1
|
Vedanayagam J. Small RNA-mediated suppression of sex chromosome meiotic conflicts during Drosophila male gametogenesis. Biochem Soc Trans 2025; 53:BST20240344. [PMID: 39918264 DOI: 10.1042/bst20240344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 01/09/2025] [Accepted: 01/16/2025] [Indexed: 02/23/2025]
Abstract
Meiosis is an evolutionarily conserved process in eukaryotes that ensures equal segregation of alleles and chromosomes during reproduction. Although parity in allelic transmission is the norm, selfish genes such as meiotic drivers can violate Mendel's first law of segregation. Sex chromosome drive is a form of meiotic drive that leads to unequal segregation of sex chromosomes, resulting in sex-ratio distortion and/or sterility in the offspring. Adverse fitness effects due to sex chromosome drive trigger the evolution of suppressors to restore Mendelian segregation. However, the molecular mechanisms by which suppressors emerge and counteract meiotic drive genes remain unclear. Recent studies from Drosophila have shed light on the critical roles of small RNA-mediated post-transcriptional silencing in mitigating sex chromosome meiotic conflicts. This review highlights the recruitment of two distinct small RNA pathways to combat intragenomic conflicts during male gametogenesis and seeks to reveal the impact of molecular arms races between meiotic drivers and their suppressors in shaping genome and sex chromosome evolution.
Collapse
Affiliation(s)
- Jeffrey Vedanayagam
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, TX 78249
| |
Collapse
|
2
|
Chen P, Pan KC, Park EH, Luo Y, Lee YCG, Aravin AA. Escalation of genome defense capacity enables control of an expanding meiotic driver. Proc Natl Acad Sci U S A 2025; 122:e2418541122. [PMID: 39772737 PMCID: PMC11745323 DOI: 10.1073/pnas.2418541122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
From RNA interference to chromatin silencing, diverse genome defense pathways silence selfish genetic elements to safeguard genome integrity. Despite their diversity, different defense pathways share a modular organization, where numerous specificity factors identify diverse targets and common effectors silence them. In the PIWI-interacting RNA (piRNA) pathway, target RNAs are first identified by complementary base pairing with piRNAs and then silenced by PIWI-clade nucleases. Such a binary architecture allows the defense systems to be readily adaptable, where new targets can be captured via innovation of specificity factors. Thus, our current understanding of genome defense against lineage-specific selfish genes has been largely limited to specificity factor innovations, while it remains poorly understood whether other types of innovations are required. Here, we describe a new type of innovation, which escalates the genome defense capacity to control a recently expanded selfish gene in Drosophila melanogaster. Through a targeted RNAi screen for repressors of Stellate-a recently evolved meiotic driver-we identified a defense factor, Trailblazer. Trailblazer is a transcription factor that promotes the expression of two PIWI-clade nucleases, Aub and AGO3, to match Stellate in abundance. Recent innovation in the DNA-binding domain of Trailblazer enabled it to elevate Aub and AGO3 expression, thereby escalating the silencing capacity of piRNA pathway to tame expanded Stellate and safeguard fertility. As copy-number expansion is a recurrent feature of diverse selfish genes across the tree of life, we envision that augmenting the defense capacity to quantitatively match selfish genes is a repeatedly employed defense strategy in evolution.
Collapse
Affiliation(s)
- Peiwei Chen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - Katherine C. Pan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - Eunice H. Park
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - Yicheng Luo
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - Yuh Chwen G. Lee
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA92697
| | - Alexei A. Aravin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| |
Collapse
|
3
|
Zakerzade R, Chang CH, Chatla K, Krishnapura A, Appiah SP, Zhang J, Unckless RL, Blumenstiel JP, Bachtrog D, Wei KHC. Diversification and recurrent adaptation of the synaptonemal complex in Drosophila. PLoS Genet 2025; 21:e1011549. [PMID: 39804957 PMCID: PMC11761671 DOI: 10.1371/journal.pgen.1011549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 01/24/2025] [Accepted: 12/19/2024] [Indexed: 01/16/2025] Open
Abstract
The synaptonemal complex (SC) is a protein-rich structure essential for meiotic recombination and faithful chromosome segregation. Acting like a zipper to paired homologous chromosomes during early prophase I, the complex is a symmetrical structure where central elements are connected on two sides by the transverse filaments to the chromatin-anchoring lateral elements. Despite being found in most major eukaryotic taxa implying a deeply conserved evolutionary origin, several components of the complex exhibit unusually high rates of sequence turnover. This is puzzlingly exemplified by the SC of Drosophila, where the central elements and transverse filaments display no identifiable homologs outside of the genus. Here, we exhaustively examine the evolutionary history of the SC in Drosophila taking a comparative phylogenomic approach with high species density to circumvent obscured homology due to rapid sequence evolution. Contrasting starkly against other genes involved in meiotic chromosome pairing, SC genes show significantly elevated rates of coding evolution due to a combination of relaxed constraint and recurrent, widespread positive selection. In particular, the central element cona and transverse filament c(3)G have diversified through tandem and retro-duplications, repeatedly generating paralogs with novel germline activity. In a striking case of molecular convergence, c(3)G paralogs that independently arose in distant lineages evolved under positive selection to have convergent truncations to the protein termini and elevated testes expression. Surprisingly, the expression of SC genes in the germline is prone to change suggesting recurrent regulatory evolution which, in many species, resulted in high testes expression even though Drosophila males are achiasmic. Overall, our study recapitulates the poor conservation of SC components, and further uncovers that the lack of conservation extends to other modalities including copy number, genomic locale, and germline regulation. Considering the elevated testes expression in many Drosophila species and the common ancestor, we suggest that the activity of SC genes in the male germline, while still poorly understood, may be a prime target of constant evolutionary pressures driving repeated adaptations and innovations.
Collapse
Affiliation(s)
- Rana Zakerzade
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
- Life Sciences Institute, University of British Columbia, Vancouver British Columbia, Canada
| | - Ching-Ho Chang
- Basic Sciences Division, Fred Hutch Cancer Center, Seattle, Washington, United States of America
| | - Kamalakar Chatla
- Department of Integrative Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Ananya Krishnapura
- Department of Integrative Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Samuel P. Appiah
- Department of Integrative Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Jacki Zhang
- Department of Integrative Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Robert L. Unckless
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
| | - Justin P. Blumenstiel
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, United States of America
| | - Doris Bachtrog
- Department of Integrative Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Kevin H-C. Wei
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
- Life Sciences Institute, University of British Columbia, Vancouver British Columbia, Canada
- Department of Integrative Biology, University of California Berkeley, Berkeley, California, United States of America
| |
Collapse
|
4
|
Kitaoka M, Yamashita YM. Running the gauntlet: challenges to genome integrity in spermiogenesis. Nucleus 2024; 15:2339220. [PMID: 38594652 PMCID: PMC11005813 DOI: 10.1080/19491034.2024.2339220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/02/2024] [Indexed: 04/11/2024] Open
Abstract
Species' continuity depends on gametogenesis to produce the only cell types that can transmit genetic information across generations. Spermiogenesis, which encompasses post-meiotic, haploid stages of male gametogenesis, is a process that leads to the formation of sperm cells well-known for their motility. Spermiogenesis faces three major challenges. First, after two rounds of meiotic divisions, the genome lacks repair templates (no sister chromatids, no homologous chromosomes), making it incredibly vulnerable to any genomic insults over an extended time (typically days-weeks). Second, the sperm genome becomes transcriptionally silent, making it difficult to respond to new perturbations as spermiogenesis progresses. Third, the histone-to-protamine transition, which is essential to package the sperm genome, counterintuitively involves DNA break formation. How spermiogenesis handles these challenges remains poorly understood. In this review, we discuss each challenge and their intersection with the biology of protamines. Finally, we discuss the implication of protamines in the process of evolution.
