1
|
Wynn J, Kürten N, Moiron M, Bouwhuis S. Selective disappearance based on navigational efficiency in a long-lived seabird. J Anim Ecol 2025; 94:535-544. [PMID: 39871090 PMCID: PMC11962229 DOI: 10.1111/1365-2656.14231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 11/04/2024] [Indexed: 01/29/2025]
Abstract
Whilst efficient movement through space is thought to increase the fitness of long-distance migrants, evidence that selection acts upon such traits remains elusive. Here, using 228 migratory tracks collected from 102 adult breeding common terns (Sterna hirundo) aged 3-22 years, we find evidence that older terns navigate more efficiently than younger terns and that efficient navigation leads to a reduced migration duration and earlier arrival at the breeding and wintering grounds. We additionally find that the age-specificity of navigational efficiency in adult breeding birds cannot be explained by within-individual change with age (i.e. learning), suggesting the selective disappearance of less navigationally efficient individuals. This suggests that, at least in common terns, learning of navigational skills may be largely absent in adulthood, and limited to the pre-breeding phase of life where tracking is more difficult. We propose that selection might explain parts of the age-specificity of navigational performance observed in migratory taxa more generally; discuss the causes and evolutionary implications of variation in navigational traits and the selective agents acting upon them; and highlight the necessity of longitudinal studies when considering changes in behaviour with age.
Collapse
Affiliation(s)
- Joe Wynn
- Institute of Avian ResearchWilhelmshavenGermany
- School of Environmental SciencesUniversity of LiverpoolLiverpoolUK
| | | | - Maria Moiron
- Institute of Avian ResearchWilhelmshavenGermany
- Department of Evolutionary BiologyBielefeld UniversityBielefeldGermany
| | | |
Collapse
|
2
|
Demšar U, Zein B, Long JA. A new data-driven paradigm for the study of avian migratory navigation. MOVEMENT ECOLOGY 2025; 13:16. [PMID: 40069784 PMCID: PMC11900352 DOI: 10.1186/s40462-025-00543-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 02/24/2025] [Indexed: 03/14/2025]
Abstract
Avian navigation has fascinated researchers for many years. Yet, despite a vast amount of literature on the topic it remains a mystery how birds are able to find their way across long distances while relying only on cues available locally and reacting to those cues on the fly. Navigation is multi-modal, in that birds may use different cues at different times as a response to environmental conditions they find themselves in. It also operates at different spatial and temporal scales, where different strategies may be used at different parts of the journey. This multi-modal and multi-scale nature of navigation has however been challenging to study, since it would require long-term tracking data along with contemporaneous and co-located information on environmental cues. In this paper we propose a new alternative data-driven paradigm to the study of avian navigation. That is, instead of taking a traditional theory-based approach based on posing a research question and then collecting data to study navigation, we propose a data-driven approach, where large amounts of data, not purposedly collected for a specific question, are analysed to identify as-yet-unknown patterns in behaviour. Current technological developments have led to large data collections of both animal tracking data and environmental data, which are openly available to scientists. These open data, combined with a data-driven exploratory approach using data mining, machine learning and artificial intelligence methods, can support identification of unexpected patterns during migration, and lead to a better understanding of multi-modal navigational decision-making across different spatial and temporal scales.
Collapse
Affiliation(s)
- Urška Demšar
- School of Geography & Sustainable Development, University of St Andrews, Irvine Building, North Street, St Andrews, KT16 9AL, Scotland, UK.
