1
|
Ospina-Jimenez AF, Gomez AP, Rincon-Monroy MA, Perez DR, Ramirez-Nieto GC. A novel reassorted swine H3N2 influenza virus demonstrates an undetected human-to-swine spillover in Latin America and highlights zoonotic risks. Virology 2025; 606:110483. [PMID: 40073501 DOI: 10.1016/j.virol.2025.110483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/27/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025]
Abstract
Influenza A virus (FLUAV) affects a wide range of hosts, including humans and animals, posing a threat to public health. In swine, H3N2 subtype is associated with human-to-swine spillovers of seasonal viruses. In Latin America, the molecular and antigenic characteristics of swine FLUAV H3N2, as well as its phylogenetic origin, are poorly understood. Therefore, the objective of this study was to characterize the first swine H3N2 detected in Colombia. The origin and lineage of the virus were estimated through phylogenetic and molecular clock analyses. Antigenic characterization was achieved by comparing the amino acid constitution of the HA with previously reported swine FLUAVs and seasonal vaccine strains using a sequence-based method. In addition to HA and NA, internal genes were also characterized. The results showed that the Colombian H3N2 corresponded to a novel phylogenetic and antigenic swine FLUAV variant that emerged due to an independent reverse zoonotic event, likely occurring in Colombia in the early 2000s. The immunodominant epitope in the virus was predominantly present in antigenic epitope A, which showed the highest amino acid variation. Some mutations that alter the N-Glycosylation of antigenic sites at the HA were detected. Internally, the virus exhibited pandemic configuration. This study provides the first evidence of a novel FLUAV in Colombia and describes its origin, variability, and persistence in geographically restricted populations, highlighting the need for strengthen molecular surveillance of the virus in animal populations.
Collapse
Affiliation(s)
- Andres F Ospina-Jimenez
- Grupo de Investigación en Microbiología y Epidemiología, Facultad de Medicina Veterinaria y de Zootecnia, Universidad Nacional de Colombia, Bogotá, 111321, Colombia.
| | - Arlen P Gomez
- Grupo de Investigación en Microbiología y Epidemiología, Facultad de Medicina Veterinaria y de Zootecnia, Universidad Nacional de Colombia, Bogotá, 111321, Colombia.
| | - Maria A Rincon-Monroy
- National Veterinary Diagnostics Laboratory, Colombian Agricultural Institute (ICA), Bogotá, 110931, Colombia
| | - Daniel R Perez
- Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | - Gloria C Ramirez-Nieto
- Grupo de Investigación en Microbiología y Epidemiología, Facultad de Medicina Veterinaria y de Zootecnia, Universidad Nacional de Colombia, Bogotá, 111321, Colombia.
| |
Collapse
|
2
|
Zou J, Jiang M, Xiao R, Sun H, Liu H, Peacock T, Tu S, Chen T, Guo J, Zhao Y, Barclay W, Xie S, Zhou H. GGCX promotes Eurasian avian-like H1N1 swine influenza virus adaption to interspecies receptor binding. Nat Commun 2025; 16:670. [PMID: 39809757 PMCID: PMC11733290 DOI: 10.1038/s41467-025-55903-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 01/03/2025] [Indexed: 01/16/2025] Open
Abstract
The Eurasian avian-like (EA) H1N1 swine influenza virus (SIV) possesses the capacity to instigate the next influenza pandemic, owing to its heightened affinity for the human-type α-2,6 sialic acid (SA) receptor. Nevertheless, the molecular mechanisms underlying the switch in receptor binding preferences of EA H1N1 SIV remain elusive. In this study, we conduct a comprehensive genome-wide CRISPR/Cas9 knockout screen utilizing EA H1N1 SIV in porcine kidney cells. Knocking out the enzyme gamma glutamyl carboxylase (GGCX) reduces virus replication in vitro and in vivo by inhibiting the carboxylation modification of viral haemagglutinin (HA) and the adhesion of progeny viruses, ultimately impeding the replication of EA H1N1 SIV. Furthermore, GGCX is revealed to be the determinant of the D225E substitution of EA H1N1 SIV, and GGCX-medicated carboxylation modification of HA 225E contributes to the receptor binding adaption of EA H1N1 SIV to the α-2,6 SA receptor. Taken together, our CRISPR screen has elucidated a novel function of GGCX in the support of EA H1N1 SIV adaption for binding to α-2,6 SA receptor. Consequently, GGCX emerges as a prospective antiviral target against the infection and transmission of EA H1N1 SIV.