Collapse
Affiliation(s)
- Maiko Kitaoka
- Whitehead Institute for Biomedical Research and Howard Hughes Medical Institute, Cambridge, MA, USA
| | - Yukiko M. Yamashita
- Whitehead Institute for Biomedical Research and Howard Hughes Medical Institute, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
5
|
Gupta A, Unckless RL. Autosomal suppression of sex-ratio meiotic drive influences the dynamics of X and Y chromosome coevolution. J Hered 2024; 115:660-671. [PMID: 39212686 DOI: 10.1093/jhered/esae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 08/28/2024] [Indexed: 09/04/2024] Open
Abstract
Sex-ratio meiotic drivers are selfish genes or gene complexes that bias the transmission of sex chromosomes resulting in skewed sex ratios. Existing theoretical models have suggested the maintenance of a four-chromosome equilibrium (with driving and standard X and suppressing and susceptible Y) in a cyclic dynamic, but studies of natural populations have failed to capture this pattern. Although there are several plausible explanations for this lack of cycling, interference from autosomal suppressors has not been studied using a theoretical population genetic framework even though autosomal suppressors and Y-linked suppressors coexist in natural populations of some species. In this study, we use a simulation-based approach to investigate the influence of autosomal suppressors on the cycling of sex chromosomes. Our findings demonstrate that the presence of an autosomal suppressor can hinder the invasion of a Y-linked suppressor under some parameter space, thereby impeding the cyclic dynamics, or even the invasion of Y-linked suppression. Even when a Y-linked suppressor invades, the presence of an autosomal suppressor can prevent cycling. Our study demonstrates the potential role of autosomal suppressors in preventing sex chromosome cycling and provides insights into the conditions and consequences of maintaining both Y-linked and autosomal suppressors.
Collapse
Affiliation(s)
- Anjali Gupta
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, United States
| | - Robert L Unckless
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, United States
| |
Collapse
|
6
|
López Hernández JF, Rubinstein BY, Unckless RL, Zanders SE. Modeling the evolution of Schizosaccharomyces pombe populations with multiple killer meiotic drivers. G3 (BETHESDA, MD.) 2024; 14:jkae142. [PMID: 38938172 PMCID: PMC11491527 DOI: 10.1093/g3journal/jkae142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 05/23/2024] [Accepted: 06/03/2024] [Indexed: 06/29/2024]
Abstract
Meiotic drivers are selfish genetic loci that can be transmitted to more than half of the viable gametes produced by a heterozygote. This biased transmission gives meiotic drivers an evolutionary advantage that can allow them to spread over generations until all members of a population carry the driver. This evolutionary power can also be exploited to modify natural populations using synthetic drivers known as "gene drives." Recently, it has become clear that natural drivers can spread within genomes to birth multicopy gene families. To understand intragenomic spread of drivers, we model the evolution of 2 or more distinct meiotic drivers in a population. We employ the wtf killer meiotic drivers from Schizosaccharomyces pombe, which are multicopy in all sequenced isolates, as models. We find that a duplicate wtf driver identical to the parent gene can spread in a population unless, or until, the original driver is fixed. When the duplicate driver diverges to be distinct from the parent gene, we find that both drivers spread to fixation under most conditions, but both drivers can be lost under some conditions. Finally, we show that stronger drivers make weaker drivers go extinct in most, but not all, polymorphic populations with absolutely linked drivers. These results reveal the strong potential for natural meiotic drive loci to duplicate and diverge within genomes. Our findings also highlight duplication potential as a factor to consider in the design of synthetic gene drives.
Collapse
Affiliation(s)
| | - Boris Y Rubinstein
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Robert L Unckless
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS 66045, USA
| | - Sarah E Zanders
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
- Department of Cell Biology and Physiology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| |
Collapse
|
7
|
Chen P, Pan KC, Park EH, Luo Y, Lee YCG, Aravin AA. Escalation of genome defense capacity enables control of an expanding meiotic driver. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.12.598716. [PMID: 38915551 PMCID: PMC11195268 DOI: 10.1101/2024.06.12.598716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
From RNA interference to chromatin silencing, diverse genome defense pathways silence selfish genetic elements to safeguard genome integrity1,2. Despite their diversity, different defense pathways share a modular organization, where numerous specificity factors identify diverse targets and common effectors silence them. In the PIWI-interacting RNA (piRNA) pathway, which controls selfish elements in the metazoan germline, diverse target RNAs are first identified by complementary base pairing with piRNAs and then silenced by PIWI-clade nucleases via enzymatic cleavage1,3. Such a binary architecture allows the defense systems to be readily adaptable, where new targets can be captured via the innovation of new specificity factors4,5. Thus, our current understanding of genome defense against lineage-specific selfish genes has been largely limited to the evolution of specificity factors, while it remains poorly understood whether other types of innovations are required. Here, we describe a new type of innovation, which escalates the defense capacity of the piRNA pathway to control a recently expanded selfish gene in Drosophila melanogaster. Through an in vivo RNAi screen for repressors of Stellate-a recently evolved and expanded selfish meiotic driver6-8-we discovered a novel defense factor, Trailblazer. Trailblazer is a transcription factor that promotes the expression of two PIWI-clade nucleases, Aub and AGO3, to match Stellate in abundance. Recent innovation in the DNA-binding domain of Trailblazer enabled it to drastically elevate Aub and AGO3 expression in the D. melanogaster lineage, thereby escalating the silencing capacity of the piRNA pathway to control expanded Stellate and safeguard fertility. As copy-number expansion is a recurrent feature of diverse selfish genes across the tree of life9-12, we envision that augmenting the defense capacity to quantitatively match selfish genes is likely a repeatedly employed defense strategy in evolution.
