1
|
Davis CN, Khan Y, Toikumo S, Jinwala Z, Boomsma DI, Levey DF, Gelernter J, Kember RL, Kranzler HR. Integrating HiTOP and RDoC frameworks part II: shared and distinct biological mechanisms of externalizing and internalizing psychopathology. Psychol Med 2025; 55:e137. [PMID: 40340892 DOI: 10.1017/s0033291725000819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
BACKGROUND The Hierarchical Taxonomy of Psychopathology (HiTOP) and Research Domain Criteria (RDoC) frameworks emphasize transdiagnostic and mechanistic aspects of psychopathology. We used a multi-omics approach to examine how HiTOP's psychopathology spectra (externalizing [EXT], internalizing [INT], and shared EXT + INT) map onto RDoC's units of analysis. METHODS We conducted analyses across five RDoC units of analysis: genes, molecules, cells, circuits, and physiology. Using genome-wide association studies from the companion Part I article, we identified genes and tissue-specific expression patterns. We used drug repurposing analyses that integrate gene annotations to identify potential therapeutic targets and single-cell RNA sequencing data to implicate brain cell types. We then used magnetic resonance imaging data to examine brain regions and circuits associated with psychopathology. Finally, we tested causal relationships between each spectrum and physical health conditions. RESULTS Using five gene identification methods, EXT was associated with 1,759 genes, INT with 454 genes, and EXT + INT with 1,138 genes. Drug repurposing analyses identified potential therapeutic targets, including those that affect dopamine and serotonin pathways. Expression of EXT genes was enriched in GABAergic, cortical, and hippocampal neurons, while INT genes were more narrowly linked to GABAergic neurons. EXT + INT liability was associated with reduced gray matter volume in the amygdala and subcallosal cortex. INT genetic liability showed stronger causal effects on physical health - including chronic pain and cardiovascular diseases - than EXT. CONCLUSIONS Our findings revealed shared and distinct pathways underlying psychopathology. Integrating genomic insights with the RDoC and HiTOP frameworks advanced our understanding of mechanisms that underlie EXT and INT psychopathology.
Collapse
Affiliation(s)
- Christal N Davis
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA, USA
- Department of Psychiatry, Center for Studies of Addiction, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Yousef Khan
- Department of Psychiatry, Center for Studies of Addiction, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Sylvanus Toikumo
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA, USA
- Department of Psychiatry, Center for Studies of Addiction, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Zeal Jinwala
- Department of Psychiatry, Center for Studies of Addiction, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Dorret I Boomsma
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, The Netherlands and Amsterdam Reproduction and Development Research Institute, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Daniel F Levey
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Psychiatry Division, VA Connecticut Healthcare Center, West Haven, CT, USA
| | - Joel Gelernter
- Psychiatry Division, VA Connecticut Healthcare Center, West Haven, CT, USA
- Departments of Psychiatry, Genetics, and Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Rachel L Kember
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA, USA
- Department of Psychiatry, Center for Studies of Addiction, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Henry R Kranzler
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA, USA
- Department of Psychiatry, Center for Studies of Addiction, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
2
|
Wu XR, Wu BS, Kang JJ, Chen LM, Deng YT, Chen SD, Dong Q, Feng JF, Cheng W, Yu JT. Contribution of copy number variations to education, socioeconomic status and cognition from a genome-wide study of 305,401 subjects. Mol Psychiatry 2025; 30:889-898. [PMID: 39215183 DOI: 10.1038/s41380-024-02717-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Educational attainment (EA), socioeconomic status (SES) and cognition are phenotypically and genetically linked to health outcomes. However, the role of copy number variations (CNVs) in influencing EA/SES/cognition remains unclear. Using a large-scale (n = 305,401) genome-wide CNV-level association analysis, we discovered 33 CNV loci significantly associated with EA/SES/cognition, 20 of which were novel (deletions at 2p22.2, 2p16.2, 2p12, 3p25.3, 4p15.2, 5p15.33, 5q21.1, 8p21.3, 9p21.1, 11p14.3, 13q12.13, 17q21.31, and 20q13.33, as well as duplications at 3q12.2, 3q23, 7p22.3, 8p23.1, 8p23.2, 17q12 (105 kb), and 19q13.32). The genes identified in gene-level tests were enriched in biological pathways such as neurodegeneration, telomere maintenance and axon guidance. Phenome-wide association studies further identified novel associations of EA/SES/cognition-associated CNVs with mental and physical diseases, such as 6q27 duplication with upper respiratory disease and 17q12 (105 kb) duplication with mood disorders. Our findings provide a genome-wide CNV profile for EA/SES/cognition and bridge their connections to health. The expanded candidate CNVs database and the residing genes would be a valuable resource for future studies aimed at uncovering the biological mechanisms underlying cognitive function and related clinical phenotypes.
Collapse
Affiliation(s)
- Xin-Rui Wu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Bang-Sheng Wu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Ju-Jiao Kang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Li-Min Chen
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Yue-Ting Deng
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Shi-Dong Chen
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Qiang Dong
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Jian-Feng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Department of Computer Science, University of Warwick, Coventry, CV4 7AL, UK
| | - Wei Cheng
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.
| | - Jin-Tai Yu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.
| |
Collapse
|
3
|
Moo-Choy A, Stein MB, Gelernter J, Wendt FR. Sex-stratified Genomic Structural Equation Models of Posttraumatic Stress Inform PTSD Etiology: L'utilisation de la modélisation génomique par équations structurelles stratifiée par sexe du stress post-traumatique pour expliquer l'étiologie du TSPT. CANADIAN JOURNAL OF PSYCHIATRY. REVUE CANADIENNE DE PSYCHIATRIE 2025; 70:117-126. [PMID: 39654303 PMCID: PMC11629358 DOI: 10.1177/07067437241301016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
OBJECTIVE Posttraumatic stress disorder (PTSD) affects 3.9%-5.6% of the worldwide population, with well-documented sex-related differences. While psychosocial and hormonal factors affecting sex differences in PTSD and posttraumatic stress (PTS) symptom etiology have been explored, there has been limited focus on the genetic bases of these differences. Many symptom combinations may confer a PTSD diagnosis. We hypothesized that these symptom combinations have sex-specific patterns, the examination of which could inform etiological differences in PTSD genetics between males and females. METHODS To investigate this, we performed a sex-stratified multivariate genome-wide association study (GWAS) in unrelated UK Biobank (UKB) individuals of European ancestry. Using GWAS summary association data, genomic structural equation modelling was performed to generate sex-specific factor models using 6 indicator variables: trouble concentrating, feeling distant from others, irritability, disturbing thoughts, upset feelings, and avoidance of places/activities which remind the individual of a traumatic event. RESULTS Models of male and female PTSD symptoms differed substantially (local standardized root mean square difference = 3.12) and significantly (χ2(5) = 28.03, P = 3.6 × 10-5). Independent 2-factor models best fit the data in both males and females; these factors were subjected to GWAS in each sex, revealing 3 genome-wide significant loci in females, mapping to SCAND3, WDPCP, and FAM120A. No genome-wide significant loci were identified in males. All 4 PTS factors (2 in males and 2 in females) were heritable. CONCLUSIONS By assessing the relationship between sex and PTSD symptoms, this study informs correlative and putatively causal etiological differences between males and females which support further investigation of sex differences in PTSD genetics.
Collapse
Affiliation(s)
- Ashley Moo-Choy
- Department of Anthropology, University of Toronto, Toronto, ON, Canada
- Forensic Science Program, University of Toronto, Mississauga, ON, Canada
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Murray B. Stein
- VA San Diego Healthcare System, Psychiatry Service, San Diego, CA, USA
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, CA, USA
| | - Joel Gelernter
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- VA CT Healthcare System, West Haven, CT, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Frank R. Wendt
- Department of Anthropology, University of Toronto, Toronto, ON, Canada
- Forensic Science Program, University of Toronto, Mississauga, ON, Canada
- Biostatistics Division, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
4
|
Wu XR, Yang L, Wu BS, Liu WS, Deng YT, Kang JJ, Dong Q, Sahakian BJ, Feng JF, Cheng W, Yu JT. Exome sequencing identifies genes for socioeconomic status in 350,770 individuals. Proc Natl Acad Sci U S A 2025; 122:e2414018122. [PMID: 39772748 PMCID: PMC11745334 DOI: 10.1073/pnas.2414018122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025] Open
Abstract
Socioeconomic status (SES) is a critical factor in determining health outcomes and is influenced by genetic and environmental factors. However, our understanding of the genetic structure of SES remains incomplete. Here, we conducted a large-scale exome study of SES markers (household income, occupational status, educational attainment, and social deprivation) in 350,770 individuals. For rare coding variants, we identified 56 significant associations by gene-based collapsing tests, unveiling 7 additional SES-associated genes (NRN1, CCDC36, RHOB, EP400, NCAM1, TPTEP2-CSNK1E, and LINC02881). Exome-wide single common variant analysis revealed nine lead single-nucleotide polymorphisms (SNPs) associated with household income and 34 lead SNPs associated with EduYears, replicating previous GWAS findings. The gene-environment correlations had a substantial impact on the genetic associations with SES, as indicated by the significantly increased P values in several associations after controlling for geographic regions. Furthermore, we observed the pleiotropic effects of SES-associated genetic factors on a wide range of health outcomes, such as cognitive function, psychosocial status, and diabetes. This study highlights the contribution of coding variants to SES and their associations with health phenotypes.
