1
|
Pagel M, Meade A. Trait macroevolution in the presence of covariates. Nat Commun 2025; 16:4555. [PMID: 40379680 DOI: 10.1038/s41467-025-59836-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 05/06/2025] [Indexed: 05/19/2025] Open
Abstract
Statistical characterisations of traits evolving on phylogenies combine the contributions of unique and shared influences on those traits, potentially confusing the interpretation of historical events of macroevolution. The Fabric model, introduced in 2022, identifies historical events of directional shifts in traits (e.g. becoming larger/smaller, faster/slower over evolutionary time) and of changes in macroevolutionary 'evolvability' or the realised historical ability of a trait to explore its trait-space. Here we extend the model to accommodate situations in which the trait is correlated with one or more covarying traits. The Fabric-regression model identifies a unique component of variance in the trait that is free of influences from correlated traits, while simultaneously estimating directional and evolvability effects. We show in a dataset of 1504 Mammalian species that inferences about historical directional shifts in brain size and in its evolvability, having accounted for body size, differ qualitatively from inferences about brain size alone, including finding many new effects not visible in the whole trait. A class of fundamental macroevolutionary questions awaits testing on the variation uniquely attributable to traits, and the ability to accommodate statistically one or more covariates opens the possibility of bringing the formal methods of causal inference to phylogenetic-comparative studies.
Collapse
Affiliation(s)
- Mark Pagel
- School of Biological Sciences, University of Reading, Reading, UK.
| | - Andrew Meade
- School of Biological Sciences, University of Reading, Reading, UK
| |
Collapse
|
2
|
Glazier DS. Does death drive the scaling of life? Biol Rev Camb Philos Soc 2025; 100:586-619. [PMID: 39611289 DOI: 10.1111/brv.13153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 09/28/2024] [Accepted: 10/01/2024] [Indexed: 11/30/2024]
Abstract
The magnitude of many kinds of biological structures and processes scale with organismal size, often in regular ways that can be described by power functions. Traditionally, many of these "biological scaling" relationships have been explained based on internal geometric, physical, and energetic constraints according to universal natural laws, such as the "surface law" and "3/4-power law". However, during the last three decades it has become increasingly apparent that biological scaling relationships vary greatly in response to various external (environmental) factors. In this review, I propose and provide several lines of evidence supporting a new ecological perspective that I call the "mortality theory of ecology" (MorTE). According to this viewpoint, mortality imposes time limits on the growth, development, and reproduction of organisms. Accordingly, small, vulnerable organisms subject to high mortality due to predation and other environmental hazards have evolved faster, shorter lives than larger, more protected organisms. A MorTE also includes various corollary, size-related internal and external causative factors (e.g. intraspecific resource competition, geometric surface area to volume effects on resource supply/transport and the protection of internal tissues from environmental hazards, internal homeostatic regulatory systems, incidence of pathogens and parasites, etc.) that impact the scaling of life. A mortality-centred approach successfully predicts the ranges of body-mass scaling slopes observed for many kinds of biological and ecological traits. Furthermore, I argue that mortality rate should be considered the ultimate (evolutionary) driver of the scaling of life, that is expressed in the context of other proximate (functional) drivers such as information-based biological regulation and spatial (geometric) and energetic (metabolic) constraints.
Collapse
Affiliation(s)
- Douglas S Glazier
- Department of Biology, Juniata College, Huntingdon, Pennsylvania, 16652, USA
| |
Collapse
|
3
|
Melchionna M, Castiglione S, Girardi G, Profico A, Mondanaro A, Sansalone G, Chatar N, Pérez Ramos A, Fernández-Monescillo M, Serio C, Pandolfi L, Dembitzer J, Di Febbraro M, Caliendo MM, Di Costanzo A, Morvillo L, Esposito A, Raia P. Cortical areas associated to higher cognition drove primate brain evolution. Commun Biol 2025; 8:80. [PMID: 39827196 PMCID: PMC11742917 DOI: 10.1038/s42003-025-07505-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 01/09/2025] [Indexed: 01/22/2025] Open
Abstract
Although intense research effort is seeking to address which brain areas fire and connect to each other to produce complex behaviors in a few living primates, little is known about their evolution, and which brain areas or facets of cognition were favored by natural selection. By developing statistical tools to study the evolution of the brain cortex at the fine scale, we found that rapid cortical expansion in the prefrontal region took place early on during the evolution of primates. In anthropoids, fast-expanding cortical areas extended to the posterior parietal cortex. In Homo, further expansion affected the medial temporal lobe and the posteroinferior region of the parietal lobe. Collectively, the fast-expanding cortical areas in anthropoids are known to form a brain network producing mind reading abilities and other higher-order cognitive functions. These results indicate that pursuing complex cognition drove the evolution of Primate brains.