Collapse
Affiliation(s)
- Peiwei Chen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Katherine C. Pan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Eunice H. Park
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Yicheng Luo
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Yuh Chwen G. Lee
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, California 92697, USA
| | - Alexei A. Aravin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
8
|
Castellanos MDP, Wickramasinghe CD, Betrán E. The roles of gene duplications in the dynamics of evolutionary conflicts. Proc Biol Sci 2024; 291:20240555. [PMID: 38865605 DOI: 10.1098/rspb.2024.0555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 04/02/2024] [Indexed: 06/14/2024] Open
Abstract
Evolutionary conflicts occur when there is antagonistic selection between different individuals of the same or different species, life stages or between levels of biological organization. Remarkably, conflicts can occur within species or within genomes. In the dynamics of evolutionary conflicts, gene duplications can play a major role because they can bring very specific changes to the genome: changes in protein dose, the generation of novel paralogues with different functions or expression patterns or the evolution of small antisense RNAs. As we describe here, by having those effects, gene duplication might spark evolutionary conflict or fuel arms race dynamics that takes place during conflicts. Interestingly, gene duplication can also contribute to the resolution of a within-locus evolutionary conflict by partitioning the functions of the gene that is under an evolutionary trade-off. In this review, we focus on intraspecific conflicts, including sexual conflict and illustrate the various roles of gene duplications with a compilation of examples. These examples reveal the level of complexity and the differences in the patterns of gene duplications within genomes under different conflicts. These examples also reveal the gene ontologies involved in conflict and the genomic location of the elements of the conflict. The examples provide a blueprint for the direct study of these conflicts or the exploration of the presence of similar conflicts in other lineages.
Collapse
Affiliation(s)
| | | | - Esther Betrán
- Department of Biology, University of Texas at Arlington , Arlington, TX 76019, USA
| |
Collapse
|
9
|
Brand CL, Oliver GT, Farkas IZ, Buszczak M, Levine MT. Recurrent Duplication and Diversification of a Vital DNA Repair Gene Family Across Drosophila. Mol Biol Evol 2024; 41:msae113. [PMID: 38865490 PMCID: PMC11210505 DOI: 10.1093/molbev/msae113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/14/2024] Open
Abstract
Maintaining genome integrity is vital for organismal survival and reproduction. Essential, broadly conserved DNA repair pathways actively preserve genome integrity. However, many DNA repair proteins evolve adaptively. Ecological forces like UV exposure are classically cited drivers of DNA repair evolution. Intrinsic forces like repetitive DNA, which also imperil genome integrity, have received less attention. We recently reported that a Drosophila melanogaster-specific DNA satellite array triggered species-specific, adaptive evolution of a DNA repair protein called Spartan/MH. The Spartan family of proteases cleave hazardous, covalent crosslinks that form between DNA and proteins ("DNA-protein crosslink repair"). Appreciating that DNA satellites are both ubiquitous and universally fast-evolving, we hypothesized that satellite DNA turnover spurs adaptive evolution of DNA-protein crosslink repair beyond a single gene and beyond the D. melanogaster lineage. This hypothesis predicts pervasive Spartan gene family diversification across Drosophila species. To study the evolutionary history of the Drosophila Spartan gene family, we conducted population genetic, molecular evolution, phylogenomic, and tissue-specific expression analyses. We uncovered widespread signals of positive selection across multiple Spartan family genes and across multiple evolutionary timescales. We also detected recurrent Spartan family gene duplication, divergence, and gene loss. Finally, we found that ovary-enriched parent genes consistently birthed functionally diverged, testis-enriched daughter genes. To account for Spartan family diversification, we introduce a novel mechanistic model of antagonistic coevolution that links DNA satellite evolution and adaptive regulation of Spartan protease activity. This framework promises to accelerate our understanding of how DNA repeats drive recurrent evolutionary innovation to preserve genome integrity.
Collapse
Affiliation(s)
- Cara L Brand
- Department of Biology and Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Genevieve T Oliver
- Department of Biology and Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Isabella Z Farkas
- Department of Biology and Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael Buszczak
- Department of Molecular Biology and Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mia T Levine
- Department of Biology and Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
10
|
Wei KHC, Chatla K, Bachtrog D. Single-cell RNA-seq of Drosophila miranda testis reveals the evolution and trajectory of germline sex chromosome regulation. PLoS Biol 2024; 22:e3002605. [PMID: 38687805 PMCID: PMC11135767 DOI: 10.1371/journal.pbio.3002605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/29/2024] [Accepted: 03/27/2024] [Indexed: 05/02/2024] Open
Abstract
Although sex chromosomes have evolved from autosomes, they often have unusual regulatory regimes that are sex- and cell-type-specific such as dosage compensation (DC) and meiotic sex chromosome inactivation (MSCI). The molecular mechanisms and evolutionary forces driving these unique transcriptional programs are critical for genome evolution but have been, in the case of MSCI in Drosophila, subject to continuous debate. Here, we take advantage of the younger sex chromosomes in D. miranda (XR and the neo-X) to infer how former autosomes acquire sex-chromosome-specific regulatory programs using single-cell and bulk RNA sequencing and ribosome profiling, in a comparative evolutionary context. We show that contrary to mammals and worms, the X down-regulation through germline progression is most consistent with the shutdown of DC instead of MSCI, resulting in half gene dosage at the end of meiosis for all 3 X's. Moreover, lowly expressed germline and meiotic genes on the neo-X are ancestrally lowly expressed, instead of acquired suppression after sex linkage. For the young neo-X, DC is incomplete across all tissue and cell types and this dosage imbalance is rescued by contributions from Y-linked gametologs which produce transcripts that are translated to compensate both gene and protein dosage. We find an excess of previously autosomal testis genes becoming Y-specific, showing that the neo-Y and its masculinization likely resolve sexual antagonism. Multicopy neo-sex genes are predominantly expressed during meiotic stages of spermatogenesis, consistent with their amplification being driven to interfere with mendelian segregation. Altogether, this study reveals germline regulation of evolving sex chromosomes and elucidates the consequences these unique regulatory mechanisms have on the evolution of sex chromosome architecture.
Collapse
Affiliation(s)
- Kevin H-C. Wei
- Department of Integrative Biology, University of California Berkeley, Berkeley, California, United States of America
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kamalakar Chatla
- Department of Integrative Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Doris Bachtrog
- Department of Integrative Biology, University of California Berkeley, Berkeley, California, United States of America
| |
Collapse
|
11
|
Courret C, Wei X, Larracuente AM. New perspectives on the causes and consequences of male meiotic drive. Curr Opin Genet Dev 2023; 83:102111. [PMID: 37704518 PMCID: PMC10842977 DOI: 10.1016/j.gde.2023.102111] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 09/15/2023]
Abstract
Gametogenesis is vulnerable to selfish genetic elements that bias their transmission to the next generation by cheating meiosis. These so-called meiotic drivers are widespread in plants, animals, and fungi and can impact genome evolution. Here, we summarize recent progress on the causes and consequences of meiotic drive in males, where selfish elements attack vulnerabilities in spermatogenesis. Advances in genomics provide new insights into the organization and dynamics of driving chromosomes in natural populations. Common themes, including small RNAs, gene duplications, and heterochromatin, emerged from these studies. Interdisciplinary approaches combining evolutionary genomics with molecular and cell biology are beginning to unravel the mysteries of drive and suppression mechanisms. These approaches also provide insights into fundamental processes in spermatogenesis and chromatin regulation.