Collapse
Affiliation(s)
- Xin-Rui Wu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai200040, China
- State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai200040, China
| | - Liu Yang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai200040, China
- State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai200040, China
| | - Bang-Sheng Wu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai200040, China
- State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai200040, China
| | - Wei-Shi Liu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai200040, China
- State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai200040, China
| | - Yue-Ting Deng
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai200040, China
- State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai200040, China
| | - Ju-Jiao Kang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai200433, China
| | - Qiang Dong
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai200040, China
- State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai200040, China
| | - Barbara J. Sahakian
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai200433, China
- Department of Psychiatry and Behavioural and Clinical Neuroscience Institute, University of Cambridge, CambridgeCB2 0SZ, United Kingdom
| | - Jian-Feng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai200433, China
- Department of Computer Science, University of Warwick, CoventryCV4 7AL, United Kingdom
| | - Wei Cheng
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai200040, China
- State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai200040, China
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai200433, China
| | - Jin-Tai Yu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai200040, China
- State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai200040, China
| |
Collapse
|
5
|
van Baalen M, van der Velden L, van der Gronde T, Pieters T. Developing a translational research framework for MDD: combining biomolecular mechanisms with a spiraling risk factor model. Front Psychiatry 2025; 15:1463929. [PMID: 39839132 PMCID: PMC11747824 DOI: 10.3389/fpsyt.2024.1463929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 12/10/2024] [Indexed: 01/23/2025] Open
Abstract
Objective The global incidence and burden of Major Depressive Disorder (MDD) are increasing annually, with current antidepressant treatments proving ineffective for 30-40% of patients. Biomolecular mechanisms within the microbiota-gut-brain axis (MGBA) may significantly contribute to MDD, potentially paving the way for novel treatment approaches. However, integrating the MGBA with the psychological and environmental aspects of MDD remains challenging. This manuscript aims to: 1) investigate the underlying biomolecular mechanisms of MDD using a modeling approach, and 2) integrate this knowledge into a comprehensive 'spiraling risk factor model' to develop a biopsychosocial translational research framework for the prevention and treatment of MDD. Methods For the first aim, a systematic review (PROSPERO registration) was conducted using PubMed, Embase, and Scopus to query literature published between 2016-2020, with select additional sources. A narrative review was performed for the second aim. Results In addition to genetics and neurobiology, research consistently indicates that hyperactivation of the HPA axis and a pro-inflammatory state are interrelated components of the MGBA and likely underlying mechanisms of MDD. Dysregulation of the MGBA, along with imbalances in mental and physical conditions, lifestyle factors, and pre-existing treatments, can trigger a downward spiral of stress and anxiety, potentially leading to MDD. Conclusions MDD is not solely a brain disorder but a heterogeneous condition involving biomolecular, psychological, and environmental risk factors. Future interdisciplinary research can utilize the integrated biopsychosocial insights from this manuscript to develop more effective lifestyle-focused multimodal treatment interventions, enhance diagnosis, and stimulate early-stage prevention of MDD. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42020215412.
Collapse
Affiliation(s)
- Max van Baalen
- Department of Pharmaceutical Sciences and Freudenthal Institute, Utrecht University, Utrecht, Netherlands
| | - Lars van der Velden
- Department of Pharmaceutical Sciences and Freudenthal Institute, Utrecht University, Utrecht, Netherlands
| | - Toon van der Gronde
- Department of Pharmaceutical Sciences and Freudenthal Institute, Utrecht University, Utrecht, Netherlands
- Late-Stage Development, Oncology Research and Development, AstraZeneca, New York, NY, United States
| | - Toine Pieters
- Department of Pharmaceutical Sciences and Freudenthal Institute, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
6
|
Kouakou MR, Cabrera-Mendoza B, Pathak GA, Cannon TD, Polimanti R. Genetically Informed Study Highlights Income-Independent Effect of Schizophrenia Liability on Mental and Physical Health. Schizophr Bull 2024; 51:85-94. [PMID: 38848523 PMCID: PMC11661948 DOI: 10.1093/schbul/sbae093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
BACKGROUND AND HYPOTHESIS Individuals with schizophrenia (SCZ) suffer from comorbidities that substantially reduce their life expectancy. Socioeconomic inequalities could contribute to many of the negative health outcomes associated with SCZ. STUDY DESIGN We investigated genome-wide datasets related to SCZ (52 017 cases and 75 889 controls) from the Psychiatric Genomics Consortium, household income (HI; N = 361 687) from UK Biobank, and 2202 medical endpoints assessed in up to 342 499 FinnGen participants. A phenome-wide genetic correlation analysis of SCZ and HI was performed, also assessing whether SCZ genetic correlations were influenced by the HI effect on SCZ. Additionally, SCZ and HI direct effects on medical endpoints were estimated using multivariable Mendelian randomization (MR). STUDY RESULTS SCZ and HI showed overlapping genetic correlations with 70 traits (P < 2.89 × 10-5), including mental health, substance use, gastrointestinal illnesses, reproductive outcomes, liver diseases, respiratory problems, and musculoskeletal phenotypes. SCZ genetic correlations with these traits were not affected by the HI effect on SCZ. Considering Bonferroni multiple testing correction (P < 7.14 × 10-4), MR analysis indicated that SCZ and HI may affect medical abortion (SCZ OR = 1.07; HI OR = 0.78), panic disorder (SCZ OR = 1.20; HI OR = 0.60), personality disorders (SCZ OR = 1.31; HI OR = 0.67), substance use (SCZ OR = 1.2; HI OR = 0.68), and adjustment disorders (SCZ OR = 1.18; HI OR = 0.78). Multivariable MR analysis confirmed that SCZ effects on these outcomes were independent of HI. CONCLUSIONS The effect of SCZ genetic liability on mental and physical health may not be strongly affected by socioeconomic differences. This suggests that SCZ-specific strategies are needed to reduce negative health outcomes affecting patients and high-risk individuals.
Collapse
Affiliation(s)
- Manuela R Kouakou
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Brenda Cabrera-Mendoza
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Cooperative Studies Program Clinical Epidemiology Research Center (CSP-CERC), VA Connecticut Healthcare System, West Haven, CT, USA
| | - Gita A Pathak
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Cooperative Studies Program Clinical Epidemiology Research Center (CSP-CERC), VA Connecticut Healthcare System, West Haven, CT, USA
| | - Tyrone D Cannon
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychology, Yale University, New Haven, CT, USA
- Wu Tsai Institute, Yale University, New Haven, CT, USA
| | - Renato Polimanti
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Cooperative Studies Program Clinical Epidemiology Research Center (CSP-CERC), VA Connecticut Healthcare System, West Haven, CT, USA
- Wu Tsai Institute, Yale University, New Haven, CT, USA
| |
Collapse
|
7
|
Mazzarotto F, Monteleone P, Minelli A, Mattevi S, Cascino G, Rocca P, Rossi A, Bertolino A, Aguglia E, Altamura C, Amore M, Bellomo A, Bucci P, Collantoni E, Dell'Osso L, Di Fabio F, Fagiolini A, Giuliani L, Marchesi C, Martinotti G, Montemagni C, Pinna F, Pompili M, Rampino A, Roncone R, Siracusano A, Vita A, Zeppegno P, Galderisi S, Gennarelli M, Maj M. Genetic determinants of coping, resilience and self-esteem in schizophrenia suggest a primary role for social factors and hippocampal neurogenesis. Psychiatry Res 2024; 340:116107. [PMID: 39096746 DOI: 10.1016/j.psychres.2024.116107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 08/05/2024]
Abstract
Schizophrenia is a severe psychiatric disorder, associated with a reduction in life expectancy of 15-20 years. Available treatments are at least partially effective in most affected individuals, and personal resources such as resilience (successful adaptation despite adversity) and coping abilities (strategies used to deal with stressful or threatening situations), are important determinants of disease outcomes and long-term sustained recovery. Published findings support the existence of a genetic background underlying resilience and coping, with variable heritability estimates. However, genome-wide analyses concerning the genetic determinants of these personal resources, especially in the context of schizophrenia, are lacking. Here, we performed a genome-wide association study coupled with accessory analyses to investigate potential genetic determinants of resilience, coping and self-esteem in 490 schizophrenia patients. Results revealed a complex genetic background partly overlapping with that of neuroticism, worry and schizophrenia itself and support the importance of social aspects in shapingthese psychological constructs. Hippocampal neurogenesis and lipid metabolism appear to be potentially relevant biological underpinnings, and specific miRNAs such as miR-124 and miR-137 may warrant further studies as potential biomarkers. In conclusion, this study represents an important first step in the identification of genetic and biological correlates shaping resilience, coping resources and self-esteem in schizophrenia.
Collapse
Affiliation(s)
- Francesco Mazzarotto
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; National Heart and Lung Institute, Imperial College London, United Kingdom
| | - Palmiero Monteleone
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy
| | - Alessandra Minelli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Genetic Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Stefania Mattevi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Giammarco Cascino
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy
| | - Paola Rocca
- Department of Neuroscience, Section of Psychiatry, University of Turin, Turin, Italy
| | - Alessandro Rossi
- Section of Psychiatry, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Alessandro Bertolino
- Department of Neurological and Psychiatric Sciences, University of Bari, Bari, Italy
| | - Eugenio Aguglia
- Department of Clinical and Molecular Biomedicine, Psychiatry Unit, University of Catania, Catania, Italy
| | - Carlo Altamura
- Department of Psychiatry, University of Milan, Milan, Italy
| | - Mario Amore
- Section of Psychiatry, Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Antonello Bellomo
- Psychiatry Unit, Department of Medical Sciences, University of Foggia, Foggia, Italy
| | - Paola Bucci
- Department of Psychiatry, University of Campania "Luigi Vanvitelli" Naples, Italy
| | - Enrico Collantoni
- Psychiatric Clinic, Department of Neurosciences, University of Padua, Padua, Italy
| | - Liliana Dell'Osso
- Section of Psychiatry, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Fabio Di Fabio
- Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | - Andrea Fagiolini
- Department of Molecular Medicine and Clinical Department of Mental Health, University of Siena, Siena, Italy
| | - Luigi Giuliani
- Department of Psychiatry, University of Campania "Luigi Vanvitelli" Naples, Italy
| | - Carlo Marchesi
- Department of Neuroscience, Psychiatry Unit, University of Parma, Parma, Italy
| | - Giovanni Martinotti
- Department of Neuroscience and Imaging, G. D'Annunzio University, Chieti, Italy
| | - Cristiana Montemagni
- Department of Neuroscience, Section of Psychiatry, University of Turin, Turin, Italy
| | - Federica Pinna
- Section of Psychiatry, Department of Public Health, Clinical and Molecular Medicine, University of Cagliari, Cagliari, Italy
| | - Maurizio Pompili
- Department of Neurosciences, Mental Health and Sensory Organs, S. Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Antonio Rampino
- Department of Neurological and Psychiatric Sciences, University of Bari, Bari, Italy
| | - Rita Roncone
- Unit of Psychiatry, Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Alberto Siracusano
- Department of Systems Medicine, Psychiatry and Clinical Psychology Unit, Tor Vergata University of Rome, Rome, Italy
| | - Antonio Vita
- Psychiatric Unit, School of Medicine, University of Brescia, Brescia, Italy; Department of Mental Health, Spedali Civili Hospital, Brescia, Italy
| | - Patrizia Zeppegno
- Department of Translational Medicine, Psychiatric Unit, University of Eastern Piedmont, Novara, Italy
| | - Silvana Galderisi
- Department of Psychiatry, University of Campania "Luigi Vanvitelli" Naples, Italy
| | - Massimo Gennarelli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Genetic Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.
| | - Mario Maj
- Department of Psychiatry, University of Campania "Luigi Vanvitelli" Naples, Italy
| |
Collapse
|
8
|
Liu M, Wang L, Zhang Y, Dong H, Wang C, Chen Y, Qian Q, Zhang N, Wang S, Zhao G, Zhang Z, Lei M, Wang S, Zhao Q, Liu F. Investigating the shared genetic architecture between depression and subcortical volumes. Nat Commun 2024; 15:7647. [PMID: 39223129 PMCID: PMC11368965 DOI: 10.1038/s41467-024-52121-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024] Open
Abstract
Depression, a widespread and highly heritable mental health condition, profoundly affects millions of individuals worldwide. Neuroimaging studies have consistently revealed volumetric abnormalities in subcortical structures associated with depression. However, the genetic underpinnings shared between depression and subcortical volumes remain inadequately understood. Here, we investigate the extent of polygenic overlap using the bivariate causal mixture model (MiXeR), leveraging summary statistics from the largest genome-wide association studies for depression (N = 674,452) and 14 subcortical volumetric phenotypes (N = 33,224). Additionally, we identify shared genomic loci through conditional/conjunctional FDR analyses. MiXeR shows that subcortical volumetric traits share a substantial proportion of genetic variants with depression, with 44 distinct shared loci identified by subsequent conjunctional FDR analysis. These shared loci are predominantly located in intronic regions (58.7%) and non-coding RNA intronic regions (25.4%). The 269 protein-coding genes mapped by these shared loci exhibit specific developmental trajectories, with the expression level of 55 genes linked to both depression and subcortical volumes, and 30 genes linked to cognitive abilities and behavioral symptoms. These findings highlight a shared genetic architecture between depression and subcortical volumetric phenotypes, enriching our understanding of the neurobiological underpinnings of depression.