| | - Beate Zein
- Norwegian Institute for Nature Research, Trondheim, Norway
| | - Jed A Long
- Department of Geography and Environment, Centre for Animals on the Move, Western University, London, ON, Canada
| |
Collapse
|
3
|
Literák I, Kyseláková CM, Dostál M, Karlsson C, Škrábal J, Skyrpan M, Hrtan E, Haraszthy L, Raab R. Evidence of genetic determination of annual movement strategies in medium-sized raptors. Sci Rep 2025; 15:3159. [PMID: 39856092 PMCID: PMC11760365 DOI: 10.1038/s41598-025-86414-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
Most species of migrating birds use a combination of innate vector-based orientation programs and social information to facilitate accurate navigation during their life. A number of various interspecies hybridisations have been reported in birds. The traits of parents are expressed in hybrids in typical ways which are either intermediate, combined or heterotic. Here, we analyse the different migration behaviours of medium-sized raptors, i.e., Red Kites Milvus milvus, Black Kites Milvus migrans, and their hybrids. We chose six well-established parameters to compare the behaviour of Kite hybrids with those of both parental species. When comparing 16 quantified behavioural characteristics between Red Kites and F1 hybrids and between Black Kites and F1 hybrids, significant differences were found in 10 characteristics between Red Kites and F1 hybrids but only one of the 16 characteristics between Black Kites and F1 hybrids. Hence, F1 hybrid individuals showed behaviour much more similar to Black Kites than Red Kites. It implies that the basis of the migratory behaviour of Kites is an innate program with the dominance of genetic determinants supplemented by the use of social learning from individuals of the parent species.
Collapse
Affiliation(s)
- Ivan Literák
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackého tř. 1946/1, 61242, Brno, Czech Republic.
- CEITEC, University of Veterinary Sciences Brno, Brno, Czech Republic.
| | - Claudia Maria Kyseláková
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackého tř. 1946/1, 61242, Brno, Czech Republic
| | - Marek Dostál
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackého tř. 1946/1, 61242, Brno, Czech Republic
| | - Caka Karlsson
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackého tř. 1946/1, 61242, Brno, Czech Republic
- Biota Conservation Hub Foundation, No.15, Opposite Abattoir Market, Jos, Plateau State, Nigeria
| | - Jan Škrábal
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackého tř. 1946/1, 61242, Brno, Czech Republic
| | - Mykola Skyrpan
- Ukrainian Birds of Prey Research Centre and West-Ukrainian Ornithological Society, Lviv, Ukraine
| | - Ervín Hrtan
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackého tř. 1946/1, 61242, Brno, Czech Republic
| | | | - Rainer Raab
- TB Raab GmbH, Quadenstraße 13, 2232, Deutsch-Wagram, Austria
| |
Collapse
|
4
|
Nourani E, Faure L, Brønnvik H, Scacco M, Bassi E, Fiedler W, Grüebler MU, Hatzl JS, Jenny D, Roverselli A, Sumasgutner P, Tschumi M, Wikelski M, Safi K. Developmental stage shapes the realized energy landscape for a flight specialist. eLife 2024; 13:RP98818. [PMID: 39259585 PMCID: PMC11390109 DOI: 10.7554/elife.98818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024] Open
Abstract
The heterogeneity of the physical environment determines the cost of transport for animals, shaping their energy landscape. Animals respond to this energy landscape by adjusting their distribution and movement to maximize gains and reduce costs. Much of our knowledge about energy landscape dynamics focuses on factors external to the animal, particularly the spatio-temporal variations of the environment. However, an animal's internal state can significantly impact its ability to perceive and utilize available energy, creating a distinction between the 'fundamental' and the 'realized' energy landscapes. Here, we show that the realized energy landscape varies along the ontogenetic axis. Locomotor and cognitive capabilities of individuals change over time, especially during the early life stages. We investigate the development of the realized energy landscape in the Central European Alpine population of the golden eagle Aquila chrysaetos, a large predator that requires negotiating the atmospheric environment to achieve energy-efficient soaring flight. We quantified weekly energy landscapes using environmental features for 55 juvenile golden eagles, demonstrating that energetic costs of traversing the landscape decreased with age. Consequently, the potentially flyable area within the Alpine region increased 2170-fold during their first three years of independence. Our work contributes to a predictive understanding of animal movement by presenting ontogeny as a mechanism shaping the realized energy landscape.
