1
|
Jagadeesan R, Grahn JA. In sync with oneself: spontaneous intrapersonal coordination and the effect of cognitive load. Front Hum Neurosci 2025; 19:1457007. [PMID: 40196445 PMCID: PMC11973373 DOI: 10.3389/fnhum.2025.1457007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 03/10/2025] [Indexed: 04/09/2025] Open
Abstract
Spontaneous intrapersonal coordination is the unintentional coordination of periodic behaviors within an individual. Spontaneous interlimb coordination involving finger-, arm-, foot-, leg- and orofacial muscle movements may be weaker between finger-tapping and walking than between finger-tapping and vocalizing. This could be due to the additional attentional cost of walking, which may be more complex than other periodic movements. Here we compared the coordination stability of simultaneous finger-tapping and walking against simultaneous finger-tapping and repetitive vocalization. We also tested the coordination stability of tapping-walking and tapping-vocalizing under additional cognitive load imposed through concurrent cognitive tasks. Two experiments conceptually replicated spontaneous intrapersonal coordination between the pairs of periodic tasks as well as the effect of concurrent cognitive tasks on coordination stability. To assess coordination, we compared the phase coherence of two periodic tasks, tapping with walking (Experiment 1) or tapping with vocalization (Experiment 2), when produced separately (single task) versus simultaneously (dual task). In the first experiment, participants regularly tapped a microphone while walking, either with no concurrent cognitive task or with concurrent backward counting. In the second experiment, participants tapped while repeating the word "tick," again either with no concurrent cognitive task, or with concurrent visual pattern-matching. Higher spontaneous intrapersonal coordination was evident between periodic tasks when performed simultaneously compared to separately, and lower task coordination stability was evident with a concurrent cognitive task compared to without. These results were in line with past findings. Coordination stability between tapping and walking was lower than that between tapping and ticking overall. This finding supports the categorization of walking as a more complex cognitive task compared to other periodic tasks, as the additional attentional load involved in walking could have resulted in lower coordination stability between tapping and walking. Spontaneous intrapersonal coordination appears sensitive to the attentional costs of performing periodic activities and achieving / maintaining coordination between them.
Collapse
Affiliation(s)
| | - Jessica A. Grahn
- Department of Psychology, Western University, London, ON, Canada
- Western Centre for Brain and Mind, Western University, London, ON, Canada
| |
Collapse
|
2
|
Zhang L, Wu X, Lin H, Zhang M, Liu Y. Experimental study on the synchronization mechanism and trigger characteristic density of vertical evacuation in crowds. Sci Rep 2024; 14:26182. [PMID: 39478179 PMCID: PMC11526112 DOI: 10.1038/s41598-024-77726-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 10/24/2024] [Indexed: 11/02/2024] Open
Abstract
Due to simultaneous horizontal and vertical displacement during vertical evacuation, the consequences of stampede congestion accidents can be more severe. Generally, pedestrians trigger a synchronization mechanism at some point during the vertical evacuation process. This synchronization behavior helps prevent stampede congestion and improves evacuation efficiency. This paper designs a well-controlled single-file vertical evacuation experiment. After the experiment, the video footage is imported into the TRACKER system to extract the coordinates of pedestrian step movements, after which the experimental data undergo calculations and visual analysis. The research findings indicate the following: Firstly, when the crowd coordinates trigger the synchronization mechanism, this behavior remains stable as long as pedestrian speed and direction are unchanged; Secondly, the variation in footstep speed over time is not directly related to the footstep synchronization rate of the crowd; Lastly, this study calculated the characteristic density value most likely to trigger the synchronization mechanism during vertical evacuation. This research deepens our understanding of crowd dynamics, reveals the characteristics of pedestrian movement during vertical evacuation, and proposes evacuation guidance strategies based on these features.
Collapse
Affiliation(s)
- Longmei Zhang
- College of Engineering , Sichuan Normal University , 610101, Chengdu Sichuan, China
| | - Xin Wu
- College of Engineering , Sichuan Normal University , 610101, Chengdu Sichuan, China.