Collapse
Affiliation(s)
- Mengge Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Lu Wang
- Department of Geriatrics and Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yujie Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Haoyang Dong
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Caihong Wang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, China
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yayuan Chen
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Qian Qian
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Nannan Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Shaoying Wang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Guoshu Zhao
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhihui Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Minghuan Lei
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Sijia Wang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, China.
| | - Qiyu Zhao
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, China.
| | - Feng Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
9
|
Guo J, He C, Song H, Gao H, Yao S, Dong SS, Yang TL. Unveiling Promising Neuroimaging Biomarkers for Schizophrenia Through Clinical and Genetic Perspectives. Neurosci Bull 2024; 40:1333-1352. [PMID: 38703276 PMCID: PMC11365900 DOI: 10.1007/s12264-024-01214-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/08/2024] [Indexed: 05/06/2024] Open
Abstract
Schizophrenia is a complex and serious brain disorder. Neuroscientists have become increasingly interested in using magnetic resonance-based brain imaging-derived phenotypes (IDPs) to investigate the etiology of psychiatric disorders. IDPs capture valuable clinical advantages and hold biological significance in identifying brain abnormalities. In this review, we aim to discuss current and prospective approaches to identify potential biomarkers for schizophrenia using clinical multimodal neuroimaging and imaging genetics. We first described IDPs through their phenotypic classification and neuroimaging genomics. Secondly, we discussed the applications of multimodal neuroimaging by clinical evidence in observational studies and randomized controlled trials. Thirdly, considering the genetic evidence of IDPs, we discussed how can utilize neuroimaging data as an intermediate phenotype to make association inferences by polygenic risk scores and Mendelian randomization. Finally, we discussed machine learning as an optimum approach for validating biomarkers. Together, future research efforts focused on neuroimaging biomarkers aim to enhance our understanding of schizophrenia.
Collapse
Affiliation(s)
- Jing Guo
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics and Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Changyi He
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics and Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Huimiao Song
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics and Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Huiwu Gao
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics and Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Shi Yao
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, China
| | - Shan-Shan Dong
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics and Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Tie-Lin Yang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics and Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
10
|
Wang J, Gu R, Kong X, Luan S, Luo YLL. Genome-wide association studies (GWAS) and post-GWAS analyses of impulsivity: A systematic review. Prog Neuropsychopharmacol Biol Psychiatry 2024; 132:110986. [PMID: 38430953 DOI: 10.1016/j.pnpbp.2024.110986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/30/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
Impulsivity is related to a host of mental and behavioral problems. It is a complex construct with many different manifestations, most of which are heritable. The genetic compositions of these impulsivity manifestations, however, remain unclear. A number of genome-wide association studies (GWAS) and post-GWAS analyses have tried to address this issue. We conducted a systematic review of all GWAS and post-GWAS analyses of impulsivity published up to December 2023. Available data suggest that single nucleotide polymorphisms (SNPs) in more than a dozen of genes (e.g., CADM2, CTNNA2, GPM6B) are associated with different measures of impulsivity at genome-wide significant levels. Post-GWAS analyses further show that different measures of impulsivity are subject to different degrees of genetic influence, share few genetic variants, and have divergent genetic overlap with basic personality traits such as extroversion and neuroticism, cognitive ability, psychiatric disorders, substance use, and obesity. These findings shed light on controversies in the conceptualization and measurement of impulsivity, while providing new insights on the underlying mechanisms that yoke impulsivity to psychopathology.
Collapse
Affiliation(s)
- Jiaqi Wang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, 16 Lincui Road, Beijing 100101, China
| | - Ruolei Gu
- Department of Psychology, University of Chinese Academy of Sciences, 16 Lincui Road, Beijing 100101, China; Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Beijing 100101, China
| | - Xiangzhen Kong
- Department of Psychology and Behavioral Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; Department of Psychiatry of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 Qingchundong Road, Hangzhou 310016, China
| | - Shenghua Luan
- Department of Psychology, University of Chinese Academy of Sciences, 16 Lincui Road, Beijing 100101, China; Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Beijing 100101, China
| | - Yu L L Luo
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, 16 Lincui Road, Beijing 100101, China.
| |
Collapse
|
11
|
Fabbri C, Lewis CM, Serretti A. Polygenic risk scores for mood and related disorders and environmental factors: Interaction effects on wellbeing in the UK biobank. Prog Neuropsychopharmacol Biol Psychiatry 2024; 132:110972. [PMID: 38367896 DOI: 10.1016/j.pnpbp.2024.110972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/15/2023] [Accepted: 02/14/2024] [Indexed: 02/19/2024]
Abstract
Mood disorders have a genetic and environmental component and interactions (GxE) on the risk of psychiatric diseases have been investigated. The same GxE interactions may affect wellbeing measures, which go beyond categorical diagnoses and reflect the health-disease continuum. We evaluated GxE effects in the UK Biobank, considering as outcomes subjective wellbeing (feeling good and functioning well) and objective measures (education and income). We estimated the polygenic risk scores (PRSs) of major depressive disorder, bipolar disorder, schizophrenia, and attention deficit hyperactivity disorder. Stressful/traumatic events during adulthood or childhood were considered as E variables, as well as social support. The addition of the PRSxE interaction to PRS and E variables was tested in linear or multinomial regression models, adjusting for confounders. We included 33 k-380 k participants, depending on the variables considered. Most PRSs and E factors showed additive effects on outcomes, with effect sizes generally 3-5 times larger for E variables than PRSs. We found some interaction effects, particularly when considering recent stress, history of a long illness/disability/infirmity, and social support. Higher PRSs increased the negative effects of stress on wellbeing, but they also increased the positive effects of social support, with interaction effects particularly for the outcomes health satisfaction, loneliness, and income (p < Bonferroni corrected threshold of 1.92e-4). PRSxE terms usually added ∼0.01-0.02% variance explained to the corresponding additive model. PRSxE effects on wellbeing involve both positive and negative E factors. Despite small variance explained at the population level, preventive/therapeutic interventions that modify E factors could be beneficial at the individual level.
Collapse
Affiliation(s)
- Chiara Fabbri
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy.
| | - Cathryn M Lewis
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Alessandro Serretti
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy; Department of Medicine and Surgery, Kore University of Enna, Enna, Italy
| |
Collapse
|
12
|
Ojeda A, Calvo A, Cuñat T, Mellado-Artigas R, Costas-Carrera A, Sánchez-Rodriguez MM, Comino-Trinidad O, Aliaga J, Arias M, Martínez-Pallí G, Dürsteler C, Ferrando C. Effectiveness of a specific follow up program for the management of the mental components of post-intensive care syndrome and chronic pain after COVID-19: results from the PAIN-COVID randomized clinical trial. REVISTA ESPANOLA DE ANESTESIOLOGIA Y REANIMACION 2024; 71:349-359. [PMID: 38242358 DOI: 10.1016/j.redare.2023.12.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/11/2023] [Indexed: 01/21/2024]
Abstract
BACKGROUND Critical COVID-19 survivors are at risk of developing Post-intensive Care Syndrome (PICS) and Chronic ICU-Related Pain (CIRP). We determined whether a specific care program improves the quality of life (QoL) of patients at risk of developing PICS and CIRP after COVID-19. METHODS The PAIN-COVID trial was a parallel-group, single-centre, single-blinded, randomized controlled trial. The intervention consisted of a follow up program, patient education on PICS and pain, and a psychological intervention based on Rehm's self-control model in patients with abnormal depression scores (≥8) in the Hospital Anxiety and Depression Scale (HADS) at the baseline visit. QoL was evaluated with the 5-level EQ 5D (EQ 5D 5 L), mood disorders with the HADS, post-traumatic stress disorder (PTSD) with the PCL-5 checklist, and pain with the Brief Pain Inventory short form, the Douleur Neuropathique 4 questionnaire, and the Pain Catastrophizing Scale. The primary outcome was to determine if the program was superior to standard-of-care on the EQ visual analogue scale (VAS) at 6 months after the baseline visit. The secondary outcomes were EQ VAS at 3 months, and EQ index, CIRP incidence and characteristics, and anxiety, depression, and PTSD at 3 and 6 months after baseline visits. CONCLUSIONS This program was not superior to standard care in improving QoL in critical COVID-19 survivors as measured by the EQ VAS. However, our data can help establish better strategies for the study and management of PICS and CIRP in this population. TRIAL REGISTRATION # NCT04394169, registered on 5/19/2020.