Collapse
Affiliation(s)
- Elham Nourani
- Department of Migration, Max Planck Institute of Animal BehaviorRadolfzellGermany
- Department of Biology, University of KonstanzKonstanzGermany
| | - Louise Faure
- Department of Migration, Max Planck Institute of Animal BehaviorRadolfzellGermany
- Department of Biology, University of KonstanzKonstanzGermany
- Section Géographie, École normale supérieure de LyonLyonFrance
| | - Hester Brønnvik
- Department of Migration, Max Planck Institute of Animal BehaviorRadolfzellGermany
- Department of Biology, University of KonstanzKonstanzGermany
| | - Martina Scacco
- Department of Migration, Max Planck Institute of Animal BehaviorRadolfzellGermany
- Department of Biology, University of KonstanzKonstanzGermany
| | - Enrico Bassi
- ERSAF-Direzione Parco Nazionale dello StelvioBormioItaly
| | - Wolfgang Fiedler
- Department of Migration, Max Planck Institute of Animal BehaviorRadolfzellGermany
- Department of Biology, University of KonstanzKonstanzGermany
| | | | - Julia S Hatzl
- Swiss Ornithological InstituteSempachSwitzerland
- Landscape Ecology Institute of Terrestrial Ecosystems , ETH ZürichZürichSwitzerland
| | - David Jenny
- Swiss Ornithological InstituteSempachSwitzerland
| | | | - Petra Sumasgutner
- Konrad Lorenz Research Center (KLF), Core Facility for Behavior and Cognition, Department of Behavioral and Cognitive Biology, University of ViennaGrünau/AlmtalAustria
| | | | - Martin Wikelski
- Department of Migration, Max Planck Institute of Animal BehaviorRadolfzellGermany
- Department of Biology, University of KonstanzKonstanzGermany
| | - Kamran Safi
- Department of Migration, Max Planck Institute of Animal BehaviorRadolfzellGermany
- Department of Biology, University of KonstanzKonstanzGermany
| |
Collapse
|
5
|
Chan YC, Kormann UG, Witczak S, Scherler P, Grüebler MU. Ontogeny of migration destination, route and timing in a partially migratory bird. J Anim Ecol 2024; 93:1316-1327. [PMID: 39072797 DOI: 10.1111/1365-2656.14150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 06/01/2024] [Indexed: 07/30/2024]
Abstract
In migratory animals, the developmental period from inexperienced juveniles to breeding adults could be a key life stage in shaping population migration patterns. Nevertheless, the development of migration routines in early life remains underexplored. While age-related changes in migration routes and timing have been described in obligate migrants, most investigations into the ontogeny of partial migrants only focused on age-dependency of migration as a binary tactic (migrant or resident), and variations in routes and timing among individuals classified as 'migrants' is rarely considered. To fill this gap, we study the ontogeny of migration destination, route and timing in a partially migratory red kite (Milvus milvus) population. Using an extensive GPS-tracking dataset (292 fledglings and 38 adults, with 1-5 migrations tracked per individual), we studied how nine different migration characteristics changed with age and breeding status in migrant individuals, many of which become resident later in life. Individuals departed later from and arrived earlier at the breeding areas as they aged, resulting in a gradual prolongation of stay in the breeding area by 2 months from the first to the fifth migration. Individuals delayed southward migration in the year prior to territory acquirement, and they further delayed it after occupying a territory. Migration routes became more direct with age. Individuals were highly faithful to their wintering site. Migration distance shortened only slightly with age and was more similar among siblings than among unrelated individuals. The large gradual changes in northward and southward migrations suggest a high degree of plasticity in temporal characteristics during the developmental window. However, the high wintering site fidelity points towards large benefits of site familiarity, prompting spatial migratory plasticity to be expressed through a switch to residency. The contrasting patterns of trajectories of age-related changes between spatial and temporal migration characteristics might reflect different mechanisms underlying the expression of plasticity. Investigating such patterns among species along the entire spectrum of migration tactics would enable further understanding of the plastic responses exhibited by migratory species to rapid environmental changes.
