1
|
Holmes MJ, Lewis RJ. Reviewing Evidence for Disturbance to Coral Reefs Increasing the Risk of Ciguatera. Toxins (Basel) 2025; 17:195. [PMID: 40278692 PMCID: PMC12030847 DOI: 10.3390/toxins17040195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 04/08/2025] [Accepted: 04/09/2025] [Indexed: 04/26/2025] Open
Abstract
The hypothesis that disturbance to coral reefs creates new surfaces that increase the risk of ciguatera is premised upon the increased algal substrates that develop on these surfaces being colonised by high ciguatoxin (CTX)-producing Gambierdiscus species that proliferate and enter the ciguatera food chain. Current evidence indicates that new algal substrates are indeed rapidly colonised by Gambierdiscus. However, the requirement that these Gambierdiscus species include at least one that is a significant (high) CTX-producer is more likely a limiting step. While ambient environmental conditions impact the capacity of Gambierdiscus to bloom, factors that limit the growth of the bloom could influence (typically increase) the flux of CTX entering marine food chains. Additionally, new algal substrates on damaged reefs can be preferentially grazed to funnel ciguatoxins from Gambierdiscus to herbivores in disturbed reef areas. In societies consuming second trophic level species (herbivores, grazers, and detritivores), such funnelling of CTX would increase the risk of ciguatera, although such risk would be partially offset over time by growth (toxin-dilution) and depuration. Here, we review evidence for six potential mechanisms to increase ciguatera risk from disturbance to coral reefs and suggest a hypothesis where ecosystem changes could increase the flux of CTX to groupers through a shift in predation from predominately feeding on planktonic-feeding prey to mostly feeding on benthic-feeding prey, increasing the potential for CTX to accumulate. Evidence for this hypothesis is stronger for the Pacific and Indian Oceans, and it may not apply to the Caribbean Sea/Atlantic Ocean.
Collapse
Affiliation(s)
| | - Richard J. Lewis
- Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Australia;
| |
Collapse
|
2
|
Benkwitt CE, D'Angelo C, Dunn RE, Gunn RL, Healing S, Mardones ML, Wiedenmann J, Wilson SK, Graham NAJ. Seabirds boost coral reef resilience. SCIENCE ADVANCES 2023; 9:eadj0390. [PMID: 38055814 DOI: 10.1126/sciadv.adj0390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 11/03/2023] [Indexed: 12/08/2023]
Abstract
Global climate change threatens tropical coral reefs, yet local management can influence resilience. While increasing anthropogenic nutrients reduce coral resistance and recovery, it is unknown how the loss, or restoration, of natural nutrient flows affects reef recovery. Here, we test how natural seabird-derived nutrient subsidies, which are threatened by invasive rats, influence the mechanisms and patterns of reef recovery following an extreme marine heatwave using multiyear field experiments, repeated surveys, and Bayesian modeling. Corals transplanted from rat to seabird islands quickly assimilated seabird-derived nutrients, fully acclimating to new nutrient conditions within 3 years. Increased seabird-derived nutrients, in turn, caused a doubling of coral growth rates both within individuals and across entire reefs. Seabirds were also associated with faster recovery time of Acropora coral cover (<4 years) and more dynamic recovery trajectories of entire benthic communities. We conclude that restoring seabird populations and associated nutrient pathways may foster greater coral reef resilience through enhanced growth and recovery rates of corals.
Collapse
Affiliation(s)
| | - Cecilia D'Angelo
- Coral Reef Laboratory, School of Ocean and Earth Science, University of Southampton, Southampton SO143ZH, UK
| | - Ruth E Dunn
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
- The Lyell Centre, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - Rachel L Gunn
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
- Animal Evolutionary Ecology, Institute of Evolution and Ecology, University of Tübingen, Auf Der Morgenstelle 28, 72076 Tübingen, Germany
| | - Samuel Healing
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - M Loreto Mardones
- Coral Reef Laboratory, School of Ocean and Earth Science, University of Southampton, Southampton SO143ZH, UK
| | - Joerg Wiedenmann
- Coral Reef Laboratory, School of Ocean and Earth Science, University of Southampton, Southampton SO143ZH, UK
| | - Shaun K Wilson
- Australian Institute of Marine Science, Indian Ocean Marine Research Centre, Crawley, WA 6009, Australia
- University of Western Australia, UWA Oceans Institute, Crawley, WA 6009, Australia
| | | |
Collapse
|