Collapse
Affiliation(s)
- A Ojeda
- Department of Anesthesiology, Critical Care and Pain Medicine, Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Spain.
| | - A Calvo
- Department of Anesthesiology, Critical Care and Pain Medicine, Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - T Cuñat
- Department of Anesthesiology, Critical Care and Pain Medicine, Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Spain
| | - R Mellado-Artigas
- Department of Anesthesiology, Critical Care and Pain Medicine, Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Spain
| | - A Costas-Carrera
- Neuroscience Institute, Hospital ClÍnic, University of Barcelona, Barcelona, Spain
| | | | - O Comino-Trinidad
- Department of Anesthesiology, Critical Care and Pain Medicine, Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Spain
| | - J Aliaga
- Department of Anesthesiology, Critical Care and Pain Medicine, Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Spain
| | - M Arias
- Department of Anesthesiology, Critical Care and Pain Medicine, Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Spain
| | - G Martínez-Pallí
- Department of Anesthesiology, Critical Care and Pain Medicine, Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain; CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - C Dürsteler
- Department of Anesthesiology, Critical Care and Pain Medicine, Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Spain; Department of Surgery and Surgical Specializations, Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain
| | - C Ferrando
- Department of Anesthesiology, Critical Care and Pain Medicine, Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain; CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
13
|
Cabrera-Mendoza B, Wendt FR, Pathak GA, Yengo L, Polimanti R. The impact of assortative mating, participation bias and socioeconomic status on the polygenic risk of behavioural and psychiatric traits. Nat Hum Behav 2024; 8:976-987. [PMID: 38366106 PMCID: PMC11161911 DOI: 10.1038/s41562-024-01828-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/15/2024] [Indexed: 02/18/2024]
Abstract
To investigate assortative mating (AM), participation bias and socioeconomic status (SES) with respect to the genetics of behavioural and psychiatric traits, we estimated AM signatures using gametic phase disequilibrium and within-spouses and within-siblings polygenic risk score correlation analyses, also performing a SES conditional analysis. The cross-method meta-analysis identified AM genetic signatures for multiple alcohol-related phenotypes, bipolar disorder, major depressive disorder, schizophrenia and Tourette syndrome. Here, after SES conditioning, we observed changes in the AM genetic signatures for maximum habitual alcohol intake, frequency of drinking alcohol and Tourette syndrome. We also observed significant gametic phase disequilibrium differences between UK Biobank mental health questionnaire responders versus non-responders for major depressive disorder and alcohol use disorder. These results highlight the impact of AM, participation bias and SES on the polygenic risk of behavioural and psychiatric traits, particularly in alcohol-related traits.
Collapse
Affiliation(s)
- Brenda Cabrera-Mendoza
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- VA CT Healthcare System, West Haven, CT, USA
| | - Frank R Wendt
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- VA CT Healthcare System, West Haven, CT, USA
- Department of Anthropology, University of Toronto, Toronto, Ontario, Canada
- Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Gita A Pathak
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- VA CT Healthcare System, West Haven, CT, USA
| | - Loic Yengo
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia.
| | - Renato Polimanti
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA.
- VA CT Healthcare System, West Haven, CT, USA.
- Wu Tsai Institute, Yale University, New Haven, CT, USA.
| |
Collapse
|
14
|
Davis C, Khan Y, Toikumo S, Jinwala Z, Boomsma D, Levey D, Gelernter J, Kember R, Kranzler H. A Multivariate Genome-Wide Association Study Reveals Neural Correlates and Common Biological Mechanisms of Psychopathology Spectra. RESEARCH SQUARE 2024:rs.3.rs-4228593. [PMID: 38659902 PMCID: PMC11042423 DOI: 10.21203/rs.3.rs-4228593/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
There is considerable comorbidity across externalizing and internalizing behavior dimensions of psychopathology. We applied genomic structural equation modeling (gSEM) to genome-wide association study (GWAS) summary statistics to evaluate the factor structure of externalizing and internalizing psychopathology across 16 traits and disorders among European-ancestry individuals (n's = 16,400 to 1,074,629). We conducted GWAS on factors derived from well-fitting models. Downstream analyses served to identify biological mechanisms, explore drug repurposing targets, estimate genetic overlap between the externalizing and internalizing spectra, and evaluate causal effects of psychopathology liability on physical health. Both a correlated factors model, comprising two factors of externalizing and internalizing risk, and a higher-order single-factor model of genetic effects contributing to both spectra demonstrated acceptable t. GWAS identified 409 lead single nucleotide polymorphisms (SNPs) associated with externalizing and 85 lead SNPs associated with internalizing, while the second-order GWAS identified 256 lead SNPs contributing to broad psychopathology risk. In bivariate causal mixture models, nearly all externalizing and internalizing causal variants overlapped, despite a genetic correlation of only 0.37 (SE = 0.02) between them. Externalizing genes showed cell-type specific expression in GABAergic, cortical, and hippocampal neurons, and internalizing genes were associated with reduced subcallosal cortical volume, providing insight into the neurobiological underpinnings of psychopathology. Genetic liability for externalizing, internalizing, and broad psychopathology exerted causal effects on pain, general health, cardiovascular diseases, and chronic illnesses. These findings underscore the complex genetic architecture of psychopathology, identify potential biological pathways for the externalizing and internalizing spectra, and highlight the physical health burden of psychiatric comorbidity.
Collapse
Affiliation(s)
| | - Yousef Khan
- University of Pennsylvania Perelman School of Medicine
| | | | - Zeal Jinwala
- University of Pennsylvania Perelman School of Medicine
| | - D Boomsma
- Vrije Universiteit Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
15
|
Abstract
BACKGROUND The course of Bipolar Disorder (BD) is highly variable, with marked inter and intra-individual differences in symptoms and functioning. In this study, we identified illness trajectories across major clinical domains that could have etiological, prognostic, and therapeutic relevance. METHODS Using the Systematic Treatment Enhancement Program for Bipolar Disorder (STEP-BD) study, we performed univariate and multivariate trajectory modeling of depressive symptoms, manic symptoms, and psychosocial functioning. Multinomial regression was performed to identify baseline variables associated with poor outcome trajectories. RESULTS Depressive symptoms predominated, with most subjects being found in trajectories characterized by various degrees of depressive symptoms and 13% of subjects being classified in a poor outcome 'persistently depressed' trajectory. Most subjects experienced few manic symptoms, although approximately 10% of subjects followed a trajectory of persistently manic symptoms. Trajectory analysis of psychosocial functioning showed impairment in most of the sample, with little improvement during follow up. Multi-trajectory analyses highlighted significant impairment in subjects with persistently mixed and persistently depressed trajectories of illness. In general, poor outcome trajectories were marked by lower educational attainment, higher unemployment and disability, and a greater likelihood of adverse clinical features (rapid cycling and suicide attempts) and comorbid diagnoses (anxiety disorders, PTSD, and substance abuse/dependence disorders). CONCLUSIONS Subjects with BD can be classified into several trajectories of clinically relevant domains that are prognostically relevant and show differing degrees of associations with a broad range of negative clinical risk factors. The highest level of psychosocial disability was found in subjects with chronic mixed and depressive symptoms, who show limited improvement despite guideline-based treatment.
Collapse
Affiliation(s)
- Kristin M Mignogna
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Fernando S Goes
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
16
|
Serdarevic F, Luo M, Karabegović I, Binter AC, Alemany S, Mutzel R, Guxens M, Bustamante M, Hajdarpasic A, White T, Felix JF, Cecil CAM, Tiemeier H. DNA methylation at birth and fine motor ability in childhood: an epigenome-wide association study with replication. Epigenetics 2023; 18:2207253. [PMID: 37139702 PMCID: PMC10161945 DOI: 10.1080/15592294.2023.2207253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
Lower fine motor performance in childhood has been associated with poorer cognitive development and neurodevelopmental conditions such as autism spectrum disorder, yet, biological underpinnings remain unclear. DNA methylation (DNAm), an essential process for healthy neurodevelopment, is a key molecular system of interest. In this study, we conducted the first epigenome-wide association study of neonatal DNAm with childhood fine motor ability and further examined the replicability of epigenetic markers in an independent cohort. The discovery study was embedded in Generation R, a large population-based prospective cohort, including a subsample of 924 ~ 1026 European-ancestry singletons with available data on DNAm in cord blood and fine motor ability at a mean (SD) age of 9.8 (0.4) years. Fine motor ability was measured using a finger-tapping test (3 subtests including left-, right-hand and bimanual), one of the most frequently used neuropsychological instruments of fine motor function. The replication study comprised 326 children with a mean (SD) age of 6.8 (0.4) years from an independent cohort, the INfancia Medio Ambiente (INMA) study. Four CpG sites at birth were prospectively associated with childhood fine motor ability after genome-wide correction. Of these, one CpG (cg07783800 in GNG4) was replicated in INMA, showing that lower levels of methylation at this site were associated with lower fine motor performance in both cohorts. GNG4 is highly expressed in the brain and has been implicated in cognitive decline. Our findings support a prospective, reproducible association between DNAm at birth and fine motor ability in childhood, pointing to GNG4 methylation at birth as a potential biomarker of fine motor ability.
Collapse
Affiliation(s)
- Fadila Serdarevic
- Department of Child and Adolescent Psychiatry, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands
- Department of Social and Behavioral Science, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Sarajevo Medical School, Sarajevo School of Science and Technology, Sarajevo, Bosnia and Herzegovina
| | - Mannan Luo
- Department of Child and Adolescent Psychiatry, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Psychology, Education and Child Studies, Erasmus University Rotterdam, Rotterdam, the Netherlands
| | - Irma Karabegović
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Anne-Claire Binter
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Silvia Alemany
- Department of Child and Adolescent Psychiatry, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands
- Psychiatric Genetics Unit, Group of Psychiatry Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Ryan Mutzel
- Department of Child and Adolescent Psychiatry, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands
| | - Monica Guxens
- Department of Child and Adolescent Psychiatry, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Mariona Bustamante
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Aida Hajdarpasic
- Department of Medical Biology, and Genetics, Sarajevo Medical School, Sarajevo School of Science and Technology, Sarajevo, Bosnia and Herzegovina
| | - Tonya White
- Department of Child and Adolescent Psychiatry, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Janine F Felix
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Charlotte A M Cecil
- Department of Child and Adolescent Psychiatry, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
| | - Henning Tiemeier
- Department of Child and Adolescent Psychiatry, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands
- Department of Social and Behavioral Science, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
17
|
Andreu-Bernabeu Á, González-Peñas J, Arango C, Díaz-Caneja CM. Socioeconomic status and severe mental disorders: a bidirectional multivariable Mendelian randomisation study. BMJ MENTAL HEALTH 2023; 26:e300821. [PMID: 38007229 PMCID: PMC10680010 DOI: 10.1136/bmjment-2023-300821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/18/2023] [Indexed: 11/27/2023]
Abstract
BACKGROUND Despite the evidence supporting the relationship between socioeconomic status (SES) and severe mental disorders (SMD), the directionality of the associations between income or education and mental disorders is still poorly understood. OBJECTIVE To investigate the potential bidirectional causal relationships between genetic liability to the two main components of SES (income and educational attainment (EA)) on three SMD: schizophrenia, bipolar disorder (BD) and depression. METHODS We performed a bidirectional, two-sample univariable Mendelian randomisation (UVMR) and multivariable Mendelian randomisation (MVMR) study using SES phenotypes (income, n=397 751 and EA, n=766 345) and SMD (schizophrenia, n=127 906; BD, n=51 710 and depression, n=500 119) genome-wide association studies summary-statistics to dissect the potential direct associations of income and EA with SMD. FINDINGS UVMR showed that genetic liability to higher income was associated with decreased risk of schizophrenia and depression, with a smaller reverse effect of schizophrenia and depression on income. Effects were comparable after adjusting for EA in the MVMR. UMVR showed bidirectional negative associations between genetic liability to EA and depression and positive associations between genetic liability to EA and BD, with no significant effects on schizophrenia. After accounting for income, MVMR showed a bidirectional positive direction between genetic liability to EA and BD and schizophrenia but not with depression. CONCLUSIONS Our results suggest a heterogeneous link pattern between SES and SMD. We found a negative bidirectional association between genetic liability to income and the risk of schizophrenia and depression. On the contrary, we found a positive bidirectional relationship of genetic liability to EA with schizophrenia and BD, which only becomes apparent after adjusting for income in the case of schizophrenia. CLINICAL IMPLICATIONS These findings shed light on the directional mechanisms between social determinants and mental disorders and suggest that income and EA should be studied separately in relation to mental illness.