Collapse
Affiliation(s)
- Ying-Chi Chan
- Swiss Ornithological Institute, Sempach, Switzerland
| | - Urs G Kormann
- Swiss Ornithological Institute, Sempach, Switzerland
| | - Stephanie Witczak
- Swiss Ornithological Institute, Sempach, Switzerland
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | | | | |
Collapse
|
6
|
Acácio M, Gahm K, Anglister N, Vaadia G, Hatzofe O, Harel R, Efrat R, Nathan R, Pinter-Wollman N, Spiegel O. Behavioral plasticity shapes population aging patterns in a long-lived avian scavenger. Proc Natl Acad Sci U S A 2024; 121:e2407298121. [PMID: 39163331 PMCID: PMC11363333 DOI: 10.1073/pnas.2407298121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/13/2024] [Indexed: 08/22/2024] Open
Abstract
Studying the mechanisms shaping age-related changes in behavior ("behavioral aging") is important for understanding population dynamics in our changing world. Yet, studies that capture within-individual behavioral changes in wild populations of long-lived animals are still scarce. Here, we used a 15-y GPS-tracking dataset of a social obligate scavenger, the griffon vulture (Gyps fulvus), to investigate age-related changes in movement and social behaviors, and disentangle the role of behavioral plasticity and selective disappearance in shaping such patterns. We tracked 142 individuals for up to 12 y and found a nonlinear increase in site fidelity with age: a sharp increase in site fidelity before sexual maturity (<5 y old), stabilization during adulthood (6 to 15 y), and a further increase at old age (>15 y). This pattern resulted from individuals changing behavior throughout their life (behavioral plasticity) and not from selective disappearance. Mature vultures increased the predictability of their movement routines and spent more nights at the most popular roosting sites compared to younger individuals. Thus, adults likely have a competitive advantage over younger conspecifics. These changes in site fidelity and movement routines were mirrored in changes to social behavior. Older individuals interacted less with their associates (decreasing average strength with age), particularly during the breeding season. Our results reveal a variety of behavioral aging patterns in long-lived species and underscore the importance of behavioral plasticity in shaping such patterns. Comprehensive longitudinal studies are imperative for understanding how plasticity and selection shape the persistence of wild animal populations facing human-induced environmental changes.
Collapse
Affiliation(s)
- Marta Acácio
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Kaija Gahm
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA
| | - Nili Anglister
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Gideon Vaadia
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ohad Hatzofe
- Science Division, Israel Nature and Parks Authority, Jerusalem, Israel
| | - Roi Harel
- Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior, Konstanz, Germany
| | - Ron Efrat
- Mitrani Department of Desert Ecology, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| | - Ran Nathan
- Department of Ecology, Evolution and Behavior, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Noa Pinter-Wollman
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA
| | - Orr Spiegel
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
7
|
Santos CD, Sapir N, Becciu P, Granadeiro JP, Wikelski M. Risk-sensitive response of soaring birds to crosswind over dangerous sea highlights age-specific differences in migratory performance. Proc Biol Sci 2024; 291:20240454. [PMID: 38807519 DOI: 10.1098/rspb.2024.0454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 04/11/2024] [Indexed: 05/30/2024] Open
Abstract
Challenges imposed by geographical barriers during migration are selective agents for animals. Juvenile soaring landbirds often cross large water bodies along their migratory path, where they lack updraft support and are vulnerable to harsh weather. However, the consequences of inexperience in accomplishing these water crossings remain largely unquantified. To address this knowledge gap, we tracked the movements of juvenile and adult black kites Milvus migrans over the Strait of Gibraltar using high-frequency tracking devices in variable crosswind conditions. We found that juveniles crossed under higher crosswind speeds and at wider sections of the strait compared with adults during easterly winds, which represent a high risk owing to their high speed and steady direction towards the Atlantic Ocean. Juveniles also drifted extensively with easterly winds, contrasting with adults who strongly compensated for lateral displacement through flapping. Age differences were inconspicuous during winds with a west crosswind speed component, as well as for airspeed modulation in all wind conditions. We suggest that the suboptimal sea-crossing behaviour of juvenile black kites may impact their survival rates, either by increasing chances of drowning owing to exhaustion or by depleting critical energy reserves needed to accomplish their first migration.
