1
|
Veselic S, Muller TH, Gutierrez E, Behrens TEJ, Hunt LT, Butler JL, Kennerley SW. A cognitive map for value-guided choice in the ventromedial prefrontal cortex. Cell 2025:S0092-8674(25)00388-5. [PMID: 40262608 DOI: 10.1016/j.cell.2025.03.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 11/18/2024] [Accepted: 03/21/2025] [Indexed: 04/24/2025]
Abstract
The prefrontal cortex (PFC) is crucial for economic decision-making. However, how PFC value representations facilitate flexible decisions remains unknown. We reframe economic decision-making as a navigation process through a cognitive map of choice values. We found rhesus macaques represented choices as navigation trajectories in a value space using a grid-like code. This occurred in ventromedial PFC (vmPFC) local field potential theta frequency across two datasets. vmPFC neurons deployed the same grid-like code and encoded chosen value. However, both signals depended on theta phase: occurring on theta troughs but on separate theta cycles. Finally, we found sharp-wave ripples-a key signature of planning and flexible behavior-in vmPFC. Thus, vmPFC utilizes cognitive map-based computations to organize and compare values, suggesting an alternative architecture for economic choice in PFC.
Collapse
Affiliation(s)
- Sebastijan Veselic
- Department of Experimental Psychology, University of Oxford, Oxford OX1 3SR, UK.
| | - Timothy H Muller
- Department of Experimental Psychology, University of Oxford, Oxford OX1 3SR, UK
| | - Elena Gutierrez
- Department of Experimental Psychology, University of Oxford, Oxford OX1 3SR, UK; Institute of Neurology, Department of Clinical and Movement Neurosciences, University College London, London WC1N 3BG, UK
| | - Timothy E J Behrens
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, FMRIB, John Radcliffe Hospital, Oxford OX3 9DU, UK; Sainsbury Wellcome Centre for Neural Circuits and Behaviour College, University College London, London W1T 4JG, UK
| | - Laurence T Hunt
- Department of Experimental Psychology, University of Oxford, Oxford OX1 3SR, UK; Department of Psychiatry, University of Oxford, Oxford OX3 7JX, UK
| | - James L Butler
- Department of Experimental Psychology, University of Oxford, Oxford OX1 3SR, UK
| | - Steven W Kennerley
- Department of Experimental Psychology, University of Oxford, Oxford OX1 3SR, UK; Institute of Neurology, Department of Clinical and Movement Neurosciences, University College London, London WC1N 3BG, UK
| |
Collapse
|
2
|
Jin Y, Zheng D, Gu R, Fan Q, Dietz M, Wang C, Li X, Chen J, Hu Y, Zhou Y. Substantial Heritability Underlies Fairness Norm Adaptation Capability and its Neural Basis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411070. [PMID: 39679781 PMCID: PMC11884581 DOI: 10.1002/advs.202411070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/26/2024] [Indexed: 12/17/2024]
Abstract
The present research uncovers the shared genetic underpinnings of fairness norm adaptation capability, its neural correlates, and long-term mental health outcomes. One hundred and eighty-six twins are recruited and played as responders in the Ultimatum Game (UG) while undergoing fMRI scanning in their early adulthood (Study-1) and are measured on depressive symptoms eight years later (Study-2). With computational modeling, the process of norm adaptation is differentiated from that of fairness valuation in UG. The two processes both have moderate levels of heritability. The anterior insula has a significant phenotypic correlation, whereas the Supplementary Motor Area/Medial Frontal Gyrus (SMA/mSFG) shows both a significant phenotypic correlation and a shared genetic influence with the learning rate, an index for norm adaptation. The dopaminergic DRD2 polymorphisms correlate with both the learning rate and the SMA/mSFG encoding of prediction error, constituting of their common genetic basis. Regional gene expression analysis reveals the high expression of dopamine-related genes in the SMA/mSFG. Moreover, the learning rate can predict depressive symptom severity eight years later, with the DRD2 polymorphisms constituting their shared genetic basis. This suggests that heritability is a non-negligible driving force behind norm adaptation, which facilitates the learning of social norms in changing environments and preserves long-term mental health.