Collapse
Affiliation(s)
- Álvaro Andreu-Bernabeu
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), CIBERSAM, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Javier González-Peñas
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), CIBERSAM, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Celso Arango
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), CIBERSAM, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Universidad Complutense de Madrid, Madrid, Spain
| | - Covadonga M Díaz-Caneja
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), CIBERSAM, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
18
|
Ribasés M, Mitjans M, Hartman CA, Soler Artigas M, Demontis D, Larsson H, Ramos-Quiroga JA, Kuntsi J, Faraone SV, Børglum AD, Reif A, Franke B, Cormand B. Genetic architecture of ADHD and overlap with other psychiatric disorders and cognition-related phenotypes. Neurosci Biobehav Rev 2023; 153:105313. [PMID: 37451654 PMCID: PMC10789879 DOI: 10.1016/j.neubiorev.2023.105313] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/30/2023] [Accepted: 07/08/2023] [Indexed: 07/18/2023]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) co-occurs with many other psychiatric disorders and traits. In this review, we summarize and interpret the existing literature on the genetic architecture of these comorbidities based on hypothesis-generating approaches. Quantitative genetic studies indicate that genetic factors play a substantial role in the observed co-occurrence of ADHD with many different disorders and traits. Molecular genetic correlations derived from genome-wide association studies and results of studies based on polygenic risk scores confirm the general pattern but provide effect estimates that are smaller than those from twin studies. The identification of the specific genetic variants and biological pathways underlying co-occurrence using genome-wide approaches is still in its infancy. The first analyses of causal inference using genetic data support causal relationships between ADHD and comorbid disorders, although bidirectional effects identified in some instances point to complex relationships. While several issues in the methodology and inferences from the results are still to be overcome, this review shows that the co-occurrence of ADHD with many psychiatric disorders and traits is genetically interpretable.
Collapse
Affiliation(s)
- M Ribasés
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain; Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Barcelona, Spain; Department of Genetics, Microbiology, and Statistics, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - M Mitjans
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Barcelona, Spain; Department of Genetics, Microbiology, and Statistics, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain; Institut de Recerca Sant Joan de Déu (IRSJD), Esplugues de Llobregat, Catalonia, Spain
| | - C A Hartman
- Department of Psychiatry, Interdisciplinary Center Psychopathology and Emotion regulation (ICPE), University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - M Soler Artigas
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain; Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Barcelona, Spain; Department of Genetics, Microbiology, and Statistics, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - D Demontis
- Department of Biomedicine/Human Genetics, Aarhus University, Aarhus, Denmark; The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Denmark; Center for Genomics and Personalized Medicine, Aarhus, Denmark; The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - H Larsson
- School of Medical Sciences, Örebro University, Örebro, Sweden; Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - J A Ramos-Quiroga
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain; Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Barcelona, Spain; Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - J Kuntsi
- Social, Genetic and Developmental Psychiatry Centre; Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - S V Faraone
- Departments of Psychiatry and of Neuroscience and Physiology, Norton College of Medicine, SUNY Upstate Medical University, Syracuse, NY, USA
| | - A D Børglum
- Department of Biomedicine/Human Genetics, Aarhus University, Aarhus, Denmark; The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Denmark; Center for Genomics and Personalized Medicine, Aarhus, Denmark
| | - A Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - B Franke
- Departments of Cognitive Neuroscience and Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - B Cormand
- Department of Genetics, Microbiology, and Statistics, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain; Institut de Recerca Sant Joan de Déu (IRSJD), Esplugues de Llobregat, Catalonia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBER-ER), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
19
|
Marx W, Penninx BWJH, Solmi M, Furukawa TA, Firth J, Carvalho AF, Berk M. Major depressive disorder. Nat Rev Dis Primers 2023; 9:44. [PMID: 37620370 DOI: 10.1038/s41572-023-00454-1] [Citation(s) in RCA: 167] [Impact Index Per Article: 83.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/11/2023] [Indexed: 08/26/2023]
Abstract
Major depressive disorder (MDD) is characterized by persistent depressed mood, loss of interest or pleasure in previously enjoyable activities, recurrent thoughts of death, and physical and cognitive symptoms. People with MDD can have reduced quality of life owing to the disorder itself as well as related medical comorbidities, social factors, and impaired functional outcomes. MDD is a complex disorder that cannot be fully explained by any one single established biological or environmental pathway. Instead, MDD seems to be caused by a combination of genetic, environmental, psychological and biological factors. Treatment for MDD commonly involves pharmacological therapy with antidepressant medications, psychotherapy or a combination of both. In people with severe and/or treatment-resistant MDD, other biological therapies, such as electroconvulsive therapy, may also be offered.
Collapse
Affiliation(s)
- Wolfgang Marx
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Victoria, Australia.
| | - Brenda W J H Penninx
- Department of Psychiatry, Amsterdam Public Health and Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit, Amsterdam, the Netherlands
| | - Marco Solmi
- Department of Psychiatry, University of Ottawa, Ottawa, Ontario, Canada
- On Track: The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ottawa, Ontario, Canada
- Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany
| | - Toshi A Furukawa
- Department of Health Promotion and Human Behavior, Kyoto University Graduate School of Medicine/School of Public Health, Kyoto, Japan
| | - Joseph Firth
- Division of Psychology and Mental Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Greater Manchester Mental Health NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Andre F Carvalho
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Victoria, Australia
| | - Michael Berk
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Victoria, Australia
| |
Collapse
|
20
|
Dai J, Xu Y, Wang T, Zeng P. Exploring the relationship between socioeconomic deprivation index and Alzheimer's disease using summary-level data: From genetic correlation to causality. Prog Neuropsychopharmacol Biol Psychiatry 2023; 123:110700. [PMID: 36566903 DOI: 10.1016/j.pnpbp.2022.110700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 11/04/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Patients with Alzheimer's disease (AD) are markedly increasing as population aging and no disease-modifying therapies are currently available for AD. Previous studies suggested a broad link between socioeconomic status and a variety of disorders, including mental illness and cognitive abilities. However, the association between socioeconomic deprivation and AD has been unknown. We here employed Townsend deprivation index (TDI) to explore such relation and found a positive genetic correlation (r̂g=0.211, P = 8.00 × 10-4) between the two traits with summary statistics data (N = 455,258 for TDI and N = 455,815 for AD). Then, we performed pleiotropy analysis at both variant and gene levels using a powerful method called PLACO and detected 87 distinct pleiotropic genes. Functional analysis demonstrated these genes were significantly enriched in pancreas, liver, heart, blood, brain, and muscle tissues. Using Mendelian randomization methods, we further found that one genetically predicted standard deviation elevation in TDI could lead to approximately 18.5% (95% confidence intervals 1.6- 38.2%, P = 0.031) increase of AD risk, and that the identified causal association was robust against used MR approaches, horizontal pleiotropy, and instrumental selection. Overall, this study provides deep insight into common genetic components underlying TDI and AD, and further reveals causal connection between them. It is also helpful to develop a more suitable plan for ameliorating inequities, hardship, and disadvantage, with the hope of improving health outcomes among economically disadvantaged people.
Collapse
Affiliation(s)
- Jing Dai
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yue Xu
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Ting Wang
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Ping Zeng
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Center for Medical Statistics and Data Analysis, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Key Laboratory of Environment and Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Engineering Research Innovation Center of Biological Data Mining and Healthcare Transformation, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
21
|
Hao R, Jin H, Zuo J, Wu Y, Sun X, Hu J. The multiple mediating effect of family health and perceived social support on depressive symptoms in older adults: A cross-sectional national survey in China. J Affect Disord 2023; 327:348-354. [PMID: 36731543 DOI: 10.1016/j.jad.2023.01.097] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023]
Abstract
BACKGROUND Depression harms older adults' physical health and quality of life, especially for those with disabilities. This study aims to investigate the epidemiological characteristics of depressive symptoms in older adults and influencing factors involving neuroticism in China. METHODS A multistage random sampling method was adopted to recruit older adults. We conducted a multiple mediating analysis to explore how overall family health and perceived social support affect the relationship between neuroticism and depressive symptoms in older adults. RESULTS A total of 1122 older adults were included in this study, and 529 individuals reported suffering from depressive symptoms (47.1 %). Mediation analysis results indicated that neuroticism had a direct predictive effect on depressive symptoms in older adults. Family health and perceived social support partly mediated the relationship between neuroticism and depressive symptoms in older adults. Moreover, depressive symptoms in older adults with high neuroticism was directly affected by decreasing family health and indirectly and cumulatively aggravated by the mediation of lower perceived social support. LIMITATIONS The cross-sectional study design limits the conclusion about causation and directionality. CONCLUSIONS Family health and perceived social support can prevent depressive symptoms in older adults with high neuroticism.
Collapse
Affiliation(s)
- Ran Hao
- School of Nursing, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Haoyu Jin
- School of Nursing, Hebei Medical University, Shijiazhuang, Hebei, China; School of Public Health, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jinfan Zuo
- School of Nursing, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yibo Wu
- School of Public Health, Peking University, Beijing, China
| | - Xiaonan Sun
- Department of Social Science and Humanities, Harbin Medical University, Harbin, Heilongjiang, China.
| | - Jie Hu
- School of Nursing, Hebei Medical University, Shijiazhuang, Hebei, China; School of Public Health, Hebei Medical University, Shijiazhuang, Hebei, China.
| |
Collapse
|
22
|
Hatoum AS, Colbert SM, Johnson EC, Huggett SB, Deak JD, Pathak G, Jennings MV, Paul SE, Karcher NR, Hansen I, Baranger DA, Edwards A, Grotzinger A, Tucker-Drob EM, Kranzler HR, Davis LK, Sanchez-Roige S, Polimanti R, Gelernter J, Edenberg HJ, Bogdan R, Agrawal A. Multivariate genome-wide association meta-analysis of over 1 million subjects identifies loci underlying multiple substance use disorders. NATURE. MENTAL HEALTH 2023; 1:210-223. [PMID: 37250466 PMCID: PMC10217792 DOI: 10.1038/s44220-023-00034-y] [Citation(s) in RCA: 99] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 02/10/2023] [Indexed: 05/31/2023]
Abstract
Genetic liability to substance use disorders can be parsed into loci that confer general or substance-specific addiction risk. We report a multivariate genome-wide association meta-analysis that disaggregates general and substance-specific loci for published summary statistics of problematic alcohol use, problematic tobacco use, cannabis use disorder, and opioid use disorder in a sample of 1,025,550 individuals of European descent and 92,630 individuals of African descent. Nineteen independent SNPs were genome-wide significant (P < 5e-8) for the general addiction risk factor (addiction-rf), which showed high polygenicity. Across ancestries, PDE4B was significant (among other genes), suggesting dopamine regulation as a cross-substance vulnerability. An addiction-rf polygenic risk score was associated with substance use disorders, psychopathologies, somatic conditions, and environments associated with the onset of addictions. Substance-specific loci (9 for alcohol, 32 for tobacco, 5 for cannabis, 1 for opioids) included metabolic and receptor genes. These findings provide insight into genetic risk loci for substance use disorders that could be leveraged as treatment targets.
