ligand (KD of 900 pM for PSMA, KD of 40 nM for GCPIII). 177Lu-A70-B104-DOTA, a radiolabeled derivative of compound A70-B104, presented selective accumulation in PSMA-positive cancer lesions (i.e., 7.4% ID g-1, 2 hour time point) after systemic administration in tumor-bearing mice. The results of autoradiography experiments showed that 177Lu-A70-B104-DOTA selectively binds to PSMA-positive cancer tissues, while negligible binding on human salivary glands was observed.
Collapse
Affiliation(s)
- Laura Lucaroni
- Philochem AG, R&D Department CH-8112 Otelfingen Switzerland +41 43 544 88 19
| | - Sebastian Oehler
- Philochem AG, R&D Department CH-8112 Otelfingen Switzerland +41 43 544 88 19
| | - Tony Georgiev
- Philochem AG, R&D Department CH-8112 Otelfingen Switzerland +41 43 544 88 19
| | - Marco Müller
- Philochem AG, R&D Department CH-8112 Otelfingen Switzerland +41 43 544 88 19
| | - Matilde Bocci
- Philochem AG, R&D Department CH-8112 Otelfingen Switzerland +41 43 544 88 19
| | - Roberto De Luca
- Philochem AG, R&D Department CH-8112 Otelfingen Switzerland +41 43 544 88 19
| | - Nicholas Favalli
- Philochem AG, R&D Department CH-8112 Otelfingen Switzerland +41 43 544 88 19
| | - Dario Neri
- Philochem AG, R&D Department CH-8112 Otelfingen Switzerland +41 43 544 88 19
- Swiss Federal Institute of Technology, Department of Chemistry and Applied Biosciences CH-8093 Zurich Switzerland
- Philogen S.p.A. 53100 Siena Italy +39 0577 178 16 59
| | - Samuele Cazzamalli
- Philochem AG, R&D Department CH-8112 Otelfingen Switzerland +41 43 544 88 19
| | - Luca Prati
- Philogen S.p.A. 53100 Siena Italy +39 0577 178 16 59
| |
Collapse
|
11
|
Gruber F, McDonagh AW, Rose V, Hunter J, Guasch L, Martin RE, Geigle SN, Britton R. sp 3 -Rich Heterocycle Synthesis on DNA: Application to DNA-Encoded Library Production. Angew Chem Int Ed Engl 2024; 63:e202319836. [PMID: 38330151 DOI: 10.1002/anie.202319836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
DNA encoded library (DEL) synthesis represents a convenient means to produce, annotate and store large collections of compounds in a small volume. While DELs are well suited for drug discovery campaigns, the chemistry used in their production must be compatible with the DNA tag, which can limit compound class accessibility. As a result, most DELs are heavily populated with peptidomimetic and sp2 -rich molecules. Herein, we show that sp3 -rich mono- and bicyclic heterocycles can be made on DNA from ketochlorohydrin aldol products through a reductive amination and cyclization process. The resulting hydroxypyrrolidines possess structural features that are desirable for DELs and target a distinct region of pharmaceutically relevant chemical space.
Collapse
Affiliation(s)
- Felix Gruber
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Anthony W McDonagh
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Victoria Rose
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - James Hunter
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Laura Guasch
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Rainer E Martin
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Stefanie N Geigle
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Robert Britton
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| |
Collapse
|
12
|
Fang X, Zhang T, Fang W, Zhang G, Li Y, Li Y. Synthesis of Functionalized Triazoles on DNA via Azide-Acetonitrile "Click" Reaction. Org Lett 2023; 25:8326-8331. [PMID: 37943666 DOI: 10.1021/acs.orglett.3c03404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Triazoles are privileged structural motifs that are embedded in a number of molecules with interesting biological activities. In this work, we developed a practical and general synthetic strategy to construct a medicinally important 5-amino-1,2,3-triazole moiety on DNA by coupling DNA-conjugated azides and monosubstituted acetonitriles via azide-acetonitrile "click" reaction. Under mild reaction conditions, this reaction displayed a broad substrate scope. Most substrates gave moderate-to-excellent conversions. Thus, this DNA-compatible reaction could be employed in practical DNA-encoded library (DEL) construction and potentially expand the chemical space of DNA-encoded libraries.
Collapse
Affiliation(s)
- Xianfu Fang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
- Pharmaceutical Department, Chongqing University Three Gorges Hospital, Chongqing University, Chongqing 404100, P. R. China
| | - Tianyang Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Wei Fang
- Pharmaceutical Department, Chongqing University Three Gorges Hospital, Chongqing University, Chongqing 404100, P. R. China
| | - Gong Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Yangfeng Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Yizhou Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, P. R. China
| |
Collapse
|