Collapse
Affiliation(s)
- Yuening Jin
- CAS Key Laboratory of Behavioral ScienceInstitute of PsychologyChinese Academy of SciencesBeijing100101China
- Department of PsychologyUniversity of Chinese Academy of SciencesBeijing100049China
| | - Dang Zheng
- CAS Key Laboratory of Behavioral ScienceInstitute of PsychologyChinese Academy of SciencesBeijing100101China
- Department of Early Childhood EducationChina National Children's CenterBeijing100035China
| | - Ruolei Gu
- CAS Key Laboratory of Behavioral ScienceInstitute of PsychologyChinese Academy of SciencesBeijing100101China
- Department of PsychologyUniversity of Chinese Academy of SciencesBeijing100049China
| | - Qingchen Fan
- CAS Key Laboratory of Behavioral ScienceInstitute of PsychologyChinese Academy of SciencesBeijing100101China
- Department of PsychologyUniversity of Chinese Academy of SciencesBeijing100049China
| | - Martin Dietz
- Center of Functionally Integrative NeuroscienceInstitute of Clinical MedicineAarhus UniversityUniversitetsbyen 3Aarhus8000Denmark
| | - Changshuo Wang
- CAS Key Laboratory of Behavioral ScienceInstitute of PsychologyChinese Academy of SciencesBeijing100101China
- Sino‐Danish CenterUniversity of Chinese Academy of SciencesBeijing100049China
- Brainnetome CenterInstitute of AutomationChinese Academy of SciencesBeijing100190China
| | - Xinying Li
- Department of PsychologyUniversity of Chinese Academy of SciencesBeijing100049China
- CAS Key Laboratory of Mental HealthInstitute of PsychologyChinese Academy of SciencesBeijing100101China
| | - Jie Chen
- Department of PsychologyUniversity of Chinese Academy of SciencesBeijing100049China
- CAS Key Laboratory of Mental HealthInstitute of PsychologyChinese Academy of SciencesBeijing100101China
| | - Yuanyuan Hu
- CAS Key Laboratory of Behavioral ScienceInstitute of PsychologyChinese Academy of SciencesBeijing100101China
- Department of PsychologyUniversity of Chinese Academy of SciencesBeijing100049China
| | - Yuan Zhou
- CAS Key Laboratory of Behavioral ScienceInstitute of PsychologyChinese Academy of SciencesBeijing100101China
- Department of PsychologyUniversity of Chinese Academy of SciencesBeijing100049China
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental DisordersBeijing Anding HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
3
|
Ilan Y. Free Will as Defined by the Constrained Disorder Principle: a Restricted, Mandatory, Personalized, Regulated Process for Decision-Making. Integr Psychol Behav Sci 2024; 58:1843-1875. [PMID: 38900370 PMCID: PMC11638301 DOI: 10.1007/s12124-024-09853-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2024] [Indexed: 06/21/2024]
Abstract
The concept of free will has challenged physicists, biologists, philosophers, and other professionals for decades. The constrained disorder principle (CDP) is a fundamental law that defines systems according to their inherent variability. It provides mechanisms for adapting to dynamic environments. This work examines the CDP's perspective of free will concerning various free will theories. Per the CDP, systems lack intentions, and the "freedom" to select and act is built into their design. The "freedom" is embedded within the response range determined by the boundaries of the systems' variability. This built-in and self-generating mechanism enables systems to cope with perturbations. According to the CDP, neither dualism nor an unknown metaphysical apparatus dictates choices. Brain variability facilitates cognitive adaptation to complex, unpredictable situations across various environments. Human behaviors and decisions reflect an underlying physical variability in the brain and other organs for dealing with unpredictable noises. Choices are not predetermined but reflect the ongoing adaptation processes to dynamic prssu½res. Malfunctions and disease states are characterized by inappropriate variability, reflecting an inability to respond adequately to perturbations. Incorporating CDP-based interventions can overcome malfunctions and disease states and improve decision processes. CDP-based second-generation artificial intelligence platforms improve interventions and are being evaluated to augment personal development, wellness, and health.