Collapse
Affiliation(s)
- Cécile Courret
- Department of Biology, University of Rochester, Rochester, NY 14627, USA. https://twitter.com/@CecileCourret
| | - Xiaolu Wei
- Department of Biology, University of Rochester, Rochester, NY 14627, USA. https://twitter.com/@xiaolu_wei
| | | |
Collapse
|
12
|
van Lopik J, Alizada A, Trapotsi MA, Hannon GJ, Bornelöv S, Czech Nicholson B. Unistrand piRNA clusters are an evolutionarily conserved mechanism to suppress endogenous retroviruses across the Drosophila genus. Nat Commun 2023; 14:7337. [PMID: 37957172 PMCID: PMC10643416 DOI: 10.1038/s41467-023-42787-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 10/18/2023] [Indexed: 11/15/2023] Open
Abstract
The PIWI-interacting RNA (piRNA) pathway prevents endogenous genomic parasites, i.e. transposable elements, from damaging the genetic material of animal gonadal cells. Specific regions in the genome, called piRNA clusters, are thought to define each species' piRNA repertoire and therefore its capacity to recognize and silence specific transposon families. The unistrand cluster flamenco (flam) is essential in the somatic compartment of the Drosophila ovary to restrict Gypsy-family transposons from infecting the neighbouring germ cells. Disruption of flam results in transposon de-repression and sterility, yet it remains unknown whether this silencing mechanism is present more widely. Here, we systematically characterise 119 Drosophila species and identify five additional flam-like clusters separated by up to 45 million years of evolution. Small RNA-sequencing validated these as bona-fide unistrand piRNA clusters expressed in somatic cells of the ovary, where they selectively target transposons of the Gypsy family. Together, our study provides compelling evidence of a widely conserved transposon silencing mechanism that co-evolved with virus-like Gypsy-family transposons.
Collapse
Affiliation(s)
- Jasper van Lopik
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, CB2 0RE, UK
| | - Azad Alizada
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, CB2 0RE, UK
| | - Maria-Anna Trapotsi
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, CB2 0RE, UK
| | - Gregory J Hannon
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, CB2 0RE, UK
| | - Susanne Bornelöv
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, CB2 0RE, UK.
| | - Benjamin Czech Nicholson
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, CB2 0RE, UK.
| |
Collapse
|
13
|
Martí E, Larracuente AM. Genetic conflict and the origin of multigene families: implications for sex chromosome evolution. Proc Biol Sci 2023; 290:20231823. [PMID: 37909083 PMCID: PMC10618873 DOI: 10.1098/rspb.2023.1823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 10/10/2023] [Indexed: 11/02/2023] Open
Abstract
Sex chromosomes are havens for intragenomic conflicts. The absence of recombination between sex chromosomes creates the opportunity for the evolution of segregation distorters: selfish genetic elements that hijack different aspects of an individual's reproduction to increase their own transmission. Biased (non-Mendelian) segregation, however, often occurs at a detriment to their host's fitness, and therefore can trigger evolutionary arms races that can have major consequences for genome structure and regulation, gametogenesis, reproductive strategies and even speciation. Here, we review an emerging feature from comparative genomic and sex chromosome evolution studies suggesting that meiotic drive is pervasive: the recurrent evolution of paralogous sex-linked gene families. Sex chromosomes of several species independently acquire and co-amplify rapidly evolving gene families with spermatogenesis-related functions, consistent with a history of intragenomic conflict over transmission. We discuss Y chromosome features that might contribute to the tempo and mode of evolution of X/Y co-amplified gene families, as well as their implications for the evolution of complexity in the genome. Finally, we propose a framework that explores the conditions that might allow for recurrent bouts of fixation of drivers and suppressors, in a dosage-sensitive fashion, and therefore the co-amplification of multigene families on sex chromosomes.
Collapse
Affiliation(s)
- Emiliano Martí
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | | |
Collapse
|
14
|
Lai EC, Vogan AA. Proliferation and dissemination of killer meiotic drive loci. Curr Opin Genet Dev 2023; 82:102100. [PMID: 37625205 PMCID: PMC10900872 DOI: 10.1016/j.gde.2023.102100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 08/27/2023]
Abstract
Killer meiotic drive elements are selfish genetic entities that manipulate the sexual cycle to promote their own inheritance via destructive means. Two broad classes are sperm killers, typical of animals and plants, and spore killers, which are present in ascomycete fungi. Killer meiotic drive systems operate via toxins that destroy or disable meiotic products bearing the alternative allele. To avoid suicidal autotargeting, cells that bear these selfish elements must either lack the toxin target, or express an antidote. Historically, these systems were presumed to require large nonrecombining haplotypes to link multiple functional interacting loci. However, recent advances on fungal spore killers reveal that numerous systems are enacted by single genes, and similar molecular genetic studies in Drosophila pinpoint individual loci that distort gamete sex. Notably, many meiotic drivers duplicate readily, forming gene families that can have complex interactions within and between species, and providing substrates for their rapid functional diversification. Here, we summarize the known families of meiotic drivers in fungi and fruit flies, and highlight shared principles about their evolution and proliferation that promote the spread of these noxious genes.
Collapse
Affiliation(s)
- Eric C Lai
- Developmental Biology Program, Sloan Kettering Institute, 430 East 67th St, ROC-10, New York, NY 10065, USA.
| | - Aaron A Vogan
- Institute of Organismal Biology, Uppsala University, Norbyvägen 18D, Uppsala 752 36, Sweden.
| |
Collapse
|
15
|
Silva DM, Akera T. Meiotic drive of noncentromeric loci in mammalian meiosis II eggs. Curr Opin Genet Dev 2023; 81:102082. [PMID: 37406428 PMCID: PMC10527070 DOI: 10.1016/j.gde.2023.102082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/02/2023] [Accepted: 06/08/2023] [Indexed: 07/07/2023]
Abstract
The germline produces haploid gametes through a specialized cell division called meiosis. In general, homologous chromosomes from each parent segregate randomly to the daughter cells during meiosis, providing parental alleles with an equal chance of transmission. Meiotic drivers are selfish elements who cheat this process to increase their transmission rate. In female meiosis, selfish centromeres and noncentromeric drivers cheat by preferentially segregating to the egg cell. Selfish centromeres cheat in meiosis I (MI), while noncentromeric drivers can cheat in both meiosis I and meiosis II (MII). Here, we highlight recent advances on our understanding of the molecular mechanisms underlying these genetic cheating strategies, especially focusing on mammalian systems, and discuss new models of how noncentromeric selfish drivers can cheat in MII eggs.