Collapse
Affiliation(s)
- Carlos D Santos
- MARE - Marine and Environmental Science Centre and ARNET - Aquatic Research Network Associate Laboratory, Department of Environmental Sciences and Engineering, NOVA School of Science and Technology, NOVA University Lisbon , Caparica 2829-516, Portugal
- Department of Migration, Max Planck Institute of Animal Behavior , Radolfzell 78315, Germany
| | - Nir Sapir
- Animal Flight Laboratory, Department of Evolutionary and Environmental Biology and Institute of Evolution, University of Haifa , Haifa 3498838, Israel
| | - Paolo Becciu
- Animal Flight Laboratory, Department of Evolutionary and Environmental Biology and Institute of Evolution, University of Haifa , Haifa 3498838, Israel
- Department of Ecology and Evolution, University of Lausanne , Lausanne 1015-CH, Switzerland
| | - José P Granadeiro
- CESAM - Centro de Estudos do Ambiente e do Mar, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa , Lisboa 1749-016, Portugal
| | - Martin Wikelski
- Department of Migration, Max Planck Institute of Animal Behavior , Radolfzell 78315, Germany
- Department of Biology, University of Konstanz , Konstanz 78457, Germany
| |
Collapse
|
8
|
Aikens EO, Nourani E, Fiedler W, Wikelski M, Flack A. Learning shapes the development of migratory behavior. Proc Natl Acad Sci U S A 2024; 121:e2306389121. [PMID: 38437530 PMCID: PMC10962998 DOI: 10.1073/pnas.2306389121] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 11/20/2023] [Indexed: 03/06/2024] Open
Abstract
How animals refine migratory behavior over their lifetime (i.e., the ontogeny of migration) is an enduring question with important implications for predicting the adaptive capacity of migrants in a changing world. Yet, our inability to monitor the movements of individuals from early life onward has limited our understanding of the ontogeny of migration. The exploration-refinement hypothesis posits that learning shapes the ontogeny of migration in long-lived species, resulting in greater exploratory behavior early in life followed by more rapid and direct movement during later life. We test the exploration-refinement hypothesis by examining how white storks (Ciconia ciconia) balance energy, time, and information as they develop and refine migratory behavior during the first years of life. Here, we show that young birds reduce energy expenditure during flight while also increasing information gain by exploring new places during migration. As the birds age and gain more experience, older individuals stop exploring new places and instead move more quickly and directly, resulting in greater energy expenditure during migratory flight. During spring migration, individuals innovated novel shortcuts during the transition from early life into adulthood, suggesting a reliance on spatial memory acquired through learning. These incremental refinements in migratory behavior provide support for the importance of individual learning within a lifetime in the ontogeny of long-distance migration.
Collapse
Affiliation(s)
- Ellen O. Aikens
- School of Computing, University of Wyoming, Laramie, WY82071
- Haub School of Environment and Natural Resources, University of Wyoming, Laramie, WY82072
- Collective Migration Group, Max Planck Institute of Animal Behavior, Radolfzell78315, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz78468, Germany
| | - Elham Nourani
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell78315, Germany
- Department of Biology, University of Konstanz, Konstanz78457, Germany
| | - Wolfgang Fiedler
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell78315, Germany
- Department of Biology, University of Konstanz, Konstanz78457, Germany
| | - Martin Wikelski
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell78315, Germany
- Department of Biology, University of Konstanz, Konstanz78457, Germany
| | - Andrea Flack
- Collective Migration Group, Max Planck Institute of Animal Behavior, Radolfzell78315, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz78468, Germany
- Department of Biology, University of Konstanz, Konstanz78457, Germany
| |
Collapse
|
9
|
Efrat R, Hatzofe O, Mueller T, Sapir N, Berger-Tal O. Early and accumulated experience shape migration and flight in Egyptian vultures. Curr Biol 2023; 33:5526-5532.e4. [PMID: 38042150 DOI: 10.1016/j.cub.2023.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/29/2023] [Accepted: 11/07/2023] [Indexed: 12/04/2023]