Collapse
Affiliation(s)
- Yaron Ilan
- Faculty of Medicine, Hebrew University and Department of Medicine, Hadassah Medical Center, Jerusalem, Israel.
| |
Collapse
|
4
|
Hoy CW, de Hemptinne C, Wang SS, Harmer CJ, Apps MAJ, Husain M, Starr PA, Little S. Beta and theta oscillations track effort and previous reward in the human basal ganglia and prefrontal cortex during decision making. Proc Natl Acad Sci U S A 2024; 121:e2322869121. [PMID: 39047043 PMCID: PMC11295073 DOI: 10.1073/pnas.2322869121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 06/18/2024] [Indexed: 07/27/2024] Open
Abstract
Choosing whether to exert effort to obtain rewards is fundamental to human motivated behavior. However, the neural dynamics underlying the evaluation of reward and effort in humans is poorly understood. Here, we report an exploratory investigation into this with chronic intracranial recordings from the prefrontal cortex (PFC) and basal ganglia (BG; subthalamic nuclei and globus pallidus) in people with Parkinson's disease performing a decision-making task with offers that varied in levels of reward and physical effort required. This revealed dissociable neural signatures of reward and effort, with BG beta (12 to 20 Hz) oscillations tracking effort on a single-trial basis and PFC theta (4 to 7 Hz) signaling previous trial reward, with no effects of net subjective value. Stimulation of PFC increased overall acceptance of offers and sensitivity to reward while decreasing the impact of effort on choices. This work uncovers oscillatory mechanisms that guide fundamental decisions to exert effort for reward across BG and PFC, supports a causal role of PFC for such choices, and seeds hypotheses for future studies.
Collapse
Affiliation(s)
- Colin W. Hoy
- Department of Neurology, University of California, San Francisco, CA94143
| | - Coralie de Hemptinne
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL32608
- Department of Neurology, University of Florida, Gainesville, FL32608
| | - Sarah S. Wang
- Department of Neurology, University of California, San Francisco, CA94143
| | - Catherine J. Harmer
- Department of Psychiatry, University of Oxford, OxfordOX3 7JX, United Kingdom
| | - Matthew A. J. Apps
- Department of Experimental Psychology, University of Oxford, OxfordOX2 6GG, United Kingdom
- Institute for Mental Health, School of Psychology, University of Birmingham, Birmingham UKB15 2TT, United Kingdom
- Centre for Human Brain Health, School of Psychology, University of Birmingham, BirminghamB15 2TT, United Kingdom
| | - Masud Husain
- Department of Experimental Psychology, University of Oxford, OxfordOX2 6GG, United Kingdom
- Nuffield Department of Clinical Neurosciences, University of Oxford, OxfordOX3 9DU, United Kingdom
| | - Philip A. Starr
- Department of Neurological Surgery, University of California, San Francisco, CA94143, United Kingdom
| | - Simon Little
- Department of Neurology, University of California, San Francisco, CA94143
| |
Collapse
|
5
|
Klaassen FH, de Voogd LD, Hulsman AM, O'Reilly JX, Klumpers F, Figner B, Roelofs K. The neurocomputational link between defensive cardiac states and approach-avoidance arbitration under threat. Commun Biol 2024; 7:576. [PMID: 38755409 PMCID: PMC11099143 DOI: 10.1038/s42003-024-06267-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 04/30/2024] [Indexed: 05/18/2024] Open
Abstract
Avoidance, a hallmark of anxiety-related psychopathology, often comes at a cost; avoiding threat may forgo the possibility of a reward. Theories predict that optimal approach-avoidance arbitration depends on threat-induced psychophysiological states, like freezing-related bradycardia. Here we used model-based fMRI analyses to investigate whether and how bradycardia states are linked to the neurocomputational underpinnings of approach-avoidance arbitration under varying reward and threat magnitudes. We show that bradycardia states are associated with increased threat-induced avoidance and more pronounced reward-threat value comparison (i.e., a stronger tendency to approach vs. avoid when expected reward outweighs threat). An amygdala-striatal-prefrontal circuit supports approach-avoidance arbitration under threat, with specific involvement of the amygdala and dorsal anterior cingulate (dACC) in integrating reward-threat value and bradycardia states. These findings highlight the role of human freezing states in value-based decision making, relevant for optimal threat coping. They point to a specific role for amygdala/dACC in state-value integration under threat.