- Ministry of Education Key Lab of land Resources Evaluation and Monitoring in Southwest, Sichuan Normal University, Chengdu Sichuan, 610068, China.
| | - Huali Lin
- College of Engineering , Sichuan Normal University , 610101, Chengdu Sichuan, China
| | - Man Zhang
- College of Engineering , Sichuan Normal University , 610101, Chengdu Sichuan, China
| | - Yonghong Liu
- College of Engineering , Sichuan Normal University , 610101, Chengdu Sichuan, China
| |
Collapse
|
3
|
Beuria J, Behera L. Non-local interaction in discrete Ricci curvature-induced biological aggregation. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240794. [PMID: 39233719 PMCID: PMC11371432 DOI: 10.1098/rsos.240794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 09/06/2024]
Abstract
We investigate the collective dynamics of multi-agent systems in two- and three-dimensional environments generated by minimizing discrete Ricci curvature with local and non-local interaction neighbourhoods. We find that even a single effective topological neighbour suffices for significant order in a system with non-local topological interactions. We also explore topological information flow patterns and clustering dynamics using Hodge spectral entropy and mean Forman-Ricci curvature.
Collapse
Affiliation(s)
- Jyotiranjan Beuria
- IKSMHA Center, IIT Mandi, Mandi, India
- IKS Research Center, ISS Delhi, Delhi, India
| | - Laxmidhar Behera
- IKSMHA Center, IIT Mandi, Mandi, India
- Department of Electrical Engineering, IIT Kanpur, Kanpur, India
| |
Collapse
|
4
|
Senthamizhan R, Gopal R, Chandrasekar VK. Data-driven exploration of swarmalators with second-order harmonics. Phys Rev E 2024; 109:064303. [PMID: 39020985 DOI: 10.1103/physreve.109.064303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 05/02/2024] [Indexed: 07/20/2024]
Abstract
We explore the dynamics of a swarmalator population comprising second-order harmonics in phase interaction. A key observation in our study is the emergence of the active asynchronous state in swarmalators with second-order harmonics, mirroring findings in the one-dimensional analog of the model, accompanied by the formation of clustered states. Particularly, we observe a transition from the static asynchronous state to the active phase wave state via the active asynchronous state. We have successfully delineated and quantified the stability boundary of the active asynchronous state through a completely data-driven method. This was achieved by utilizing the enhanced image processing capabilities of convolutional neural networks, specifically, the U-Net architecture. Complementing this data-driven analysis, our study also incorporates an analytical stability of the clustered states, providing a multifaceted perspective on the system's behavior. Our investigation not only sheds light on the nuanced behavior of swarmalators under second-order harmonics, but also demonstrates the efficacy of convolutional neural networks in analyzing complex dynamical systems.
Collapse
Affiliation(s)
| | - R Gopal
- Department of Physics, Centre for Nonlinear Science and Engineering, School of Electrical and Electronics Engineering, SASTRA Deemed University, Thanjavur 613 401, India
| | | |
Collapse
|
5
|
Tomaru T, Nishiyama Y, Feliciani C, Murakami H. Robust spatial self-organization in crowds of asynchronous pedestrians. J R Soc Interface 2024; 21:20240112. [PMID: 38807528 PMCID: PMC11338568 DOI: 10.1098/rsif.2024.0112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 05/30/2024] Open
Abstract
Human crowds display various self-organized collective behaviours, such as the spontaneous formation of unidirectional lanes in bidirectional pedestrian flows. In addition, parts of pedestrians' footsteps are known to be spontaneously synchronized in one-dimensional, single-file crowds. However, footstep synchronization in crowds with more freedom of movement remains unclear. We conducted experiments on bidirectional pedestrian flows (24 pedestrians in each group) and examined the relationship between collective footsteps and self-organized lane formation. Unlike in previous studies, pedestrians did not spontaneously synchronize their footsteps unless following external auditory cues. Moreover, footstep synchronization generated by external cues disturbed the flexibility of pedestrians' lateral movements and increased the structural instability of spatial organization. These results imply that, without external cues, pedestrians marching out of step with each other can efficiently self-organize into robust structures. Understanding how asynchronous individuals contribute to ordered collective behaviour might bring innovative perspectives to research fields concerned with self-organizing systems.