Collapse
Affiliation(s)
| | | | | | | | | | - Gabriele Sansalone
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Narimane Chatar
- Evolution and Diversity Dynamics Lab, Université de Liège, Liège, Belgium
| | | | | | - Carmela Serio
- DiSTAR, Università di Napoli Federico II, Naples, Italy
| | - Luca Pandolfi
- Dipartimento di Scienze, Università della Basilicata, Potenza, Italy
| | | | - Mirko Di Febbraro
- Department of Biosciences and Territory, University of Molise, Isernia, Italy
| | | | | | | | | | - Pasquale Raia
- DiSTAR, Università di Napoli Federico II, Naples, Italy.
| |
Collapse
|
4
|
Gayford JH, Engelman RK, Sternes PC, Itano WM, Bazzi M, Collareta A, Salas‐Gismondi R, Shimada K. Cautionary tales on the use of proxies to estimate body size and form of extinct animals. Ecol Evol 2024; 14:e70218. [PMID: 39224151 PMCID: PMC11368419 DOI: 10.1002/ece3.70218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/03/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
Body size is of fundamental importance to our understanding of extinct organisms. Physiology, ecology and life history are all strongly influenced by body size and shape, which ultimately determine how a species interacts with its environment. Reconstruction of body size and form in extinct animals provides insight into the dynamics underlying community composition and faunal turnover in past ecosystems and broad macroevolutionary trends. Many extinct animals are known only from incomplete remains, necessitating the use of anatomical proxies to reconstruct body size and form. Numerous limitations affecting the appropriateness of these proxies are often overlooked, leading to controversy and downstream inaccuracies in studies for which reconstructions represent key input data. In this perspective, we discuss four prominent case studies (Dunkleosteus, Helicoprion, Megalodon and Perucetus) in which proxy taxa have been used to estimate body size and shape from fragmentary remains. We synthesise the results of these and other studies to discuss nuances affecting the validity of taxon selection when reconstructing extinct organisms, as well as mitigation measures that can ensure the selection of the most appropriate proxy. We argue that these precautionary measures are necessary to maximise the robustness of reconstructions in extinct taxa for better evolutionary and ecological inferences.
Collapse
Affiliation(s)
- Joel H. Gayford
- Department of Life Sciences, Silwood Park CampusImperial College LondonLondonUK
- Department of Marine Biology and AquacultureJames Cook UniversityDouglasQueenslandAustralia
- Shark MeasurementsLondonUK
| | | | - Phillip C. Sternes
- Shark MeasurementsLondonUK
- Department of Evolution, Ecology and Organismal BiologyUniversity of CaliforniaRiversideCaliforniaUSA
| | - Wayne M. Itano
- Museum of Natural HistoryUniversity of ColoradoBoulderColoradoUSA
| | - Mohamad Bazzi
- Department of Earth and Planetary SciencesStanford UniversityStanfordCaliforniaUSA
| | - Alberto Collareta
- Dipartimento di Scienze Della TerraUniversità di PisaPisaItaly
- Museo di Storia NaturaleUniversità di PisaPisaItaly
| | - Rodolfo Salas‐Gismondi
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía/Centro de Investigación Para el Desarrollo Integral y SostenibleUniversitad Peruana Cayetano Heredia LimaLimaPeru
- Departamento de Paleontología de VertebradosMuseo de Historia Natural‐Universidad Nacional Mayor de san MarcosLimaPeru
| | - Kenshu Shimada
- Department of Environmental Science and StudiesDePaul UniversityChicagoIllinoisUSA
- Department of Biological SciencesDePaul UniversityChicagoIllinoisUSA
- Sternberg Museum of Natural HistoryFort Hays State UniversityHaysKansasUSA
| |
Collapse
|
5
|
Triki Z. Scaling up the mammalian brain. Nat Ecol Evol 2024; 8:1389-1390. [PMID: 38977832 DOI: 10.1038/s41559-024-02468-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Affiliation(s)
- Zegni Triki
- Behavioural Ecology division, University of Bern, Bern, Switzerland.
| |
Collapse
|