Collapse
Affiliation(s)
- Felix H Klaassen
- Radboud University, Donders Institute for Brain, Cognition, and Behaviour, Thomas van Aquinostraat 4, 6525 GD, Nijmegen, The Netherlands.
| | - Lycia D de Voogd
- Radboud University, Donders Institute for Brain, Cognition, and Behaviour, Thomas van Aquinostraat 4, 6525 GD, Nijmegen, The Netherlands
- Radboud University, Behavioural Science Institute (BSI), Thomas van Aquinostraat 4, 6525 GD, Nijmegen, The Netherlands
- Leiden University, Institute of Psychology and Leiden Institute for Brain and Cognition (LIBC), Rapenburg 70, 2311 EZ, Leiden, The Netherlands
| | - Anneloes M Hulsman
- Radboud University, Donders Institute for Brain, Cognition, and Behaviour, Thomas van Aquinostraat 4, 6525 GD, Nijmegen, The Netherlands
- Radboud University, Behavioural Science Institute (BSI), Thomas van Aquinostraat 4, 6525 GD, Nijmegen, The Netherlands
| | - Jill X O'Reilly
- Department of Experimental Psychology, University of Oxford, Woodstock Road, OX2 6GG, Oxford, UK
| | - Floris Klumpers
- Radboud University, Donders Institute for Brain, Cognition, and Behaviour, Thomas van Aquinostraat 4, 6525 GD, Nijmegen, The Netherlands
- Radboud University, Behavioural Science Institute (BSI), Thomas van Aquinostraat 4, 6525 GD, Nijmegen, The Netherlands
| | - Bernd Figner
- Radboud University, Donders Institute for Brain, Cognition, and Behaviour, Thomas van Aquinostraat 4, 6525 GD, Nijmegen, The Netherlands
- Radboud University, Behavioural Science Institute (BSI), Thomas van Aquinostraat 4, 6525 GD, Nijmegen, The Netherlands
| | - Karin Roelofs
- Radboud University, Donders Institute for Brain, Cognition, and Behaviour, Thomas van Aquinostraat 4, 6525 GD, Nijmegen, The Netherlands.
- Radboud University, Behavioural Science Institute (BSI), Thomas van Aquinostraat 4, 6525 GD, Nijmegen, The Netherlands.
| |
Collapse
|
6
|
Aquino TG, Courellis H, Mamelak AN, Rutishauser U, O Doherty JP. Encoding of Predictive Associations in Human Prefrontal and Medial Temporal Neurons During Pavlovian Appetitive Conditioning. J Neurosci 2024; 44:e1628232024. [PMID: 38423764 PMCID: PMC11044193 DOI: 10.1523/jneurosci.1628-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/29/2024] [Accepted: 02/19/2024] [Indexed: 03/02/2024] Open
Abstract
Pavlovian conditioning is thought to involve the formation of learned associations between stimuli and values, and between stimuli and specific features of outcomes. Here, we leveraged human single neuron recordings in ventromedial prefrontal, dorsomedial frontal, hippocampus, and amygdala while patients of both sexes performed an appetitive Pavlovian conditioning task probing both stimulus-value and stimulus-stimulus associations. Ventromedial prefrontal cortex encoded predictive value along with the amygdala, and also encoded predictions about the identity of stimuli that would subsequently be presented, suggesting a role for neurons in this region in encoding predictive information beyond value. Unsigned error signals were found in dorsomedial frontal areas and hippocampus, potentially supporting learning of non-value related outcome features. Our findings implicate distinct human prefrontal and medial temporal neuronal populations in mediating predictive associations which could partially support model-based mechanisms during Pavlovian conditioning.
Collapse
Affiliation(s)
- Tomas G Aquino
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California 90048
- Computation and Neural Systems, Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - Hristos Courellis
- Biological Engineering, Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - Adam N Mamelak
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California 90048
| | - Ueli Rutishauser
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California 90048
- Computation and Neural Systems, Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - John P O Doherty
- Computation and Neural Systems, Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
- Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, California 91125
| |
Collapse
|
7
|
Man V, Cockburn J, Flouty O, Gander PE, Sawada M, Kovach CK, Kawasaki H, Oya H, Howard Iii MA, O'Doherty JP. Temporally organized representations of reward and risk in the human brain. Nat Commun 2024; 15:2162. [PMID: 38461343 PMCID: PMC10924934 DOI: 10.1038/s41467-024-46094-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 02/13/2024] [Indexed: 03/11/2024] Open
Abstract
The value and uncertainty associated with choice alternatives constitute critical features relevant for decisions. However, the manner in which reward and risk representations are temporally organized in the brain remains elusive. Here we leverage the spatiotemporal precision of intracranial electroencephalography, along with a simple card game designed to elicit the unfolding computation of a set of reward and risk variables, to uncover this temporal organization. Reward outcome representations across wide-spread regions follow a sequential order along the anteroposterior axis of the brain. In contrast, expected value can be decoded from multiple regions at the same time, and error signals in both reward and risk domains reflect a mixture of sequential and parallel encoding. We further highlight the role of the anterior insula in generalizing between reward prediction error and risk prediction error codes. Together our results emphasize the importance of neural dynamics for understanding value-based decisions under uncertainty.