Collapse
Affiliation(s)
- Duilio Mza Silva
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Takashi Akera
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
16
|
Kitano J, Yoshida K. Do sex-linked male meiotic drivers contribute to intrinsic hybrid incompatibilities? Recent empirical studies from flies and rodents. Curr Opin Genet Dev 2023; 81:102068. [PMID: 37354886 DOI: 10.1016/j.gde.2023.102068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/29/2023] [Accepted: 05/29/2023] [Indexed: 06/26/2023]
Abstract
Intrinsic hybrid incompatibility is one of the important isolating barriers between species. In organisms with sex chromosomes, intrinsic hybrid incompatibility often follows two rules: Haldane's rule and large-X effects. One explanation for these two rules is that sex chromosomes are hotspots for meiotic drivers that can cause intrinsic hybrid incompatibility between geographically isolated populations. Although this hypothesis seems plausible and several empirical data are consistent with it, we are still unsure whether such mechanisms occur in nature, particularly with respect to speciation with gene flow. Here, we review empirical studies that have investigated the roles of meiotic drive in sex-chromosome evolution and speciation and propose future studies necessary for testing this hypothesis.
Collapse
Affiliation(s)
- Jun Kitano
- Ecological Genetics Laboratory, National Institute of Genetics, Mishima 1111, Shizuoka 411-8540, Japan.
| | - Kohta Yoshida
- Ecological Genetics Laboratory, National Institute of Genetics, Mishima 1111, Shizuoka 411-8540, Japan; Department for Integrative Evolutionary Biology, Max Planck Institute for Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany. https://twitter.com/PristionXY
| |
Collapse
|
17
|
Signor S, Vedanayagam J, Kim BY, Wierzbicki F, Kofler R, Lai EC. Rapid evolutionary diversification of the flamenco locus across simulans clade Drosophila species. PLoS Genet 2023; 19:e1010914. [PMID: 37643184 PMCID: PMC10495008 DOI: 10.1371/journal.pgen.1010914] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 09/11/2023] [Accepted: 08/09/2023] [Indexed: 08/31/2023] Open
Abstract
Suppression of transposable elements (TEs) is paramount to maintain genomic integrity and organismal fitness. In D. melanogaster, the flamenco locus is a master suppressor of TEs, preventing the mobilization of certain endogenous retrovirus-like TEs from somatic ovarian support cells to the germline. It is transcribed by Pol II as a long (100s of kb), single-stranded, primary transcript, and metabolized into ~24-32 nt Piwi-interacting RNAs (piRNAs) that target active TEs via antisense complementarity. flamenco is thought to operate as a trap, owing to its high content of recent horizontally transferred TEs that are enriched in antisense orientation. Using newly-generated long read genome data, which is critical for accurate assembly of repetitive sequences, we find that flamenco has undergone radical transformations in sequence content and even copy number across simulans clade Drosophilid species. Drosophila simulans flamenco has duplicated and diverged, and neither copy exhibits synteny with D. melanogaster beyond the core promoter. Moreover, flamenco organization is highly variable across D. simulans individuals. Next, we find that D. simulans and D. mauritiana flamenco display signatures of a dual-stranded cluster, with ping-pong signals in the testis and/or embryo. This is accompanied by increased copy numbers of germline TEs, consistent with these regions operating as functional dual-stranded clusters. Overall, the physical and functional diversity of flamenco orthologs is testament to the extremely dynamic consequences of TE arms races on genome organization, not only amongst highly related species, but even amongst individuals.
Collapse
Affiliation(s)
- Sarah Signor
- Biological Sciences, North Dakota State University, Fargo, North Dakota, United States of America
| | - Jeffrey Vedanayagam
- Developmental Biology Program, Sloan-Kettering Institute, New York, New York, United States of America
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, Texas, United States of America
| | - Bernard Y. Kim
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Filip Wierzbicki
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
- Vienna Graduate School of Population Genetics, Vienna, Austria
| | - Robert Kofler
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
| | - Eric C. Lai
- Developmental Biology Program, Sloan-Kettering Institute, New York, New York, United States of America
| |
Collapse
|
18
|
Li P, Messina G, Lehner CF. Nuclear elongation during spermiogenesis depends on physical linkage of nuclear pore complexes to bundled microtubules by Drosophila Mst27D. PLoS Genet 2023; 19:e1010837. [PMID: 37428798 PMCID: PMC10359004 DOI: 10.1371/journal.pgen.1010837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/22/2023] [Indexed: 07/12/2023] Open
Abstract
Spermatozoa in animal species are usually highly elongated cells with a long motile tail attached to a head that contains the haploid genome in a compact and often elongated nucleus. In Drosophila melanogaster, the nucleus is compacted two hundred-fold in volume during spermiogenesis and re-modeled into a needle that is thirty-fold longer than its diameter. Nuclear elongation is preceded by a striking relocalization of nuclear pore complexes (NPCs). While NPCs are initially located throughout the nuclear envelope (NE) around the spherical nucleus of early round spermatids, they are later confined to one hemisphere. In the cytoplasm adjacent to this NPC-containing NE, the so-called dense complex with a strong bundle of microtubules is assembled. While this conspicuous proximity argued for functional significance of NPC-NE and microtubule bundle, experimental confirmation of their contributions to nuclear elongation has not yet been reported. Our functional characterization of the spermatid specific Mst27D protein now resolves this deficit. We demonstrate that Mst27D establishes physical linkage between NPC-NE and dense complex. The C-terminal region of Mst27D binds to the nuclear pore protein Nup358. The N-terminal CH domain of Mst27D, which is similar to that of EB1 family proteins, binds to microtubules. At high expression levels, Mst27D promotes bundling of microtubules in cultured cells. Microscopic analyses indicated co-localization of Mst27D with Nup358 and with the microtubule bundles of the dense complex. Time-lapse imaging revealed that nuclear elongation is accompanied by a progressive bundling of microtubules into a single elongated bundle. In Mst27D null mutants, this bundling process does not occur and nuclear elongation is abnormal. Thus, we propose that Mst27D permits normal nuclear elongation by promoting the attachment of the NPC-NE to the microtubules of the dense complex, as well as the progressive bundling of these microtubules.