Collapse
Affiliation(s)
- Takenori Tomaru
- Faculty of Information and Human Science, Kyoto Institute of Technology, Kyoto, Japan
| | - Yuta Nishiyama
- Information and Management Systems Engineering, Nagaoka University of Technology, Niigata, Japan
| | - Claudio Feliciani
- Department of Aeronautics and Astronautics, School of Engineering, The University of Tokyo, Tokyo, Japan
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Hisashi Murakami
- Faculty of Information and Human Science, Kyoto Institute of Technology, Kyoto, Japan
| |
Collapse
|
6
|
Tamburro G, Fiedler P, De Fano A, Raeisi K, Khazaei M, Vaquero L, Bruña R, Oppermann H, Bertollo M, Filho E, Zappasodi F, Comani S. An ecological study protocol for the multimodal investigation of the neurophysiological underpinnings of dyadic joint action. Front Hum Neurosci 2023; 17:1305331. [PMID: 38125713 PMCID: PMC10730734 DOI: 10.3389/fnhum.2023.1305331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 11/15/2023] [Indexed: 12/23/2023] Open
Abstract
A novel multimodal experimental setup and dyadic study protocol were designed to investigate the neurophysiological underpinnings of joint action through the synchronous acquisition of EEG, ECG, EMG, respiration and kinematic data from two individuals engaged in ecologic and naturalistic cooperative and competitive joint actions involving face-to-face real-time and real-space coordinated full body movements. Such studies are still missing because of difficulties encountered in recording reliable neurophysiological signals during gross body movements, in synchronizing multiple devices, and in defining suitable study protocols. The multimodal experimental setup includes the synchronous recording of EEG, ECG, EMG, respiration and kinematic signals of both individuals via two EEG amplifiers and a motion capture system that are synchronized via a single-board microcomputer and custom Python scripts. EEG is recorded using new dry sports electrode caps. The novel study protocol is designed to best exploit the multimodal data acquisitions. Table tennis is the dyadic motor task: it allows naturalistic and face-to-face interpersonal interactions, free in-time and in-space full body movement coordination, cooperative and competitive joint actions, and two task difficulty levels to mimic changing external conditions. Recording conditions-including minimum table tennis rally duration, sampling rate of kinematic data, total duration of neurophysiological recordings-were defined according to the requirements of a multilevel analytical approach including a neural level (hyperbrain functional connectivity, Graph Theoretical measures and Microstate analysis), a cognitive-behavioral level (integrated analysis of neural and kinematic data), and a social level (extending Network Physiology to neurophysiological data recorded from two interacting individuals). Four practical tests for table tennis skills were defined to select the study population, permitting to skill-match the dyad members and to form two groups of higher and lower skilled dyads to explore the influence of skill level on joint action performance. Psychometric instruments are included to assess personality traits and support interpretation of results. Studying joint action with our proposed protocol can advance the understanding of the neurophysiological mechanisms sustaining daily life joint actions and could help defining systems to predict cooperative or competitive behaviors before being overtly expressed, particularly useful in real-life contexts where social behavior is a main feature.
Collapse
Affiliation(s)
- Gabriella Tamburro
- Department of Neuroscience Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti–Pescara, Chieti, Italy
- Behavioral Imaging and Neural Dynamics Center, University “G. d’Annunzio” of Chieti–Pescara, Chieti, Italy
| | - Patrique Fiedler
- Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, Ilmenau, Germany
| | - Antonio De Fano
- Department of Neuroscience Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti–Pescara, Chieti, Italy
- Behavioral Imaging and Neural Dynamics Center, University “G. d’Annunzio” of Chieti–Pescara, Chieti, Italy
| | - Khadijeh Raeisi
- Department of Neuroscience Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti–Pescara, Chieti, Italy
| | - Mohammad Khazaei
- Department of Neuroscience Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti–Pescara, Chieti, Italy
| | - Lucia Vaquero
- Center for Cognitive and Computational Neuroscience, Universidad Complutense de Madrid, Madrid, Spain