Collapse
Affiliation(s)
- Vincent Man
- Division of the Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, 91125, USA.
| | - Jeffrey Cockburn
- Division of the Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Oliver Flouty
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, 33606, USA
| | - Phillip E Gander
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA
- Department of Radiology, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA
- Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Masahiro Sawada
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA
| | - Christopher K Kovach
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA
- Department of Neurosurgery, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Hiroto Kawasaki
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA
| | - Hiroyuki Oya
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA
- Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Matthew A Howard Iii
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA
- Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - John P O'Doherty
- Division of the Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, 91125, USA
- Computation and Neural Systems, California Institute of Technology, Pasadena, CA, 91125, USA
| |
Collapse
|
8
|
Le TM, Oba T, Couch L, McInerney L, Li CSR. The Neural Correlates of Individual Differences in Reinforcement Learning during Pain Avoidance and Reward Seeking. eNeuro 2024; 11:ENEURO.0437-23.2024. [PMID: 38365840 PMCID: PMC10901196 DOI: 10.1523/eneuro.0437-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/18/2024] Open
Abstract
Organisms learn to gain reward and avoid punishment through action-outcome associations. Reinforcement learning (RL) offers a critical framework to understand individual differences in this associative learning by assessing learning rate, action bias, pavlovian factor (i.e., the extent to which action values are influenced by stimulus values), and subjective impact of outcomes (i.e., motivation to seek reward and avoid punishment). Nevertheless, how these individual-level metrics are represented in the brain remains unclear. The current study leveraged fMRI in healthy humans and a probabilistic learning go/no-go task to characterize the neural correlates involved in learning to seek reward and avoid pain. Behaviorally, participants showed a higher learning rate during pain avoidance relative to reward seeking. Additionally, the subjective impact of outcomes was greater for reward trials and associated with lower response randomness. Our imaging findings showed that individual differences in learning rate and performance accuracy during avoidance learning were positively associated with activities of the dorsal anterior cingulate cortex, midcingulate cortex, and postcentral gyrus. In contrast, the pavlovian factor was represented in the precentral gyrus and superior frontal gyrus (SFG) during pain avoidance and reward seeking, respectively. Individual variation of the subjective impact of outcomes was positively predicted by activation of the left posterior cingulate cortex. Finally, action bias was represented by the supplementary motor area (SMA) and pre-SMA whereas the SFG played a role in restraining this action tendency. Together, these findings highlight for the first time the neural substrates of individual differences in the computational processes during RL.
Collapse
Affiliation(s)
- Thang M Le
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut 06519
| | - Takeyuki Oba
- Human Informatics and Interaction Research Institute, the National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8560, Japan
| | - Luke Couch
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut 06519
| | - Lauren McInerney
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut 06519
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut 06519
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06520
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, Connecticut 06520
- Wu Tsai Institute, Yale University, New Haven, Connecticut 06510
| |
Collapse
|
9
|
Palidis DJ, Fellows LK. Dorsomedial frontal cortex damage impairs error-based, but not reinforcement-based motor learning in humans. Cereb Cortex 2024; 34:bhad424. [PMID: 37955674 DOI: 10.1093/cercor/bhad424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/10/2023] [Accepted: 10/24/2023] [Indexed: 11/14/2023] Open
Abstract
We adapt our movements to new and changing environments through multiple processes. Sensory error-based learning counteracts environmental perturbations that affect the sensory consequences of movements. Sensory errors also cause the upregulation of reflexes and muscle co-contraction. Reinforcement-based learning enhances the selection of movements that produce rewarding outcomes. Although some findings have identified dissociable neural substrates of sensory error- and reinforcement-based learning, correlative methods have implicated dorsomedial frontal cortex in both. Here, we tested the causal contributions of dorsomedial frontal to adaptive motor control, studying people with chronic damage to this region. Seven human participants with focal brain lesions affecting the dorsomedial frontal and 20 controls performed a battery of arm movement tasks. Three experiments tested: (i) the upregulation of visuomotor reflexes and muscle co-contraction in response to unpredictable mechanical perturbations, (ii) sensory error-based learning in which participants learned to compensate predictively for mechanical force-field perturbations, and (iii) reinforcement-based motor learning based on binary feedback in the absence of sensory error feedback. Participants with dorsomedial frontal damage were impaired in the early stages of force field adaptation, but performed similarly to controls in all other measures. These results provide evidence for a specific and selective causal role for the dorsomedial frontal in sensory error-based learning.