Collapse
Affiliation(s)
- Pengfei Li
- Department of Molecular Life Science (DMLS), University of Zurich, Zurich, Switzerland
| | - Giovanni Messina
- Department of Molecular Life Science (DMLS), University of Zurich, Zurich, Switzerland
| | - Christian F Lehner
- Department of Molecular Life Science (DMLS), University of Zurich, Zurich, Switzerland
| |
Collapse
|
19
|
Reinhardt JA, Baker RH, Zimin AV, Ladias C, Paczolt KA, Werren JH, Hayashi CY, Wilkinson GS. Impacts of Sex Ratio Meiotic Drive on Genome Structure and Function in a Stalk-Eyed Fly. Genome Biol Evol 2023; 15:evad118. [PMID: 37364298 PMCID: PMC10319772 DOI: 10.1093/gbe/evad118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 06/02/2023] [Accepted: 06/15/2023] [Indexed: 06/28/2023] Open
Abstract
Stalk-eyed flies in the genus Teleopsis carry selfish genetic elements that induce sex ratio (SR) meiotic drive and impact the fitness of male and female carriers. Here, we assemble and describe a chromosome-level genome assembly of the stalk-eyed fly, Teleopsis dalmanni, to elucidate patterns of divergence associated with SR. The genome contains tens of thousands of transposable element (TE) insertions and hundreds of transcriptionally and insertionally active TE families. By resequencing pools of SR and ST males using short and long reads, we find widespread differentiation and divergence between XSR and XST associated with multiple nested inversions involving most of the SR haplotype. Examination of genomic coverage and gene expression data revealed seven X-linked genes with elevated expression and coverage in SR males. The most extreme and likely drive candidate involves an XSR-specific expansion of an array of partial copies of JASPer, a gene necessary for maintenance of euchromatin and associated with regulation of TE expression. In addition, we find evidence for rapid protein evolution between XSR and XST for testis expressed and novel genes, that is, either recent duplicates or lacking a Dipteran ortholog, including an X-linked duplicate of maelstrom, which is also involved in TE silencing. Overall, the evidence suggests that this ancient XSR polymorphism has had a variety of impacts on repetitive DNA and its regulation in this species.
Collapse
Affiliation(s)
| | - Richard H Baker
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, New York, USA
| | - Aleksey V Zimin
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Chloe Ladias
- Biology Department, State University of New York at Geneseo, Geneseo, New York, USA
| | - Kimberly A Paczolt
- Department of Biology, University of Maryland, College Park, Maryland, USA
| | - John H Werren
- Department of Biology, University of Rochester, Rochester, New York, USA
| | - Cheryl Y Hayashi
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, New York, USA
| | - Gerald S Wilkinson
- Department of Biology, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
20
|
Vedanayagam J, Lin CJ, Papareddy R, Nodine M, Flynt AS, Wen J, Lai EC. Regulatory logic of endogenous RNAi in silencing de novo genomic conflicts. PLoS Genet 2023; 19:e1010787. [PMID: 37343034 PMCID: PMC10317233 DOI: 10.1371/journal.pgen.1010787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 07/03/2023] [Accepted: 05/17/2023] [Indexed: 06/23/2023] Open
Abstract
Although the biological utilities of endogenous RNAi (endo-RNAi) have been largely elusive, recent studies reveal its critical role in the non-model fruitfly Drosophila simulans to suppress selfish genes, whose unchecked activities can severely impair spermatogenesis. In particular, hairpin RNA (hpRNA) loci generate endo-siRNAs that suppress evolutionary novel, X-linked, meiotic drive loci. The consequences of deleting even a single hpRNA (Nmy) in males are profound, as such individuals are nearly incapable of siring male progeny. Here, comparative genomic analyses of D. simulans and D. melanogaster mutants of the core RNAi factor dcr-2 reveal a substantially expanded network of recently-emerged hpRNA-target interactions in the former species. The de novo hpRNA regulatory network in D. simulans provides insight into molecular strategies that underlie hpRNA emergence and their potential roles in sex chromosome conflict. In particular, our data support the existence of ongoing rapid evolution of Nmy/Dox-related networks, and recurrent targeting of testis HMG-box loci by hpRNAs. Importantly, the impact of the endo-RNAi network on gene expression flips the convention for regulatory networks, since we observe strong derepression of targets of the youngest hpRNAs, but only mild effects on the targets of the oldest hpRNAs. These data suggest that endo-RNAi are especially critical during incipient stages of intrinsic sex chromosome conflicts, and that continual cycles of distortion and resolution may contribute to speciation.
Collapse
Affiliation(s)
- Jeffrey Vedanayagam
- Developmental Biology Program, Sloan Kettering Institute, New York, New York, United States of America
| | - Ching-Jung Lin
- Developmental Biology Program, Sloan Kettering Institute, New York, New York, United States of America
- Weill Graduate School of Medical Sciences, Weill Cornell Medical College, New York, New York, United States of America
| | - Ranjith Papareddy
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Austria
| | - Michael Nodine
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Austria
| | - Alex S. Flynt
- Cellular and Molecular Biology, University of Southern Mississippi, Hattiesburg, Mississippi, United States of America
| | - Jiayu Wen
- Division of Genome Sciences and Cancer, The John Curtin School of Medical Research The Australian National University, Canberra, Australia
| | - Eric C. Lai
- Developmental Biology Program, Sloan Kettering Institute, New York, New York, United States of America
| |
Collapse
|
21
|
Vedanayagam J, Herbette M, Mudgett H, Lin CJ, Lai CM, McDonough-Goldstein C, Dorus S, Loppin B, Meiklejohn C, Dubruille R, Lai EC. Essential and recurrent roles for hairpin RNAs in silencing de novo sex chromosome conflict in Drosophila simulans. PLoS Biol 2023; 21:e3002136. [PMID: 37289846 PMCID: PMC10292708 DOI: 10.1371/journal.pbio.3002136] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 06/26/2023] [Accepted: 04/21/2023] [Indexed: 06/10/2023] Open
Abstract
Meiotic drive loci distort the normally equal segregation of alleles, which benefits their own transmission even in the face of severe fitness costs to their host organism. However, relatively little is known about the molecular identity of meiotic drivers, their strategies of action, and mechanisms that can suppress their activity. Here, we present data from the fruitfly Drosophila simulans that address these questions. We show that a family of de novo, protamine-derived X-linked selfish genes (the Dox gene family) is silenced by a pair of newly emerged hairpin RNA (hpRNA) small interfering RNA (siRNA)-class loci, Nmy and Tmy. In the w[XD1] genetic background, knockout of nmy derepresses Dox and MDox in testes and depletes male progeny, whereas knockout of tmy causes misexpression of PDox genes and renders males sterile. Importantly, genetic interactions between nmy and tmy mutant alleles reveal that Tmy also specifically maintains male progeny for normal sex ratio. We show the Dox loci are functionally polymorphic within D. simulans, such that both nmy-associated sex ratio bias and tmy-associated sterility can be rescued by wild-type X chromosomes bearing natural deletions in different Dox family genes. Finally, using tagged transgenes of Dox and PDox2, we provide the first experimental evidence Dox family genes encode proteins that are strongly derepressed in cognate hpRNA mutants. Altogether, these studies support a model in which protamine-derived drivers and hpRNA suppressors drive repeated cycles of sex chromosome conflict and resolution that shape genome evolution and the genetic control of male gametogenesis.