Collapse
Affiliation(s)
- Jiahui Zou
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Meijun Jiang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Rong Xiao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Huimin Sun
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Hailong Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Thomas Peacock
- Department of Infectious Disease, Imperial College London, London, United Kingdom
- The Pirbright Institute, Pirbright, Woking, United Kingdom
| | - Shaoyu Tu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Tong Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Jinli Guo
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Yaxin Zhao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Wendy Barclay
- Department of Infectious Disease, Imperial College London, London, United Kingdom.
| | - Shengsong Xie
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China.
- Hubei Hongshan Laboratory, Wuhan, Hubei, People's Republic of China.
| | - Hongbo Zhou
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China.
- Hubei Hongshan Laboratory, Wuhan, Hubei, People's Republic of China.
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, Hubei, People's Republic of China.
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
3
|
Zhu XX, Zheng WQ, Xia ZW, Chen XR, Jin T, Ding XW, Chen FF, Chen Q, Xu JH, Kong XD, Zheng GW. Evolutionary insights into the stereoselectivity of imine reductases based on ancestral sequence reconstruction. Nat Commun 2024; 15:10330. [PMID: 39609402 PMCID: PMC11605051 DOI: 10.1038/s41467-024-54613-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 11/14/2024] [Indexed: 11/30/2024] Open
Abstract
The stereoselectivity of enzymes plays a central role in asymmetric biocatalytic reactions, but there remains a dearth of evolution-driven biochemistry studies investigating the evolutionary trajectory of this vital property. Imine reductases (IREDs) are one such enzyme that possesses excellent stereoselectivity, and stereocomplementary members are pervasive in the family. However, the regulatory mechanism behind stereocomplementarity remains cryptic. Herein, we reconstruct a panel of active ancestral IREDs and trace the evolution of stereoselectivity from ancestors to extant IREDs. Combined with coevolution analysis, we reveal six historical mutations capable of recapitulating stereoselectivity evolution. An investigation of the mechanism with X-ray crystallography shows that they collectively reshape the substrate-binding pocket to regulate stereoselectivity inversion. In addition, we construct an empirical fitness landscape and discover that epistasis is prevalent in stereoselectivity evolution. Our findings emphasize the power of ASR in circumventing the time-consuming large-scale mutagenesis library screening for identifying mutations that change functions and support a Darwinian premise from a molecular perspective that the evolution of biological functions is a stepwise process.
Collapse
Affiliation(s)
- Xin-Xin Zhu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai, China
| | - Wen-Qing Zheng
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai, China
| | - Zi-Wei Xia
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai, China
| | - Xin-Ru Chen
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai, China
| | - Tian Jin
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai, China
| | - Xu-Wei Ding
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai, China
| | - Fei-Fei Chen
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai, China
| | - Qi Chen
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai, China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai, China
| | - Xu-Dong Kong
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, China.
| | - Gao-Wei Zheng
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai, China.
| |
Collapse
|
4
|
Xiong W, Zhang Z. Influenza Virus Genomic Mutations, Host Barrier and Cross-species Transmission. Curr Genomics 2024; 26:161-174. [PMID: 40433418 PMCID: PMC12105246 DOI: 10.2174/0113892029316603240926051325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/01/2024] [Accepted: 09/06/2024] [Indexed: 05/29/2025] Open
Abstract
Influenza is a global epidemic infectious disease that causes a significant number of illnesses and deaths annually. Influenza exhibits high variability and infectivity, constantly jumping from birds to mammals. Genomic mutations of the influenza virus are a central mechanism leading to viral variation and antigenic evolution. Amino acid substitutions and avoidance of microRNA recognition elements are crucial in facilitating the virus to cross species barriers. This review summarizes the types of genomic mutations in the influenza virus, their roles and mechanisms in crossing species barriers, and analyzes the impact of these mutations on human health.