Collapse
Affiliation(s)
- Dimitrios J Palidis
- Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montreal, QC H3A 2B4, Canada
| | - Lesley K Fellows
- Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montreal, QC H3A 2B4, Canada
| |
Collapse
|
10
|
Veselic S, Muller TH, Gutierrez E, Behrens TEJ, Hunt LT, Butler JL, Kennerley SW. A cognitive map for value-guided choice in ventromedial prefrontal cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.15.571895. [PMID: 38168410 PMCID: PMC10760117 DOI: 10.1101/2023.12.15.571895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The prefrontal cortex is crucial for economic decision-making and representing the value of options. However, how such representations facilitate flexible decisions remains unknown. We reframe economic decision-making in prefrontal cortex in line with representations of structure within the medial temporal lobe because such cognitive map representations are known to facilitate flexible behaviour. Specifically, we framed choice between different options as a navigation process in value space. Here we show that choices in a 2D value space defined by reward magnitude and probability were represented with a grid-like code, analogous to that found in spatial navigation. The grid-like code was present in ventromedial prefrontal cortex (vmPFC) local field potential theta frequency and the result replicated in an independent dataset. Neurons in vmPFC similarly contained a grid-like code, in addition to encoding the linear value of the chosen option. Importantly, both signals were modulated by theta frequency - occurring at theta troughs but on separate theta cycles. Furthermore, we found sharp-wave ripples - a key neural signature of planning and flexible behaviour - in vmPFC, which were modulated by accuracy and reward. These results demonstrate that multiple cognitive map-like computations are deployed in vmPFC during economic decision-making, suggesting a new framework for the implementation of choice in prefrontal cortex.
Collapse
Affiliation(s)
- Sebastijan Veselic
- Department of Experimental Psychology, University of Oxford, UK
- Clinical and Movement Neurosciences, Department of Motor Neuroscience, University College London, London, UK
| | - Timothy H Muller
- Department of Experimental Psychology, University of Oxford, UK
- Clinical and Movement Neurosciences, Department of Motor Neuroscience, University College London, London, UK
| | - Elena Gutierrez
- Department of Experimental Psychology, University of Oxford, UK
- Clinical and Movement Neurosciences, Department of Motor Neuroscience, University College London, London, UK
| | - Timothy E J Behrens
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, FMRIB, John Radcliffe Hospital, Oxford, UK
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour College, University College London, London, UK
| | - Laurence T Hunt
- Department of Experimental Psychology, University of Oxford, UK
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - James L Butler
- Department of Experimental Psychology, University of Oxford, UK
| | - Steven W Kennerley
- Department of Experimental Psychology, University of Oxford, UK
- Clinical and Movement Neurosciences, Department of Motor Neuroscience, University College London, London, UK
| |
Collapse
|
11
|
Hoy CW, de Hemptinne C, Wang SS, Harmer CJ, Apps MAJ, Husain M, Starr PA, Little S. Beta and theta oscillations track effort and previous reward in human basal ganglia and prefrontal cortex during decision making. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.05.570285. [PMID: 38106063 PMCID: PMC10723308 DOI: 10.1101/2023.12.05.570285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Choosing whether to exert effort to obtain rewards is fundamental to human motivated behavior. However, the neural dynamics underlying the evaluation of reward and effort in humans is poorly understood. Here, we investigate this with chronic intracranial recordings from prefrontal cortex (PFC) and basal ganglia (BG; subthalamic nuclei and globus pallidus) in people with Parkinson's disease performing a decision-making task with offers that varied in levels of reward and physical effort required. This revealed dissociable neural signatures of reward and effort, with BG beta (12-20 Hz) oscillations tracking subjective effort on a single trial basis and PFC theta (4-7 Hz) signaling previous trial reward. Stimulation of PFC increased overall acceptance of offers in addition to increasing the impact of reward on choices. This work uncovers oscillatory mechanisms that guide fundamental decisions to exert effort for reward across BG and PFC, as well as supporting a causal role of PFC for such choices.