Abstract
Two types of experience affect animals' behavioral proficiencies and, accordingly, their fitness: early-life experience, an animal's environment during its early development, and acquired experience, the repeated practice of a specific task.1,2,3,4,5,6,7,8 Yet, how these two experience types and their interactions affect different proficiencies is still an open question. Here, we study the interactions between these two types of experience during migration, a critical and challenging period.9,10 We do so by comparing migratory proficiencies between birds with different early-life experiences and explain these differences by testing fine-scale flight mechanisms. We used data collected by GPS transmitters during 127 autumn migrations of 65 individuals to study the flight proficiencies of two groups of Egyptian vultures (Neophron percnopterus), a long-distance, soaring raptor.11,12 The two groups differed greatly in their early-life experience, one group being captive bred and the other wild hatched.13 Both groups improved their migratory performance with acquired experience, exhibiting shorter migration times, longer daily progress, and improved flight skills, specifically more efficient soaring-gliding behavior. The observed improvements were mostly apparent for captive-bred vultures, which were the least efficient during their first migration but were able to catch up in their migratory performance already in the second migration. Thus, we show how the strong negative effects of early-life experience were offset by acquired experience. Our findings uncover how the interaction between early-life and acquired experiences may shape animals' proficiencies and shed new light on the ontogeny of animal migration, suggesting possible effects of sensitive periods of learning on the acquisition of migratory skills.
Collapse
Affiliation(s)
- Ron Efrat
- Mitrani Department of Desert Ecology, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, 8499000 Midreshet Ben-Gurion, Israel.
| | - Ohad Hatzofe
- Science Division, Israel Nature and Parks Authority, Am Ve'Olamo 3, 9546303 Jerusalem, Israel
| | - Thomas Mueller
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Georg Voigt, 60438 Frankfurt am Main, Germany; Department of Biological Sciences, Johann Wolfgang Goethe-University Frankfurt, Max von Laue, 60438 Frankfurt am Main, Germany
| | - Nir Sapir
- Department of Evolutionary and Environmental Biology and Institute of Evolution, University of Haifa, 3498838 Haifa, Israel
| | - Oded Berger-Tal
- Mitrani Department of Desert Ecology, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, 8499000 Midreshet Ben-Gurion, Israel
| |
Collapse
|
10
|
Hodgson TM, Johnston ST, Ottobre M, Painter KJ. Intent matters: how flow and forms of information impact collective navigation. J R Soc Interface 2023; 20:20230356. [PMID: 37817582 PMCID: PMC10565391 DOI: 10.1098/rsif.2023.0356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/15/2023] [Indexed: 10/12/2023] Open
Abstract
The phenomenon of collective navigation has received considerable interest in recent years. A common line of thinking, backed by theoretical studies, is that collective navigation can improve navigation efficiency through the 'many-wrongs' principle, whereby individual error is reduced by comparing the headings of neighbours. When navigation takes place in a flowing environment, each individual's trajectory is influenced by drift. Consequently, a potential discrepancy emerges between an individual's intended heading and its actual heading. In this study, we develop a theoretical model to explore whether collective navigation benefits are altered according to the form of heading information transmitted between neighbours. Navigation based on each individual's intended heading is found to confer robust advantages across a wide spectrum of flows, via both a marked improvement in migration times and a capacity for a group to overcome flows unnavigable by solitary individuals. Navigation based on individual's actual headings is far less effective, only offering an improvement under highly favourable currents. For many currents, sharing actual heading information can even lead to journey times that exceed those of individual navigators.