Collapse
Affiliation(s)
- Wenyan Xiong
- Inflammation & Allergic Diseases Research Unit, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Zongde Zhang
- Inflammation & Allergic Diseases Research Unit, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, 646000, China
| |
Collapse
|
5
|
Yang J, Lan R, Chang H, Li H, Yu H, Tong Q, Liu J, Sun H. Isolation and characterization of genotype 4 Eurasian avian-like H1N1 influenza virus in pigs suffering from pneumonia. Virology 2024; 592:110009. [PMID: 38330852 DOI: 10.1016/j.virol.2024.110009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/28/2023] [Accepted: 01/24/2024] [Indexed: 02/10/2024]
Abstract
Swine influenza viruses pose ongoing threat to pork industry throughout the world. In 2023, fattening pigs from a swine farm in Inner Mongolia of China experienced influenza-like symptoms. Co-infection of influenza A virus with Pasteurella multocida was diagnosed in lung tissues of diseased pigs and a genotype 4 (G4) Eurasian avian-like (EA) H1N1 virus was isolated, which was named as A/swine/Neimenggu/0326/2023. We demonstrated the virus preferentially bound human-like SAα2,6Gal receptor. It was noteworthy that the virus possessed multiple genetic markers for mammalian adaptation in the internal genes. Animal studies showed that compared with genotype 1 (G1) EA H1N1 virus and early prevalent G4 EA H1N1 virus, A/swine/Neimenggu/0326/2023 virus exhibited increased virus shedding, enhanced replication in lungs, and caused more severe lung lesions in pigs. These findings indicate that the G4 EA H1N1 virus poses increased threat to pork industry, controlling the prevailing viruses in pigs should be promptly implemented.
Collapse
Affiliation(s)
- Jizhe Yang
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Riguo Lan
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Haoyu Chang
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Han Li
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Haili Yu
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Qi Tong
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Jinhua Liu
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Honglei Sun
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
6
|
Elli S, Raffaini G, Guerrini M, Kosakovsky Pond S, Matrosovich M. Molecular modeling and phylogenetic analyses highlight the role of amino acid 347 of the N1 subtype neuraminidase in influenza virus host range and interspecies adaptation. Front Microbiol 2023; 14:1309156. [PMID: 38169695 PMCID: PMC10758481 DOI: 10.3389/fmicb.2023.1309156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024] Open
Abstract
The N1 neuraminidases (NAs) of avian and pandemic human influenza viruses contain tyrosine and asparagine, respectively, at position 347 on the rim of the catalytic site; the biological significance of this difference is not clear. Here, we used molecular dynamics simulation to model the effects of amino acid 347 on N1 NA interactions with sialyllacto-N-tetraoses 6'SLN-LC and 3'SLN-LC, which represent NA substrates in humans and birds, respectively. Our analysis predicted that Y347 plays an important role in the NA preference for the avian-type substrates. The Y347N substitution facilitates hydrolysis of human-type substrates by resolving steric conflicts of the Neu5Ac2-6Gal moiety with the bulky side chain of Y347, decreasing the free energy of substrate binding, and increasing the solvation of the Neu5Ac2-6Gal bond. Y347 was conserved in all N1 NA sequences of avian influenza viruses in the GISAID EpiFlu database with two exceptions. First, the Y347F substitution was present in the NA of a specific H6N1 poultry virus lineage and was associated with the substitutions G228S and/or E190V/L in the receptor-binding site (RBS) of the hemagglutinin (HA). Second, the highly pathogenic avian H5N1 viruses of the Gs/Gd lineage contained sporadic variants with the NA substitutions Y347H/D, which were frequently associated with substitutions in the HA RBS. The Y347N substitution occurred following the introductions of avian precursors into humans and pigs with N/D347 conserved during virus circulation in these hosts. Comparative evolutionary analysis of site 347 revealed episodic positive selection across the entire tree and negative selection within most host-specific groups of viruses, suggesting that substitutions at NA position 347 occurred during host switches and remained under pervasive purifying selection thereafter. Our results elucidate the role of amino acid 347 in NA recognition of sialoglycan substrates and emphasize the significance of substitutions at position 347 as a marker of host range and adaptive evolution of influenza viruses.