Collapse
Affiliation(s)
- Colin W. Hoy
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Coralie de Hemptinne
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
- Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Sarah S. Wang
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | | | - Mathew A. J. Apps
- Department of Experimental Psychology, University of Oxford, Oxford, UK
- Institute for Mental Health, School of Psychology, University of Birmingham, Birmingham, UK
| | - Masud Husain
- Department of Experimental Psychology, University of Oxford, Oxford, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Philip A. Starr
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Simon Little
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
12
|
Liu X, Tian R, Liu H, Bai X, Lei Y. Exploring the Impact of Smartphone Addiction on Risk Decision-Making Behavior among College Students Based on fNIRS Technology. Brain Sci 2023; 13:1330. [PMID: 37759931 PMCID: PMC10526789 DOI: 10.3390/brainsci13091330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Smartphone Addiction is a social issue caused by excessive smartphone use, affecting decision-making processes. Current research on the risky decision-making abilities of smartphone addicts is limited. This study used the functional Near-Infrared Spectroscopy (fNIRS) brain imaging technique and a Sequential Risk-Taking Task experimental paradigm to investigate the decision-making behavior and brain activity of smartphone addicts under varying risk levels. Using a mixed experimental design, the research assessed decision-making ability and brain activation levels as dependent variables across two groups (addiction and control), two risk amounts (high and low), and two outcomes (gain and loss). The study included 42 participants, with 25 in the addiction group and 17 in the control group. Results indicated that risk level significantly impacted the decision-making ability of smartphone addicts, with high-risk levels leading to weaker decision-making ability and increased risk-taking. However, at low-risk levels, decision-making abilities between addicts and healthy individuals showed no significant difference. Furthermore, brain imaging results using fNIRS revealed stronger brain activation in the dorsolateral Prefrontal Cortex (dlPFC) region for smartphone addicts under loss outcome conditions, with no significant differences between the two groups in terms of brain activation at varying risk volumes. These findings are critical in promoting healthy smartphone use, guiding clinical treatment, and advancing brain mechanism research.
Collapse
Affiliation(s)
- Xiaolong Liu
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu 610066, China; (R.T.); (H.L.); (X.B.)
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Ruoyi Tian
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu 610066, China; (R.T.); (H.L.); (X.B.)
| | - Huafang Liu
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu 610066, China; (R.T.); (H.L.); (X.B.)
| | - Xue Bai
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu 610066, China; (R.T.); (H.L.); (X.B.)
| | - Yi Lei
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu 610066, China; (R.T.); (H.L.); (X.B.)
| |
Collapse
|
13
|
Mehrotra D, Dubé L. Accounting for multiscale processing in adaptive real-world decision-making via the hippocampus. Front Neurosci 2023; 17:1200842. [PMID: 37732307 PMCID: PMC10508350 DOI: 10.3389/fnins.2023.1200842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/25/2023] [Indexed: 09/22/2023] Open
Abstract
For adaptive real-time behavior in real-world contexts, the brain needs to allow past information over multiple timescales to influence current processing for making choices that create the best outcome as a person goes about making choices in their everyday life. The neuroeconomics literature on value-based decision-making has formalized such choice through reinforcement learning models for two extreme strategies. These strategies are model-free (MF), which is an automatic, stimulus-response type of action, and model-based (MB), which bases choice on cognitive representations of the world and causal inference on environment-behavior structure. The emphasis of examining the neural substrates of value-based decision making has been on the striatum and prefrontal regions, especially with regards to the "here and now" decision-making. Yet, such a dichotomy does not embrace all the dynamic complexity involved. In addition, despite robust research on the role of the hippocampus in memory and spatial learning, its contribution to value-based decision making is just starting to be explored. This paper aims to better appreciate the role of the hippocampus in decision-making and advance the successor representation (SR) as a candidate mechanism for encoding state representations in the hippocampus, separate from reward representations. To this end, we review research that relates hippocampal sequences to SR models showing that the implementation of such sequences in reinforcement learning agents improves their performance. This also enables the agents to perform multiscale temporal processing in a biologically plausible manner. Altogether, we articulate a framework to advance current striatal and prefrontal-focused decision making to better account for multiscale mechanisms underlying various real-world time-related concepts such as the self that cumulates over a person's life course.
Collapse
Affiliation(s)
- Dhruv Mehrotra
- Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Laurette Dubé
- Desautels Faculty of Management, McGill University, Montréal, QC, Canada
- McGill Center for the Convergence of Health and Economics, McGill University, Montréal, QC, Canada
| |
Collapse
|