Collapse
Affiliation(s)
- Jeffrey Vedanayagam
- Developmental Biology Program, Sloan-Kettering Institute, New York, New York, United States of America
| | - Marion Herbette
- Laboratoire de Biologie et Modélisation de la Cellule, École Normale Supérieure de Lyon CNRS UMR5239, Université Claude Bernard Lyon 1, Lyon, France
| | - Holly Mudgett
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Ching-Jung Lin
- Developmental Biology Program, Sloan-Kettering Institute, New York, New York, United States of America
- Weill Graduate School of Medical Sciences, Weill Cornell Medical College, New York, New York, United States of America
| | - Chun-Ming Lai
- Developmental Biology Program, Sloan-Kettering Institute, New York, New York, United States of America
| | | | - Stephen Dorus
- Center for Reproductive Evolution, Syracuse University, Syracuse, New York, United States of America
| | - Benjamin Loppin
- Laboratoire de Biologie et Modélisation de la Cellule, École Normale Supérieure de Lyon CNRS UMR5239, Université Claude Bernard Lyon 1, Lyon, France
| | - Colin Meiklejohn
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Raphaëlle Dubruille
- Laboratoire de Biologie et Modélisation de la Cellule, École Normale Supérieure de Lyon CNRS UMR5239, Université Claude Bernard Lyon 1, Lyon, France
| | - Eric C. Lai
- Developmental Biology Program, Sloan-Kettering Institute, New York, New York, United States of America
- Weill Graduate School of Medical Sciences, Weill Cornell Medical College, New York, New York, United States of America
| |
Collapse
|
22
|
Park JI, Bell GW, Yamashita YM. Derepression of Y-linked multicopy protamine-like genes interferes with sperm nuclear compaction in D. melanogaster. Proc Natl Acad Sci U S A 2023; 120:e2220576120. [PMID: 37036962 PMCID: PMC10120018 DOI: 10.1073/pnas.2220576120] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 03/17/2023] [Indexed: 04/12/2023] Open
Abstract
Across species, sperm maturation involves the dramatic reconfiguration of chromatin into highly compact nuclei that enhance hydrodynamic ability and ensure paternal genomic integrity. This process is mediated by the replacement of histones by sperm nuclear basic proteins, also referred to as protamines. In humans, a carefully balanced dosage between two known protamine genes is required for optimal fertility. However, it remains unknown how their proper balance is regulated and how defects in balance may lead to compromised fertility. Here, we show that a nucleolar protein, modulo, a homolog of nucleolin, mediates the histone-to-protamine transition during Drosophila spermatogenesis. We find that modulo mutants display nuclear compaction defects during late spermatogenesis due to decreased expression of autosomal protamine genes (including Mst77F) and derepression of Y-linked multicopy Mst77F homologs (Mst77Y), leading to the mutant's known sterility. Overexpression of Mst77Y in a wild-type background is sufficient to cause nuclear compaction defects, similar to modulo mutant, indicating that Mst77Y is a dominant-negative variant interfering with the process of histone-to-protamine transition. Interestingly, ectopic overexpression of Mst77Y caused decompaction of X-bearing spermatids nuclei more frequently than Y-bearing spermatid nuclei, although this did not greatly affect the sex ratio of offspring. We further show that modulo regulates these protamine genes at the step of transcript polyadenylation. We conclude that the regulation of protamines mediated by modulo, ensuring the expression of functional ones while repressing dominant-negative ones, is critical for male fertility.
Collapse
Affiliation(s)
- Jun I. Park
- Life Sciences Institute, University of Michigan, Ann Arbor, MI48109
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI48109
- Medical Scientist Training Program, University of Michigan Medical School, Ann Arbor, MI48109
| | - George W. Bell
- Whitehead Institute for Biomedical Research, Cambridge, MA02142
| | - Yukiko M. Yamashita
- Whitehead Institute for Biomedical Research, Cambridge, MA02142
- Department of Biology, School of Science, Massachusetts Institute of Technology, Cambridge, MA02142
- HHMI, Cambridge, MA02142
| |
Collapse
|
23
|
Chang CH, Mejia Natividad I, Malik HS. Expansion and loss of sperm nuclear basic protein genes in Drosophila correspond with genetic conflicts between sex chromosomes. eLife 2023; 12:85249. [PMID: 36763410 PMCID: PMC9917458 DOI: 10.7554/elife.85249] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/04/2023] [Indexed: 02/11/2023] Open
Abstract
Many animal species employ sperm nuclear basic proteins (SNBPs) or protamines to package sperm genomes tightly. SNBPs vary across animal lineages and evolve rapidly in mammals. We used a phylogenomic approach to investigate SNBP diversification in Drosophila species. We found that most SNBP genes in Drosophila melanogaster evolve under positive selection except for genes essential for male fertility. Unexpectedly, evolutionarily young SNBP genes are more likely to be critical for fertility than ancient, conserved SNBP genes. For example, CG30056 is dispensable for male fertility despite being one of three SNBP genes universally retained in Drosophila species. We found 19 independent SNBP gene amplification events that occurred preferentially on sex chromosomes. Conversely, the montium group of Drosophila species lost otherwise-conserved SNBP genes, coincident with an X-Y chromosomal fusion. Furthermore, SNBP genes that became linked to sex chromosomes via chromosomal fusions were more likely to degenerate or relocate back to autosomes. We hypothesize that autosomal SNBP genes suppress meiotic drive, whereas sex-chromosomal SNBP expansions lead to meiotic drive. X-Y fusions in the montium group render autosomal SNBPs dispensable by making X-versus-Y meiotic drive obsolete or costly. Thus, genetic conflicts between sex chromosomes may drive SNBP rapid evolution during spermatogenesis in Drosophila species.
Collapse
Affiliation(s)
- Ching-Ho Chang
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, United States
| | - Isabel Mejia Natividad
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, United States.,Howard Hughes Medical Institute, Fred Hutchinson Cancer Center, Seattle, United States
| | - Harmit S Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, United States.,Howard Hughes Medical Institute, Fred Hutchinson Cancer Center, Seattle, United States
| |
Collapse
|
24
|
Bradshaw SL, Meade L, Tarlton-Weatherall J, Pomiankowski A. Meiotic drive adaptive testes enlargement during early development in the stalk-eyed fly. Biol Lett 2022; 18:20220352. [PMID: 36448294 PMCID: PMC9709577 DOI: 10.1098/rsbl.2022.0352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
The sex ratio (SR) X-linked meiotic drive system in stalk-eyed flies destroys Y-bearing sperm. Unlike other SR systems, drive males do not suffer fertility loss. They have greatly enlarged testes which compensate for gamete killing. We predicted that enlarged testes arise from extended development with resources re-allocated from the accessory glands, as these tend to be smaller in drive males. To test this, we tracked the growth of the testes and accessory glands of wild-type and drive males over 5-6 weeks post-eclosion before males attained sexual maturity. Neither of the original predictions is supported by these data. Instead, we found that the drive male testes were enlarged at eclosion, reflecting a greater allocation of resources to the testes during pupation. Testes grow at a higher rate during early adult development in drive males, but there was no evidence that this retards the growth of the accessory glands. Further experiments are proposed to investigate whether smaller accessory glands only arise in drive males post-copulation or when flies are subjected to nutritional stress. Our experimental findings support the idea that enlarged testes in drive males arise as an adaptive allocation of resources to traits that enhance male reproductive success.