- Department of Experimental Pschology, Cognitive Processes and Speech Therapy, Universidad Complutense de Madrid, Madrid, Spain
| | - Ricardo Bruña
- Center for Cognitive and Computational Neuroscience, Universidad Complutense de Madrid, Madrid, Spain
- Department of Radiology, Universidad Complutense de Madrid, IdISSC, Madrid, Spain
| | - Hannes Oppermann
- Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, Ilmenau, Germany
| | - Maurizio Bertollo
- Behavioral Imaging and Neural Dynamics Center, University “G. d’Annunzio” of Chieti–Pescara, Chieti, Italy
- Department of Medicine and Sciences of Aging, “University G. d’Annunzio” of Chieti–Pescara, Chieti, Italy
| | - Edson Filho
- Wheelock College of Education and Human Development, Boston University, Boston, MA, United States
| | - Filippo Zappasodi
- Department of Neuroscience Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti–Pescara, Chieti, Italy
- Behavioral Imaging and Neural Dynamics Center, University “G. d’Annunzio” of Chieti–Pescara, Chieti, Italy
| | - Silvia Comani
- Department of Neuroscience Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti–Pescara, Chieti, Italy
- Behavioral Imaging and Neural Dynamics Center, University “G. d’Annunzio” of Chieti–Pescara, Chieti, Italy
| |
Collapse
|
7
|
Sar GK, O'Keeffe K, Ghosh D. Swarmalators on a ring with uncorrelated pinning. CHAOS (WOODBURY, N.Y.) 2023; 33:111103. [PMID: 37938924 DOI: 10.1063/5.0177024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 10/10/2023] [Indexed: 11/10/2023]
Abstract
We present a case study of swarmalators (mobile oscillators) that move on a 1D ring and are subject to pinning. Previous work considered the special case where the pinning in space and the pinning in the phase dimension were correlated. Here, we study the general case where the space and phase pinning are uncorrelated, both being chosen uniformly at random. This induces several new effects, such as pinned async, mixed states, and a first-order phase transition. These phenomena may be found in real world swarmalators, such as systems of vinegar eels, Janus matchsticks, electrorotated Quincke rollers, or Japanese tree frogs.
Collapse
Affiliation(s)
- Gourab Kumar Sar
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
| | - Kevin O'Keeffe
- Senseable City Lab, Massachusetts Institute of Technology, Cambridge Massachusetts 02139, USA
| | - Dibakar Ghosh
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
| |
Collapse
|
8
|
Wang C, Shen L, Weng W. Modelling physical contacts to evaluate the individual risk in a dense crowd. Sci Rep 2023; 13:3929. [PMID: 36894613 PMCID: PMC9995744 DOI: 10.1038/s41598-023-31148-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
Tumble and stampede in a dense crowd may be caused by irrational behaviours of individuals and always troubles the safety management of crowd activities. Risk evaluation based on pedestrian dynamical models can be regarded as an effective method of preventing crowd disasters. Here, a method depending on a combination of collision impulses and pushing forces was used to model the physical contacts between individuals in a dense crowd, by which the acceleration error during physical contacts caused by a traditional dynamical equation can be avoided. The human domino effect in a dense crowd could be successfully reproduced, and the crushing and trampling risk of a microscopic individual in a crowd could be quantitatively evaluated separately. This method provides a more reliable and integral data foundation for evaluating individual risk that shows better portability and repeatability than macroscopic crowd risk evaluation methods and will also be conducive to preventing crowd disasters.
Collapse
Affiliation(s)
- Chongyang Wang
- Department of Engineering Physics, Institute of Public Safety Research, Tsinghua University, Beijing, China.,Beijing Key Laboratory of City Integrated Emergency Response Science, Tsinghua University, Beijing, China.,China Petrochemical Corporation, Beijing, China
| | - Liangchang Shen
- Department of Engineering Physics, Institute of Public Safety Research, Tsinghua University, Beijing, China.,Beijing Key Laboratory of City Integrated Emergency Response Science, Tsinghua University, Beijing, China
| | - Wenguo Weng
- Department of Engineering Physics, Institute of Public Safety Research, Tsinghua University, Beijing, China. .,Beijing Key Laboratory of City Integrated Emergency Response Science, Tsinghua University, Beijing, China.