Collapse
Affiliation(s)
- Alexander S. Hatoum
- Washington University School of Medicine, Department of
Psychiatry, Saint Louis, USA
| | - Sarah M.C. Colbert
- Washington University School of Medicine, Department of
Psychiatry, Saint Louis, USA
| | - Emma C. Johnson
- Washington University School of Medicine, Department of
Psychiatry, Saint Louis, USA
| | | | - Joseph D. Deak
- Department of Psychiatry, Division of Human Genetics, Yale
School of Medicine, New Haven, CT, USA
- Veterans Affairs Connecticut Healthcare System, West Haven,
CT, USA
| | - Gita Pathak
- Department of Psychiatry, Division of Human Genetics, Yale
School of Medicine, New Haven, CT, USA
| | - Mariela V. Jennings
- UC San Diego School of Medicine, Department of Psychiatry,
San Diego, CA, USA
| | - Sarah E. Paul
- Department of Psychological & Brain Sciences,
Washington University in St. Louis
| | - Nicole R. Karcher
- Washington University School of Medicine, Department of
Psychiatry, Saint Louis, USA
| | - Isabella Hansen
- Department of Psychological & Brain Sciences,
Washington University in St. Louis
| | - David A.A. Baranger
- Washington University School of Medicine, Department of
Psychiatry, Saint Louis, USA
| | - Alexis Edwards
- Virginia Institute of Psychiatric and Behavioral Genetics,
Virginia Commonwealth University, Richmond, VA, USA
| | - Andrew Grotzinger
- University of Colorado-Boulder, Institute for Behavioral
Genetics, Boulder, CO, USA
| | | | - Elliot M. Tucker-Drob
- University of Texas at Austin, Department of Psychology and
Population Research Center, Austin, TX, USA
| | - Henry R. Kranzler
- Center for Studies of Addiction, Department of
Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia,
PA, USA
- VISN 4 MIRECC, Crescenz VAMC, Philadelphia, PA, USA
| | - Lea K. Davis
- Department of Medicine, Division of Genetic Medicine,
Vanderbilt University, Nashville, TN, USA
- Department of Psychiatry and Behavioral Sciences,
Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biomedical Informatics, Vanderbilt
University Medical Center, Nashville, TN, USA
| | - Sandra Sanchez-Roige
- UC San Diego School of Medicine, Department of Psychiatry,
San Diego, CA, USA
- Department of Medicine, Division of Genetic Medicine,
Vanderbilt University, Nashville, TN, USA
| | - Renato Polimanti
- Department of Psychiatry, Division of Human Genetics, Yale
School of Medicine, New Haven, CT, USA
- Veterans Affairs Connecticut Healthcare System, West Haven,
CT, USA
| | - Joel Gelernter
- Department of Psychiatry, Division of Human Genetics, Yale
School of Medicine, New Haven, CT, USA
- University of Texas at Austin, Department of Psychology and
Population Research Center, Austin, TX, USA
- Department of Genetics, Yale School of Medicine, New
Haven, CT, USA
- Department of Neuroscience, Yale School of Medicine, New
Haven, CT, USA
| | - Howard J. Edenberg
- Department of Medical and Molecular Genetics, Indiana
University School of Medicine, Indianapolis, IN, USA
- Department of Biochemistry and Molecular Biology, Indiana
University School of Medicine, Indianapolis, IN, USA
| | - Ryan Bogdan
- Department of Psychological & Brain Sciences,
Washington University in St. Louis
| | - Arpana Agrawal
- Washington University School of Medicine, Department of
Psychiatry, Saint Louis, USA
| |
Collapse
|
23
|
Wendt FR, Pathak GA, Singh K, Stein MB, Koenen KC, Krystal JH, Gelernter J, Davis LK, Polimanti R. Sex-Specific Genetic and Transcriptomic Liability to Neuroticism. Biol Psychiatry 2023; 93:243-252. [PMID: 36244801 PMCID: PMC10508260 DOI: 10.1016/j.biopsych.2022.07.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/08/2022] [Accepted: 07/13/2022] [Indexed: 01/06/2023]
Abstract
BACKGROUND The presentation, etiology, and relative risk of psychiatric disorders are strongly influenced by biological sex. Neuroticism is a transdiagnostic feature of psychiatric disorders displaying prominent sex differences. We performed genome-wide association studies of neuroticism separately in males and females to identify sex-specific genetic and transcriptomic profiles. METHODS Neuroticism scores were derived from the Eysenck Personality Inventory Neuroticism scale. Genome-wide association studies were performed in 145,669 females and 129,229 males from the UK Biobank considering autosomal and X chromosomal variation. Two-sided z tests were used to test for sex-specific effects of discovered loci, genetic correlates (n = 673 traits), tissue and gene transcriptomic profiles, and polygenic associations across health outcomes in the Vanderbilt University Biobank (39,692 females and 31,268 males). RESULTS The single nucleotide polymorphism heritability of neuroticism was not statistically different between males (h2 = 10.6%) and females (h2 = 11.85%). Four female-specific (rs10736549-CNTN5, rs6507056-ASXL3, rs2087182-MMS22L, and rs72995548-HSPB2) and 2 male-specific (rs10507274-MED13L and rs7984597) neuroticism risk loci reached genome-wide significance. Male- and female-specific neuroticism polygenic scores were most significantly associated with mood disorders (males: odds ratio = 1.11, p = 1.40 × 10-9; females: odds ratio = 1.14, p = 6.05 × 10-22). They also associated with sex-specific laboratory measurements related to erythrocyte count, distribution, and hemoglobin concentration. Gene expression variation in the pituitary was enriched for neuroticism loci in males (male: b = 0.026, p = .002), and genetically regulated transcriptomic changes highlighted the effect of SHISHA9, TEX26, and NCOA6. CONCLUSIONS Through a comprehensive assessment of genetic risk for neuroticism and the associated biological processes, this study identified several molecular pathways that can partially explain the known sex differences in neurotic symptoms and their psychiatric comorbidities.
Collapse
Affiliation(s)
- Frank R Wendt
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut; VA CT Healthcare System, West Haven, Connecticut; Department of Anthropology, University of Toronto, Mississauga, Ontario, Canada; Biostatistics Division, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada.
| | - Gita A Pathak
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut; VA CT Healthcare System, West Haven, Connecticut
| | - Kritika Singh
- Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Murray B Stein
- Psychiatry Service, VA San Diego Healthcare System, San Diego, California; Department of Psychiatry, University of California, San Diego, San Diego, California; Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, San Diego, California
| | - Karestan C Koenen
- Stanley Center for Psychiatry Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Psychiatry and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts; Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts
| | - John H Krystal
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Joel Gelernter
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut; Department of Genetics, Yale School of Medicine, New Haven, Connecticut; Department of Neuroscience, Yale School of Medicine, New Haven, Connecticut; VA CT Healthcare System, West Haven, Connecticut
| | - Lea K Davis
- Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Renato Polimanti
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut; VA CT Healthcare System, West Haven, Connecticut.
| |
Collapse
|
24
|
Guan S, Yu YN, Li B, Gu H, Chen L, Wang N, Wang B, Liu X, Liu J, Wang Z. Discovery of Drug-Responsive Phenomic Alteration-Related Driver Genes in the Treatment of Coronary Heart Disease. Pharmgenomics Pers Med 2023; 16:201-217. [PMID: 36945217 PMCID: PMC10024908 DOI: 10.2147/pgpm.s398522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/25/2023] [Indexed: 03/17/2023] Open
Abstract
Background The Xueyu Zheng (XYZ) phenome is central to coronary heart disease (CHD), but efforts to detect genetic associations in the XYZ phenome have been disappointing. Methods The phenomic alteration-related genes (PARGs) for the XYZ phenome were screened using |ρ| > 0.4 and p < 0.05 after treatment with Danhong injection at day 14 and day 30. Then, the driver genes for the Protein-Protein Interaction (PPI) networks of the PARGs established using STRING 11.0 were detected using a personalized network control algorithm (PNC). Finally, the molecular correlations of the driver genes with the XYZ phenome were analyzed with the Gene Ontology (GO) biological processes and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways from a holistic viewpoint. Results A total of 525 and 309 PARGs in the XYZ phenome at day 14 and day 30 were identified. These genes were separately enriched in 48 and 35 pathways. Furthermore, five driver genes were detected. These genes were mainly correlated with endoplasmic reticulum stress-mediated apoptosis and autophagy regulation, which could suppress atherosclerosis progression. Conclusion Our study detected the drug-responsive PARGs of the XYZ phenome in CHD and provides an exemplary strategy to investigate the genetic associations among this common phenome and its component symptoms in patients with CHD. Trial Registration ClinicalTrials.gov, NCT01681316; registered on September 7, 2012.
Collapse
Affiliation(s)
- Shuang Guan
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Ya-Nan Yu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Bing Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Hao Gu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Lin Chen
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Nian Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Bo Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Xi Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Jun Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Zhong Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
- Correspondence: Zhong Wang; Jun Liu, Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimennei, Beijing, People’s Republic of China, Email ;
| |
Collapse
|
25
|
Ariyanfar S, Good DJ. Analysis of SNHG14: A Long Non-Coding RNA Hosting SNORD116, Whose Loss Contributes to Prader-Willi Syndrome Etiology. Genes (Basel) 2022; 14:97. [PMID: 36672838 PMCID: PMC9858946 DOI: 10.3390/genes14010097] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/14/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
The Small Nucleolar Host Gene 14 (SNHG14) is a host gene for small non-coding RNAs, including the SNORD116 small nucleolar C/D box RNA encoding locus. Large deletions of the SNHG14 locus, as well as microdeletions of the SNORD116 locus, lead to the neurodevelopmental genetic disorder Prader-Willi syndrome. This review will focus on the SNHG14 gene, its expression patterns, its role in human cancer, and the possibility that single nucleotide variants within the locus contribute to human phenotypes in the general population. This review will also include new in silico data analyses of the SNHG14 locus and new in situ RNA expression patterns of the Snhg14 RNA in mouse midbrain and hindbrain regions.