Collapse
Affiliation(s)
- Sasha L. Bradshaw
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Lara Meade
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Jessica Tarlton-Weatherall
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Andrew Pomiankowski
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK,CoMPLEX, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
25
|
De Carvalho M, Jia GS, Nidamangala Srinivasa A, Billmyre RB, Xu YH, Lange JJ, Sabbarini IM, Du LL, Zanders SE. The wtf meiotic driver gene family has unexpectedly persisted for over 100 million years. eLife 2022; 11:e81149. [PMID: 36227631 PMCID: PMC9562144 DOI: 10.7554/elife.81149] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/21/2022] [Indexed: 11/21/2022] Open
Abstract
Meiotic drivers are selfish elements that bias their own transmission into more than half of the viable progeny produced by a driver+/driver- heterozygote. Meiotic drivers are thought to exist for relatively short evolutionary timespans because a driver gene or gene family is often found in a single species or in a group of very closely related species. Additionally, drivers are generally considered doomed to extinction when they spread to fixation or when suppressors arise. In this study, we examine the evolutionary history of the wtf meiotic drivers first discovered in the fission yeast Schizosaccharomyces pombe. We identify homologous genes in three other fission yeast species, S. octosporus, S. osmophilus, and S. cryophilus, which are estimated to have diverged over 100 million years ago from the S. pombe lineage. Synteny evidence supports that wtf genes were present in the common ancestor of these four species. Moreover, the ancestral genes were likely drivers as wtf genes in S. octosporus cause meiotic drive. Our findings indicate that meiotic drive systems can be maintained for long evolutionary timespans.
Collapse
Affiliation(s)
- Mickaël De Carvalho
- Stowers Institute for Medical ResearchKansas CityUnited States
- Open UniversityMilton KeynesUnited Kingdom
| | - Guo-Song Jia
- PTN Joint Graduate Program, School of Life Sciences, Tsinghua UniversityBeijingChina
- National Institute of Biological Sciences, BeijingBeijingChina
| | - Ananya Nidamangala Srinivasa
- Stowers Institute for Medical ResearchKansas CityUnited States
- Department of Molecular and Integrative Physiology, University of Kansas Medical CenterKansas CityUnited States
| | | | - Yan-Hui Xu
- National Institute of Biological Sciences, BeijingBeijingChina
| | - Jeffrey J Lange
- Stowers Institute for Medical ResearchKansas CityUnited States
| | | | - Li-Lin Du
- National Institute of Biological Sciences, BeijingBeijingChina
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua UniversityBeijingChina
| | - Sarah E Zanders
- Stowers Institute for Medical ResearchKansas CityUnited States
- Department of Molecular and Integrative Physiology, University of Kansas Medical CenterKansas CityUnited States
| |
Collapse
|
26
|
Arora UP, Dumont BL. Meiotic drive in house mice: mechanisms, consequences, and insights for human biology. Chromosome Res 2022; 30:165-186. [PMID: 35829972 PMCID: PMC9509409 DOI: 10.1007/s10577-022-09697-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/20/2022] [Accepted: 04/27/2022] [Indexed: 11/27/2022]
Abstract
Meiotic drive occurs when one allele at a heterozygous site cheats its way into a disproportionate share of functional gametes, violating Mendel's law of equal segregation. This genetic conflict typically imposes a fitness cost to individuals, often by disrupting the process of gametogenesis. The evolutionary impact of meiotic drive is substantial, and the phenomenon has been associated with infertility and reproductive isolation in a wide range of organisms. However, cases of meiotic drive in humans remain elusive, a finding that likely reflects the inherent challenges of detecting drive in our species rather than unique features of human genome biology. Here, we make the case that house mice (Mus musculus) present a powerful model system to investigate the mechanisms and consequences of meiotic drive and facilitate translational inferences about the scope and potential mechanisms of drive in humans. We first detail how different house mouse resources have been harnessed to identify cases of meiotic drive and the underlying mechanisms utilized to override Mendel's rules of inheritance. We then summarize the current state of knowledge of meiotic drive in the mouse genome. We profile known mechanisms leading to transmission bias at several established drive elements. We discuss how a detailed understanding of meiotic drive in mice can steer the search for drive elements in our own species. Lastly, we conclude with a prospective look into how new technologies and molecular tools can help resolve lingering mysteries about the prevalence and mechanisms of selfish DNA transmission in mammals.
Collapse
Affiliation(s)
- Uma P Arora
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
- Graduate School of Biomedical Sciences, Tufts University, 136 Harrison Ave, Boston, MA, 02111, USA
| | - Beth L Dumont
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA.
- Graduate School of Biomedical Sciences, Tufts University, 136 Harrison Ave, Boston, MA, 02111, USA.
| |
Collapse
|
27
|
Carro MDLM, Grimson A, Cohen PE. Small RNAs and their protein partners in animal meiosis. Curr Top Dev Biol 2022; 151:245-279. [PMID: 36681472 DOI: 10.1016/bs.ctdb.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Meiosis is characterized by highly regulated transitions in gene expression that require diverse mechanisms of gene regulation. For example, in male mammals, transcription undergoes a global shut-down in early prophase I of meiosis, followed by increasing transcriptional activity into pachynema. Later, as spermiogenesis proceeds, the histones bound to DNA are replaced with transition proteins, which are themselves replaced with protamines, resulting in a highly condensed nucleus with repressed transcriptional activity. In addition, two specialized gene silencing events take place during prophase I: meiotic silencing of unsynapsed chromatin (MSUC), and the sex chromatin specific mechanism, meiotic sex chromosome inactivation (MSCI). Notably, conserved roles for the RNA binding protein (RBP) machinery that functions with small non-coding RNAs have been described as participating in these meiosis-specific mechanisms, suggesting that RNA-mediated gene regulation is critical for fertility in many species. Here, we review roles of small RNAs and their associated RBPs in meiosis-related processes such as centromere function, silencing of unpaired chromatin and meiotic recombination. We will discuss the emerging evidence of non-canonical functions of these components in meiosis.
Collapse
Affiliation(s)
- María de Las Mercedes Carro
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States; Cornell Reproductive Sciences Center (CoRe), Cornell University, Ithaca, NY, United States
| | - Andrew Grimson
- Cornell Reproductive Sciences Center (CoRe), Cornell University, Ithaca, NY, United States; Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY, United States.
| | - Paula E Cohen
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States; Cornell Reproductive Sciences Center (CoRe), Cornell University, Ithaca, NY, United States.
| |
Collapse
|
28
|
|