Collapse
Affiliation(s)
- Stefano Elli
- Istituto di Ricerche Chimiche e Biochimiche ‘G. Ronzoni’, Milan, Italy
| | - Giuseppina Raffaini
- Department of Chemistry, Materials, and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Milan, Italy
| | - Marco Guerrini
- Istituto di Ricerche Chimiche e Biochimiche ‘G. Ronzoni’, Milan, Italy
| | - Sergei Kosakovsky Pond
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA, United States
| | | |
Collapse
|
7
|
Nandel V, Scadden J, Baker MAB. Ion-Powered Rotary Motors: Where Did They Come from and Where They Are Going? Int J Mol Sci 2023; 24:10601. [PMID: 37445779 PMCID: PMC10341847 DOI: 10.3390/ijms241310601] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Molecular motors are found in many living organisms. One such molecular machine, the ion-powered rotary motor (IRM), requires the movement of ions across a membrane against a concentration gradient to drive rotational movement. The bacterial flagellar motor (BFM) is an example of an IRM which relies on ion movement through the stator proteins to generate the rotation of the flagella. There are many ions which can be used by the BFM stators to power motility and different ions can be used by a single bacterium expressing multiple stator variants. The use of ancestral sequence reconstruction (ASR) and functional analysis of reconstructed stators shows promise for understanding how these proteins evolved and when the divergence in ion use may have occurred. In this review, we discuss extant BFM stators and the ions that power them as well as recent examples of the use of ASR to study ion-channel selectivity and how this might be applied to further study of the BFM stator complex.
Collapse
Affiliation(s)
| | | | - Matthew A. B. Baker
- School of Biotechnology and Biomolecular Sciences (BABS), University of New South Wales, Sydney, NSW 2033, Australia; (V.N.); (J.S.)
| |
Collapse
|
8
|
Mu S, Zou X, Wang Y, Deng X, Cui D, Liu S, Cao B. The combined effect of oseltamivir and favipiravir on influenza a virus evolution in patients hospitalized with severe influenza. Antiviral Res 2023:105657. [PMID: 37369282 DOI: 10.1016/j.antiviral.2023.105657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/14/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023]
Abstract
Our previous study shows favipiravir and oseltamivir combination therapy may accelerate clinical recovery compared to oseltamivir monotherapy in severe influenza, but its effect on virological evolution and resistance mutation against oseltamivir is still unknown. In this study, we collected longitudinal respiratory samples from influenza patients who underwent combination therapy and applied them to next generation sequencing of the whole genome of the influenza A virus (IAV). We also included a cohort untreated with any antivirals to serve as the control. In total, 62 samples from 19 patients treated with combination therapy and 20 samples from 20 patients untreated were successfully sequenced. The nucleotide diversity in the whole genome of IAV in the combination group showed no difference compared to that in the control group (P > 0.05). Moreover, we observed 174 kinds of nonsynonymous nucleotide substitutions in patients with combination therapy, mostly in NA (n = 44) and HA (n = 43). Of them, the G→A transition was the dominant variant type (27%) and 46/174 (26%) was reported to have biological effects, such as increased pathogenicity and polymerase activity. Among the 29 mutations conferring reduction in oseltamivir sensitivity we investigated, H275Y was the only mutation detected in the 4 samples from 1 of 19 patients and demonstrated increasing frequency during the treatment. Mutations conferring favipiravir resistance were not observed. Our studies showed combination therapy of favipiravir and oseltamivir has little effect on virus nucleotide diversity, nor prevents the increase of oseltamivir-resistant variants.