Collapse
Affiliation(s)
| | - Deborah J. Good
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA 24060, USA
| |
Collapse
|
26
|
Colbert SMC, Johnson EC. Commentary on Lannoy et al.: The continued value of within-family designs in addiction and psychiatric research. Addiction 2022; 117:2953-2954. [PMID: 36101986 PMCID: PMC9530015 DOI: 10.1111/add.16040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 08/30/2022] [Indexed: 12/01/2022]
Abstract
Family-based designs continue to be valuable for establishing evidence of causal relationships in studies of substance use disorders and other mental health conditions. In the era of genome-wide, measured genetic variation, addiction genetics researchers should not overlook the value of co-relative designs for moving beyond correlation.
Collapse
Affiliation(s)
- Sarah M C Colbert
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
| | - Emma C Johnson
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
27
|
Fineberg NA, Menchón JM, Hall N, Dell'Osso B, Brand M, Potenza MN, Chamberlain SR, Cirnigliaro G, Lochner C, Billieux J, Demetrovics Z, Rumpf HJ, Müller A, Castro-Calvo J, Hollander E, Burkauskas J, Grünblatt E, Walitza S, Corazza O, King DL, Stein DJ, Grant JE, Pallanti S, Bowden-Jones H, Ameringen MV, Ioannidis K, Carmi L, Goudriaan AE, Martinotti G, Sales CMD, Jones J, Gjoneska B, Király O, Benatti B, Vismara M, Pellegrini L, Conti D, Cataldo I, Riva GM, Yücel M, Flayelle M, Hall T, Griffiths M, Zohar J. Advances in problematic usage of the internet research - A narrative review by experts from the European network for problematic usage of the internet. Compr Psychiatry 2022; 118:152346. [PMID: 36029549 DOI: 10.1016/j.comppsych.2022.152346] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 06/29/2022] [Accepted: 08/09/2022] [Indexed: 01/05/2023] Open
Abstract
Global concern about problematic usage of the internet (PUI), and its public health and societal costs, continues to grow, sharpened in focus under the privations of the COVID-19 pandemic. This narrative review reports the expert opinions of members of the largest international network of researchers on PUI in the framework of the European Cooperation in Science and Technology (COST) Action (CA 16207), on the scientific progress made and the critical knowledge gaps remaining to be filled as the term of the Action reaches its conclusion. A key advance has been achieving consensus on the clinical definition of various forms of PUI. Based on the overarching public health principles of protecting individuals and the public from harm and promoting the highest attainable standard of health, the World Health Organisation has introduced several new structured diagnoses into the ICD-11, including gambling disorder, gaming disorder, compulsive sexual behaviour disorder, and other unspecified or specified disorders due to addictive behaviours, alongside naming online activity as a diagnostic specifier. These definitions provide for the first time a sound platform for developing systematic networked research into various forms of PUI at global scale. Progress has also been made in areas such as refining and simplifying some of the available assessment instruments, clarifying the underpinning brain-based and social determinants, and building more empirically based etiological models, as a basis for therapeutic intervention, alongside public engagement initiatives. However, important gaps in our knowledge remain to be tackled. Principal among these include a better understanding of the course and evolution of the PUI-related problems, across different age groups, genders and other specific vulnerable groups, reliable methods for early identification of individuals at risk (before PUI becomes disordered), efficacious preventative and therapeutic interventions and ethical health and social policy changes that adequately safeguard human digital rights. The paper concludes with recommendations for achievable research goals, based on longitudinal analysis of a large multinational cohort co-designed with public stakeholders.
Collapse
Affiliation(s)
- Naomi A Fineberg
- Hertfordshire Partnership University NHS Foundation Trust, Hertfordshire, UK; School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK; School of Clinical Medicine, University of Cambridge, Cambridge, UK.
| | - José M Menchón
- Department of Psychiatry, Bellvitge University Hospital-IDIBELL, University of Barcelona, Cibersam, Barcelona, Spain
| | - Natalie Hall
- Centre for Health Services and Clinical Research, University of Hertfordshire, Hatfield, UK
| | - Bernardo Dell'Osso
- Luigi Sacco University Hospital, Psychiatry 2 Unit, University of Milan, Milan, Italy; "Aldo Ravelli" Center for Nanotechnology and Neurostimulation, University of Milan, Milan, Italy; Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA; Centro per lo studio dei meccanismi molecolari alla base delle patologie neuro-psico-geriatriche", University of Milan, Milan, Italy
| | - Matthias Brand
- General Psychology: Cognition and Center for Behavioral Addiction Research (CeBAR), University of Duisburg-Essen, Germany; Erwin L. Hahn Institute for Magnetic Resonance Imaging, Essen, Germany
| | - Marc N Potenza
- Departments of Psychiatry, Neuroscience and Child Study, Yale University School of Medicine, and Wu Tsai Institute, Yale University, New Haven, USA, New Haven, USA; Connecticut Council on Problem Gambling, Wethersfield, USA; Connecticut Mental Health Center, New Haven, USA
| | - Samuel R Chamberlain
- Department of Psychiatry, Faculty of Medicine, University of Southampton, UK; Southern Health NHS Foundation Trust, Southampton, UK
| | - Giovanna Cirnigliaro
- Luigi Sacco University Hospital, Psychiatry 2 Unit, University of Milan, Milan, Italy
| | - Christine Lochner
- SAMRC Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry, Stellenbosch University, South Africa
| | - Joël Billieux
- Institute of Psychology, University of Lausanne (UNIL), Lausanne, Switzerland
| | - Zsolt Demetrovics
- Centre of Excellence in Responsible Gaming, University of Gibraltar, Gibraltar, Gibraltar; Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Hans Jürgen Rumpf
- Department of Psychiatry and Psychotherapy, Translational Psychiatry Unit, Research Group S:TEP (Substance use and related disorders: Treatment, Epidemiology and Prevention) University of Lübeck, Lübeck, Germany
| | - Astrid Müller
- Department of Psychosomatic Medicine and Psychotherapy, Hannover Medical School, Hanover, Germany
| | - Jesús Castro-Calvo
- Department of Personality, Assessment, and Psychological Treatments, University of Valencia, Spain
| | - Eric Hollander
- Autism and Obsessive Compulsive Spectrum Program, Psychiatric Research Institute at Montefiore-Einstein, Albert Einstein College of Medicine
| | - Julius Burkauskas
- Laboratory of Behavioral Medicine, Neuroscience Institute, Lithuanian University of Health Sciences, Vyduno al. 4, 00135 Palanga, Lithuania
| | - Edna Grünblatt
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland; Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Susanne Walitza
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland; Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Ornella Corazza
- Department of Clinical Pharmacological and Biological Science, University of Hertfordshire
| | - Daniel L King
- College of Education, Psychology, & Social Work, Flinders University, Adelaide, Australia
| | - Dan J Stein
- SAMRC Unit on Risk & Resilience in Mental Disorders, Dept of Psychiatry & Neuroscience Institute, University of Cape Town
| | - Jon E Grant
- Department of Psychiatry & Behavioral Neuroscience, University of Chicago
| | - Stefano Pallanti
- Albert Einstein College of Medicine and Montefiore Medical Center, New York, USA; INS Istituto di Neuroscienze, Florence, Italy
| | | | - Michael Van Ameringen
- Deptartment of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Canada
| | - Konstantinos Ioannidis
- Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK; Department of International Health, Care and Public Health Research Institute, Maastricht University, Maastricht, the Netherlands
| | - Lior Carmi
- Post-Trauma Center, Sheba Medical Center, Tel Aviv University, Israel; Reichman University, The Data Science Institution, Herzliya, Israel
| | - Anna E Goudriaan
- Amsterdam UMC, Department of Psychiatry, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Institute for Addiction Research & Arkin, the Netherlands
| | - Giovanni Martinotti
- Department of Neuroscience, Imaging and Clinical Sciences, G. D'Annunzio University, Chieti, Italy
| | - Célia M D Sales
- Faculty of Psychology and Education Sciences, University of Porto, Porto, Portugal; Center for Psychology at University of Porto (CPUP), University of Porto, Porto, Portugal
| | - Julia Jones
- School of Health and Social Work, University of Hertfordshire, Hatfield, UK
| | | | - Orsolya Király
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Beatrice Benatti
- Luigi Sacco University Hospital, Psychiatry 2 Unit, University of Milan, Milan, Italy; "Aldo Ravelli" Center for Nanotechnology and Neurostimulation, University of Milan, Milan, Italy
| | - Matteo Vismara
- Luigi Sacco University Hospital, Psychiatry 2 Unit, University of Milan, Milan, Italy; "Aldo Ravelli" Center for Nanotechnology and Neurostimulation, University of Milan, Milan, Italy
| | - Luca Pellegrini
- Hertfordshire Partnership University NHS Foundation Trust, Hertfordshire, UK; School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK
| | - Dario Conti
- Hertfordshire Partnership University NHS Foundation Trust, Hertfordshire, UK; Luigi Sacco University Hospital, Psychiatry 2 Unit, University of Milan, Milan, Italy
| | - Ilaria Cataldo
- Department of Psychology and Cognitive Science, University of Trento, Trento, Italy
| | - Gianluigi M Riva
- School of Information and Communication Studies, University College Dublin
| | - Murat Yücel
- Brain Park, Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Monash Biomedical Imaging Facility, Monash University, Melbourne, Victoria, Australia
| | - Maèva Flayelle
- Institute of Psychology, University of Lausanne, Lausanne, Switzerland
| | | | | | - Joseph Zohar
- Post-Trauma Center, Sheba Medical Center, Tel Aviv University, Israel
| |
Collapse
|
28
|
Lencz T, Sabatello M, Docherty A, Peterson RE, Soda T, Austin J, Bierut L, Crepaz-Keay D, Curtis D, Degenhardt F, Huckins L, Lazaro-Munoz G, Mattheisen M, Meiser B, Peay H, Rietschel M, Walss-Bass C, Davis LK. Concerns about the use of polygenic embryo screening for psychiatric and cognitive traits. Lancet Psychiatry 2022; 9:838-844. [PMID: 35931093 PMCID: PMC9930635 DOI: 10.1016/s2215-0366(22)00157-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/01/2022] [Accepted: 04/23/2022] [Indexed: 12/19/2022]
Abstract
Private companies have begun offering services to allow parents undergoing in-vitro fertilisation to screen embryos for genetic risk of complex diseases, including psychiatric disorders. This procedure, called polygenic embryo screening, raises several difficult scientific and ethical issues, as discussed in this Personal View. Polygenic embryo screening depends on the statistical properties of polygenic risk scores, which are complex and not well studied in the context of this proposed clinical application. The clinical, social, and ethical implications of polygenic embryo screening have barely been discussed among relevant stakeholders. To our knowledge, the International Society of Psychiatric Genetics is the first professional biomedical organisation to issue a statement regarding polygenic embryo screening. For the reasons discussed in this Personal View, the Society urges caution and calls for additional research and oversight on the use of polygenic embryo screening.