| |
Collapse
|
9
|
Spontaneous gait phase synchronization of human to a wheeled mobile robot with replicating gait-induced upper body oscillating motion. Sci Rep 2022; 12:16275. [PMID: 36175591 PMCID: PMC9523056 DOI: 10.1038/s41598-022-20481-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 09/13/2022] [Indexed: 11/08/2022] Open
Abstract
Synchronization between humans is often observed in our daily lives, for example in breathing, in hand clapping in crowds, and in walking. It has been reported that pedestrian gait synchronization maximizes walking flow efficiency. As increasingly more mobile robots are being developed for practical use, it is important to consider how robots may impact pedestrian flows. While there is research on synchronization phenomena between humans and robots, gait synchronization between humans and robots has yet to be studied, particularly synchronization occurring with wheeled humanoid robots while moving. In this paper, we investigated the gait phase synchronization between humans and a wheeled mobile humanoid robot, which moved its upper body in three distinct types of motion patterns: (1) no-motion, (2) arm-swinging (as is common for typical mobile humanoids), and (3) arms-swinging in addition to periodic vertical-oscillation similar to the human upper body movement while walking. Rayleigh test was performed on the distribution of the obtained gait phase differences under each condition and a significant distributional bias was confirmed when participants were walking with the robot that performed both arm-swinging and vertical-oscillation of the upper body. These results suggest that humans can spontaneously synchronize their gaits with wheeled robots that utilize upper body oscillating. These findings can be important for the design of robot-integrated urban transportation systems, such as train stations and airports, where both humans and robots are mobile and a highly efficient flow is required.
Collapse
|
10
|
Hou H, Wang L. Measuring Dynamics in Evacuation Behaviour with Deep Learning. ENTROPY 2022; 24:e24020198. [PMID: 35205493 PMCID: PMC8871226 DOI: 10.3390/e24020198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 02/04/2023]
Abstract
Bounded rationality is one crucial component in human behaviours. It plays a key role in the typical collective behaviour of evacuation, in which heterogeneous information can lead to deviations from optimal choices. In this study, we propose a framework of deep learning to extract a key dynamical parameter that drives crowd evacuation behaviour in a cellular automaton (CA) model. On simulation data sets of a replica dynamic CA model, trained deep convolution neural networks (CNNs) can accurately predict dynamics from multiple frames of images. The dynamical parameter could be regarded as a factor describing the optimality of path-choosing decisions in evacuation behaviour. In addition, it should be noted that the performance of this method is robust to incomplete images, in which the information loss caused by cutting images does not hinder the feasibility of the method. Moreover, this framework provides us with a platform to quantitatively measure the optimal strategy in evacuation, and this approach can be extended to other well-designed crowd behaviour experiments.
Collapse
Affiliation(s)
- Huaidian Hou
- The Haverford School, 450 Lancaster Avenue, Haverford, PA 19010, USA;
| | - Lingxiao Wang
- Frankfurt Institute for Advanced Studies, Ruth-Moufang-Str. 1, 60438 Frankfurt am Main, Germany
- Institute of Physics, Goethe-University Frankfurt, Max-von-Laue-Str. 1, 60438 Frankfurt am Main, Germany
- Correspondence:
| |
Collapse
|
11
|
Emergence of the London Millennium Bridge instability without synchronisation. Nat Commun 2021; 12:7223. [PMID: 34893627 PMCID: PMC8664840 DOI: 10.1038/s41467-021-27568-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 11/26/2021] [Indexed: 11/26/2022] Open
Abstract
The pedestrian-induced instability of the London Millennium Bridge is a widely used example of Kuramoto synchronisation. Yet, reviewing observational, experimental, and modelling evidence, we argue that increased coherence of pedestrians’ foot placement is a consequence of, not a cause of the instability. Instead, uncorrelated pedestrians produce positive feedback, through negative damping on average, that can initiate significant lateral bridge vibration over a wide range of natural frequencies. We present a simple general formula that quantifies this effect, and illustrate it through simulation of three mathematical models, including one with strong propensity for synchronisation. Despite subtle effects of gait strategies in determining precise instability thresholds, our results show that average negative damping is always the trigger. More broadly, we describe an alternative to Kuramoto theory for emergence of coherent oscillations in nature; collective contributions from incoherent agents need not cancel, but can provide positive feedback on average, leading to global limit-cycle motion. The pedestrian-induced oscillation of the London Millennium Bridge is considered as an example of emerging synchronisation. Belykh et al. provide an alternative mechanism for emergence of coherent oscillatory bridge dynamics where synchrony is a consequence, not the cause, of the instability.
Collapse
|