Collapse
Affiliation(s)
- Shengrui Mu
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Capital Medical University, Beijing, China; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
| | - Xiaohui Zou
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China.
| | - Yeming Wang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
| | - Xiaoyan Deng
- Tsinghua University School of Medicine, Beijing, China
| | - Dan Cui
- Harbin Medical University, Harbin, Heilongjiang, China
| | - Shuai Liu
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China; Shandong Key Laboratory of Infectious Respiratory Disease, Jinan, Shandong, China
| | - Bin Cao
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Capital Medical University, Beijing, China; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China; Tsinghua University School of Medicine, Beijing, China; Harbin Medical University, Harbin, Heilongjiang, China.
| |
Collapse
|
9
|
Liu M, van Kuppeveld FJM, de Haan CAM, de Vries E. Gradual adaptation of animal influenza A viruses to human-type sialic acid receptors. Curr Opin Virol 2023; 60:101314. [DOI: 10.1016/j.coviro.2023.101314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/10/2023] [Accepted: 02/21/2023] [Indexed: 04/01/2023]
|
10
|
Liu M, Huang LZX, Smits AA, Büll C, Narimatsu Y, van Kuppeveld FJM, Clausen H, de Haan CAM, de Vries E. Human-type sialic acid receptors contribute to avian influenza A virus binding and entry by hetero-multivalent interactions. Nat Commun 2022; 13:4054. [PMID: 35831293 PMCID: PMC9279479 DOI: 10.1038/s41467-022-31840-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 07/06/2022] [Indexed: 11/09/2022] Open
Abstract
Establishment of zoonotic viruses, causing pandemics like the Spanish flu and Covid-19, requires adaptation to human receptors. Pandemic influenza A viruses (IAV) that crossed the avian-human species barrier switched from binding avian-type α2-3-linked sialic acid (2-3Sia) to human-type 2-6Sia receptors. Here, we show that this specificity switch is however less dichotomous as generally assumed. Binding and entry specificity were compared using mixed synthetic glycan gradients of 2-3Sia and 2-6Sia and by employing a genetically remodeled Sia repertoire on the surface of a Sia-free cell line and on a sialoglycoprotein secreted from these cells. Expression of a range of (mixed) 2-3Sia and 2-6Sia densities shows that non-binding human-type receptors efficiently enhanced avian IAV binding and entry provided the presence of a low density of high affinity avian-type receptors, and vice versa. Considering the heterogeneity of sialoglycan receptors encountered in vivo, hetero-multivalent binding is physiologically relevant and will impact evolutionary pathways leading to host adaptation. It is believed that human Influenza HA glycoprotein attaches to alpha2-6 linked sialic acids (SA) on cells, while avian viruses bind to alpha2-3 linked sialic acids, therewith contributing to host tropism. Here, Liu et al. show that mixing low-affinity alpha2-3 SA with low amounts of high-affinity alpha2-6 SA increases binding and entry of human viruses and the converse for avian virus. This shows that receptor recognition is not as strict as currently assumed and provides evidence that heteromultivalent interactions between human/avian HA and SA contributes to host adaptation.
Collapse
Affiliation(s)
- Mengying Liu
- Virology group, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Liane Z X Huang
- Virology group, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Anthony A Smits
- Virology group, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Christian Büll
- Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark.,Department of Biomolecular Chemistry, Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | - Yoshiki Narimatsu
- Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark
| | - Frank J M van Kuppeveld
- Virology group, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Henrik Clausen
- Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark
| | - Cornelis A M de Haan
- Virology group, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| | - Erik de Vries
- Virology group, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|