Collapse
Affiliation(s)
- Todd Lencz
- Divison of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY, USA; Department of Psychiatry, Division of Research, The Zucker Hillside Hospital Division of Northwell Health, Glen Oaks, NY, USA; Institute for Behavioral Science, The Feinstein Institutes for Medical Research, Manhasset, NY, USA.
| | - Maya Sabatello
- Division of Ethics, Department of Medical Humanities and Ethics, Columbia University, New York, NY, USA
| | - Anna Docherty
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Roseann E Peterson
- Virginia Institute for Psychiatric and Behavioral Genetics, Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA
| | - Takahiro Soda
- Department of Psychiatry, University of Florida College of Medicine, Gainesville, FL, USA
| | - Jehannine Austin
- Departments of Psychiatry and Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Laura Bierut
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
| | | | - David Curtis
- UCL Genetics Institute, University College London, London, United Kingdom
| | - Franziska Degenhardt
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Duisburg, Germany
| | - Laura Huckins
- Departments of Psychiatry and Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Manuel Mattheisen
- Department of Psychiatry, Dalhousie Medical School, Halifax, NS, Canada
| | - Bettina Meiser
- Prince of Wales Clinical School, University of New South Wales, NSW, Australia
| | - Holly Peay
- Genomics, Bioinformatics, and Translational Research Center, RTI International, Raleigh, NC, USA
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Consuelo Walss-Bass
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Lea K Davis
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
29
|
Huckins LM, Signer R, Johnson J, Wu YK, Mitchell KS, Bulik CM. What next for eating disorder genetics? Replacing myths with facts to sharpen our understanding. Mol Psychiatry 2022; 27:3929-3938. [PMID: 35595976 PMCID: PMC9718676 DOI: 10.1038/s41380-022-01601-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/20/2022] [Accepted: 04/26/2022] [Indexed: 02/07/2023]
Abstract
Substantial progress has been made in the understanding of anorexia nervosa (AN) and eating disorder (ED) genetics through the efforts of large-scale collaborative consortia, yielding the first genome-wide significant loci, AN-associated genes, and insights into metabo-psychiatric underpinnings of the disorders. However, the translatability, generalizability, and reach of these insights are hampered by an overly narrow focus in our research. In particular, stereotypes, myths, assumptions and misconceptions have resulted in incomplete or incorrect understandings of ED presentations and trajectories, and exclusion of certain patient groups from our studies. In this review, we aim to counteract these historical imbalances. Taking as our starting point the Academy for Eating Disorders (AED) Truth #5 "Eating disorders affect people of all genders, ages, races, ethnicities, body shapes and weights, sexual orientations, and socioeconomic statuses", we discuss what we do and do not know about the genetic underpinnings of EDs among people in each of these groups, and suggest strategies to design more inclusive studies. In the second half of our review, we outline broad strategic goals whereby ED researchers can expand the diversity, insights, and clinical translatability of their studies.
Collapse
Affiliation(s)
- Laura M Huckins
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Mental Illness Research, Education and Clinical Centers, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY, 14068, USA
| | - Rebecca Signer
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jessica Johnson
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ya-Ke Wu
- School of Nursing, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Karen S Mitchell
- National Center for PTSD at VA Boston Healthcare System, Boston, MA, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Cynthia M Bulik
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
30
|
The Australian Genetics of Depression Study: New Risk Loci and Dissecting Heterogeneity Between Subtypes. Biol Psychiatry 2022; 92:227-235. [PMID: 34924174 DOI: 10.1016/j.biopsych.2021.10.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 09/21/2021] [Accepted: 10/24/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Major depressive disorder (MDD) is a common and highly heterogeneous psychiatric disorder, but little is known about the genetic characterization of this heterogeneity. Understanding the genetic etiology of MDD can be challenging because large sample sizes are needed for gene discovery-often achieved with a trade-off in the depth of phenotyping. METHODS The Australian Genetics of Depression Study is the largest stand-alone depression cohort with both genetic data and in-depth phenotyping and comprises a total of 15,792 participants of European ancestry, 92% of whom met diagnostic criteria for MDD. We leveraged the unique nature of this cohort to conduct a meta-analysis with the largest publicly available depression genome-wide association study to date and subsequently used polygenic scores to investigate genetic heterogeneity across various clinical subtypes of MDD. RESULTS We increased the number of known genome-wide significant variants associated with depression from 103 to 126 and found evidence of association of novel genes implicated in neuronal development. We found that a polygenic score for depression explained 5.7% of variance in MDD liability in our sample. Finally, we found strong support for genetic heterogeneity in depression with differential associations of multiple psychiatric and comorbid traits with age of onset, longitudinal course, and various subtypes of MDD. CONCLUSIONS Until now, this degree of detailed phenotyping in such a large sample of MDD cases has not been possible. Along with the discovery of novel loci, we provide support for differential pathways to illness models that recognize the overlap with other common psychiatric disorders as well as pathophysiological differences.
Collapse
|
31
|
Hartmann A, Atkinson-Clement C, Depienne C, Black K. Tourette syndrome research highlights from 2020. F1000Res 2022; 11:45. [PMID: 35464046 PMCID: PMC9021667 DOI: 10.12688/f1000research.75628.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/28/2022] [Indexed: 11/20/2022] Open
Abstract
We present here research from 2020 relevant to Tourette syndrome (TS). The authors briefly summarize a few reports they consider most important or interesting.
Collapse
Affiliation(s)
- Andreas Hartmann
- Department of Neurology, Hôpital de la Pitié-Salpêtrière, Paris, 75013, France
| | | | - Christel Depienne
- Institute of Human Genetics,, University Hospital Essen, Essen, 45122, Germany
| | - Kevin Black
- Department of Psychiatry, Neurology, and Radiology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| |
Collapse
|
32
|
Wendt FR, Pathak GA, Levey DF, Nuñez YZ, Overstreet C, Tyrrell C, Adhikari K, De Angelis F, Tylee DS, Goswami A, Krystal JH, Abdallah CG, Stein MB, Kranzler HR, Gelernter J, Polimanti R. Sex-stratified gene-by-environment genome-wide interaction study of trauma, posttraumatic-stress, and suicidality. Neurobiol Stress 2021; 14:100309. [PMID: 33665242 PMCID: PMC7905234 DOI: 10.1016/j.ynstr.2021.100309] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/20/2021] [Accepted: 02/10/2021] [Indexed: 12/27/2022] Open
Abstract
Epidemiologic studies recognize that trauma and posttraumatic stress are associated with heightened suicidal behavior severity, yet examination of these associations from a genetic perspective is limited. We performed a multivariate gene-by-environment genome-wide interaction study (GEWIS) of suicidality in 123,633 individuals using a covariance matrix based on 26 environments related to traumatic experiences, posttraumatic stress, social support, and socioeconomic status. We discovered five suicidality risk loci, including the male-associated rs2367967 (CWC22), which replicated in an independent cohort. All GEWIS-significant loci exhibited interaction effects where at least 5% of the sample had environmental profiles conferring opposite SNP effects from the majority. We identified PTSD as a primary driving environment for GxE at suicidality risk loci. The male suicidality GEWIS was enriched for three middle-temporal-gyrus inhibitory neuron transcriptomic profiles: SCUBE- and PVALB-expressing cells (β = 0.028, p = 3.74 × 10-4), OPRM1-expressing cells (β = 0.030, p = 0.001), and SPAG17-expressing cells (β = 0.029, p = 9.80 × 10-4). Combined with gene-based analyses (CNTN5 p association = 2.38 × 10-9, p interaction = 1.51 × 10-3; PSMD14 p association = 2.04 × 10-7, p interaction = 7.76 × 10-6; HEPACAM p association = 2.43 × 10-6, p interaction = 3.82 × 10-7) including information about brain chromatin interaction profiles (UBE2E3 in male neuron p = 1.07 × 10-5), our GEWIS points to extracellular matrix biology and synaptic plasticity as biological interactors with the effects of potentially modifiable lifetime traumatic experiences on genetic risk for suicidality. Characterization of molecular basis for the effects of traumatic experience and posttraumatic stress on risk of suicidal behaviors may help to identify novel targets for which more effective treatments can be developed for use in high-risk populations.
Collapse
Affiliation(s)
- Frank R. Wendt
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06510, USA
- VA CT Healthcare System, West Haven, CT, 06520, USA
| | - Gita A. Pathak
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06510, USA
- VA CT Healthcare System, West Haven, CT, 06520, USA
| | - Daniel F. Levey
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06510, USA
- VA CT Healthcare System, West Haven, CT, 06520, USA
| | - Yaira Z. Nuñez
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06510, USA
- VA CT Healthcare System, West Haven, CT, 06520, USA
| | - Cassie Overstreet
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06510, USA
- VA CT Healthcare System, West Haven, CT, 06520, USA
- National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, West Haven CT, 06520, USA
| | - Chelsea Tyrrell
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06510, USA
- VA CT Healthcare System, West Haven, CT, 06520, USA
| | - Keyrun Adhikari
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06510, USA
- VA CT Healthcare System, West Haven, CT, 06520, USA
| | - Flavio De Angelis
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06510, USA
- VA CT Healthcare System, West Haven, CT, 06520, USA
| | - Daniel S. Tylee
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06510, USA
- VA CT Healthcare System, West Haven, CT, 06520, USA
| | - Aranyak Goswami
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06510, USA
- VA CT Healthcare System, West Haven, CT, 06520, USA
| | - John H. Krystal
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Chadi G. Abdallah
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06510, USA
- VA CT Healthcare System, West Haven, CT, 06520, USA
| | - Murray B. Stein
- Psychiatry Service, VA San Diego Healthcare System, San Diego, CA, USA
- Departments of Psychiatry and Family Medicine & Public Health, University of California San Diego, La Jolla, CA, USA
| | - Henry R. Kranzler
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104, USA
| | - Joel Gelernter
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06510, USA
- VA CT Healthcare System, West Haven, CT, 06520, USA
- Departments of Genetics and Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Renato Polimanti
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06510, USA
- VA CT Healthcare System, West Haven, CT, 06520, USA
| |
Collapse
|