Collapse
Affiliation(s)
- T. M. Hodgson
- Maxwell Institute for Mathematical Sciences and Mathematics Department, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - S. T. Johnston
- School of Mathematics and Statistics, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - M. Ottobre
- Maxwell Institute for Mathematical Sciences and Mathematics Department, Heriot-Watt University, Edinburgh EH14 4AS, UK
- School of Mathematics and Statistics, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - K. J. Painter
- DIST, Politecnico di Torino, Viale Pier Andrea Mattioli 39, 10125 Torino, Italy
| |
Collapse
|
11
|
Becciu P, Troupin D, Dinevich L, Leshem Y, Sapir N. Soaring migrants flexibly respond to sea-breeze in a migratory bottleneck: using first derivatives to identify behavioural adjustments over time. MOVEMENT ECOLOGY 2023; 11:44. [PMID: 37501209 PMCID: PMC10375660 DOI: 10.1186/s40462-023-00402-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 06/22/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND Millions of birds travel every year between Europe and Africa detouring ecological barriers and funnelling through migratory corridors where they face variable weather conditions. Little is known regarding the response of migrating birds to mesoscale meteorological processes during flight. Specifically, sea-breeze has a daily cycle that may directly influence the flight of diurnal migrants. METHODS We collected radar tracks of soaring migrants using modified weather radar in Latrun, central Israel, in 7 autumns between 2005 and 2016. We investigated how migrating soaring birds adjusted their flight speed and direction under the effects of daily sea-breeze circulation. We analysed the effects of wind on bird groundspeed, airspeed and the lateral component of the airspeed as a function of time of day using Generalized Additive Mixed Models. To identify when birds adjusted their response to the wind over time, we estimated first derivatives. RESULTS Using data collected during a total of 148 days, we characterised the diel dynamics of horizontal wind flow relative to the migration goal, finding a consistent rotational movement of the wind blowing towards the East (morning) and to the South-East (late afternoon), with highest crosswind speed around mid-day and increasing tailwinds towards late afternoon. Airspeed of radar detected birds decreased consistently with increasing tailwind and decreasing crosswinds from early afternoon, resulting in rather stable groundspeed of 16-17 m/s. In addition, birds fully compensated for lateral drift when crosswinds were at their maximum and slightly drifted with the wind when crosswinds decreased and tailwinds became more intense. CONCLUSIONS Using a simple and broadly applicable statistical method, we studied how wind influences bird flight through speed adjustments over time, providing new insights regarding the flexible behavioural responses of soaring birds to wind conditions. These adjustments allowed the birds to compensate for lateral drift under crosswind and reduced their airspeed under tailwind. Our work enhances our understanding of how migrating birds respond to changing wind conditions during their long-distance journeys through migratory corridors.
Collapse
Affiliation(s)
- Paolo Becciu
- Animal Flight Laboratory, Department of Evolutionary and Environmental Biology and Institute of Evolution, University of Haifa, 199 Aba Khoushy Ave. Mount Carmel, 3498838, Haifa, Israel.
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland.
| | - David Troupin
- Animal Flight Laboratory, Department of Evolutionary and Environmental Biology and Institute of Evolution, University of Haifa, 199 Aba Khoushy Ave. Mount Carmel, 3498838, Haifa, Israel
| | - Leonid Dinevich
- Department of Zoology, George S. Wise Faculty of Life Sciences, University of Tel Aviv, 69978, Ramat Aviv, Tel Aviv, Israel
| | - Yossi Leshem
- Department of Zoology, George S. Wise Faculty of Life Sciences, University of Tel Aviv, 69978, Ramat Aviv, Tel Aviv, Israel
| | - Nir Sapir
- Animal Flight Laboratory, Department of Evolutionary and Environmental Biology and Institute of Evolution, University of Haifa, 199 Aba Khoushy Ave. Mount Carmel, 3498838, Haifa, Israel
| |
Collapse
|
12
|
Bontekoe ID, Hilgartner R, Fiedler W, Flack A. The price of being late: short- and long-term consequences of a delayed migration timing. Proc Biol Sci 2023; 290:20231268. [PMID: 37491964 PMCID: PMC10369029 DOI: 10.1098/rspb.2023.1268] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/03/2023] [Indexed: 07/27/2023] Open
Abstract
Choosing the right migration timing is critical for migrants because conditions encountered en route influence movement costs, survival, and, in social migrants, the availability of social information. Depending on lifetime stages, individuals may migrate at different times due to diverging constraints, affecting the composition of migration groups. To examine the consequences of a delayed migration timing, we artificially delayed the migration of juvenile white storks (Ciconia ciconia) and thereby altered their physical and social environment. Using nearly continuous 1 Hz GPS trajectories, we examined their migration behaviour, ranging from sub-second level performance to global long-distance movement, in relation to two control groups. We found that delayed storks experienced suboptimal soaring conditions, but better wind support and thereby achieved higher flight speeds than control storks. Delayed storks had a lower mortality rate than the control storks and wintered closer to the breeding area. In fact, none of the delayed storks reached the traditional African wintering areas. Thus, our results show that juvenile storks can survive migrating at the 'wrong' time. However, this had long-term consequences on migration decisions. We suggest that, when timing their migration, storks balance not just energy and time, but also the availability of social information.
Collapse
Affiliation(s)
- Iris D. Bontekoe
- Department of Migration, Max Planck Institute of Animal Behavior, 78315 Radolfzell, Germany
- Collective Migration Group, Max Planck Institute of Animal Behavior, 78467 Konstanz, Germany
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | | | - Wolfgang Fiedler
- Department of Migration, Max Planck Institute of Animal Behavior, 78315 Radolfzell, Germany
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Andrea Flack
- Collective Migration Group, Max Planck Institute of Animal Behavior, 78467 Konstanz, Germany
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78468 Konstanz, Germany
| |
Collapse
|
13
|
Acácio M, Anglister N, Vaadia G, Harel R, Nathan R, Hatzofe O, Spiegel O. A lifetime track of a griffon vulture: The moving story of Rehovot (Y64). Ecology 2023; 104:e3985. [PMID: 36728319 DOI: 10.1002/ecy.3985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 02/03/2023]
Affiliation(s)
- Marta Acácio
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Nili Anglister
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Gideon Vaadia
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Roi Harel
- Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior, Konstanz, Germany
| | - Ran Nathan
- Department of Ecology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ohad Hatzofe
- Science Division, Israeli Nature and Parks Authority, Jerusalem, Israel
| | - Orr Spiegel
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
14
|
Brønnvik H, Safi K, Vansteelant WMG, Byholm P, Nourani E. Experience does not change the importance of wind support for migratory route selection by a soaring bird. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220746. [PMID: 36569232 PMCID: PMC9768468 DOI: 10.1098/rsos.220746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Migration is a complex behaviour that is costly in terms of time, energy and risk of mortality. Thermal soaring birds rely on airflow, specifically wind support and uplift, to offset their energetic costs of flight. Their migratory routes are a record of movement decisions to negotiate the atmospheric environment and achieve efficiency. We expected that, regardless of age, birds use wind support to select their routes. Because thermal soaring is a complex flight behaviour that young birds need to learn, we expected that, as individuals gain more experience, their movement decisions will also increasingly favour the best thermal uplift conditions. We quantified how route choice during autumn migration of young European honey buzzards (Pernis apivorus) was adjusted to wind support and uplift over up to 4 years of migration and compared this with the choices of adult birds. We found that wind support was important in all migrations. However, we did not find an increase in the use of thermal uplifts. This could be due to the species-specific learning period and/or an artefact of the spatio-temporal scale of our uplift proxies.
Collapse
Affiliation(s)
- Hester Brønnvik
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell 78315, Germany
- Department of Biology, University of Konstanz, Konstanz 78464, Germany
| | - Kamran Safi
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell 78315, Germany
- Department of Biology, University of Konstanz, Konstanz 78464, Germany
| | - Wouter M. G. Vansteelant
- Department of Wetland Ecology, Estación Biológica de Doñana, Seville 41092, Spain
- Theoretical and Computational Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam 1012 WX, The Netherlands
| | - Patrik Byholm
- Novia University of Applied Sciences, Ekenäs 10600, Finland
- Organismal and Evolutionary Biology, University of Helsinki, PO Box 65, 00100 Helsinki, Finland
| | - Elham Nourani
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell 78315, Germany
- Department of Biology, University of Konstanz, Konstanz 78464, Germany
| |
Collapse
|