1
|
Liu H. Integrating 'cry for help' strategies for sustainable agriculture. TRENDS IN PLANT SCIENCE 2025:S1360-1385(25)00099-8. [PMID: 40268563 DOI: 10.1016/j.tplants.2025.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/22/2025] [Accepted: 03/26/2025] [Indexed: 04/25/2025]
Abstract
Plants recruit specific soil microbes through a sophisticated 'cry for help' strategy to mitigate environmental stresses. Recent advances highlight the potential of leveraging this mechanism to develop microbe-based approaches for enhancing crop health, but challenges remain in refining the criteria and conceptual frameworks to effectively investigate and harness these plant-microbe interactions.
Collapse
Affiliation(s)
- Hongwei Liu
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, 210095, China; Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW 2753, Australia.
| |
Collapse
|
2
|
Wang S, Tan Y, Luo Q, Fang X, Zhu H, Li S, Zhou Y, Zhu T. Temporal dynamics of walnut phyllosphere microbiota under synergistic pathogen exposure and environmental perturbation. Front Microbiol 2025; 16:1551476. [PMID: 40236487 PMCID: PMC11996876 DOI: 10.3389/fmicb.2025.1551476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 03/11/2025] [Indexed: 04/17/2025] Open
Abstract
Introduction Phyllosphere-associated microbes directly influence plant-pathogen interactions, and the external environment and the plant shape the phyllosphere microbiome. Methods In this study, we integrated 16S rRNA and ITS high-throughput sequencing to systematically investigate changes in the phyllosphere microbiome between symptomatic and asymptomatic walnut leaves affected by spot disease, with consideration of phenological stage progression. Additionally, we explored how abiotic (AT, DT, SCTCC & LPDD) and biotic factors (Pn & Gs) impact microbial communities. Results Our findings revealed significant differences in the diversity of the phyllosphere microbiome between symptomatic and asymptomatic leaves at the same phenological stage. Furthermore, the structure and function of phyllosphere-associated microbiome changed as the phenological stage progressed. Fungal taxa that related to the function Plant_Pathogen and bacterial taxa that related to the KEGG pathway functions Fatty acid biosynthesis and Biotin metabolism were increased in the symptomatic group. The keystone species driving the walnut phyllosphere microbiome was Pseudomonas spp., which substantially influenced the microbiome of symptomatic vs. asymptomatic leaves. Notably, Pseudomonas spp. interacted with Xanthomonas spp. and Pantoea spp. Correlation analysis revealed that the dew point temperature constituted the primary abiotic factor of phyllosphere bacterial community composition, whereas liquid precipitation depth dimension was identified as the dominant factor shaping fungal taxa. Additionally, leaf net photosynthetic rate and stomatal conductance were closely linked to the phyllosphere microbiome. Discussion These results advance our understanding of community-level microbial responses to pathogen invasion and highlight the multifactorial drivers of phyllosphere microbiome assembly. Ultimately, they contribute to predicting and managing walnut leaf-related diseases.
Collapse
Affiliation(s)
- Shiwei Wang
- College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Yu Tan
- Chengdu Botanical Garden, Chengdu, Sichuan Province, China
| | - Qing Luo
- College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Xinmei Fang
- Life Science College, Neijiang Normal University, Neijiang, China
| | - Hanmingyue Zhu
- College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Shuying Li
- College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Yujue Zhou
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Tianhui Zhu
- College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan Province, China
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Chengdu, Sichuan Province, China
| |
Collapse
|
3
|
Song Y, Atza E, Sánchez-Gil JJ, Akkermans D, de Jonge R, de Rooij PGH, Kakembo D, Bakker PAHM, Pieterse CMJ, Budko NV, Berendsen RL. Seed tuber microbiome can predict growth potential of potato varieties. Nat Microbiol 2025; 10:28-40. [PMID: 39730984 DOI: 10.1038/s41564-024-01872-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/31/2024] [Indexed: 12/29/2024]
Abstract
Potato vigour, the growth potential of seed potatoes, is a key agronomic trait that varies significantly across production fields due to factors such as genetic background and environmental conditions. Seed tuber microbiomes are thought to influence plant health and crop performance, yet the precise relationships between microbiome composition and potato vigour remain unclear. Here we conducted microbiome sequencing on seed tuber eyes and heel ends from 6 potato varieties grown in 240 fields. By using time-resolved drone imaging of three trial fields in the next season to track crop development, we were able to link microbiome composition with potato vigour. We used microbiome data at varying taxonomic resolutions to build random forest predictive models and found that amplicon sequence variants provided the highest predictive accuracy for potato vigour. The model revealed variety-specific relationships between the seed tuber microbiome and next season's crop vigour in independent trial fields. With a coefficient of determination value of 0.69 for the best-performing variety, the model accurately predicted vigour in seed tubers from fields not previously included in the analysis. Moreover, the model identified key microbial indicators of vigour from which a Streptomyces, an Acinetobacter and a Cellvibrio amplicon sequence variant stood out as the most important contributors to the model's accuracy. This study shows that seed potato vigour can be reliably predicted based on the microbiota associated with seed tuber eyes, potentially guiding future microbiome-informed breeding strategies.
Collapse
Affiliation(s)
- Yang Song
- Plant-Microbe Interactions, Institute of Environmental Biology, Department of Biology, Science4Life, Utrecht University, Utrecht, the Netherlands
| | - Elisa Atza
- Numerical Analysis, Delft Institute of Applied Mathematics, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, the Netherlands
| | - Juan J Sánchez-Gil
- Plant-Microbe Interactions, Institute of Environmental Biology, Department of Biology, Science4Life, Utrecht University, Utrecht, the Netherlands
| | - Doretta Akkermans
- HZPC Research B.V., Department of Plant Pathology, Metslawier, the Netherlands
| | - Ronnie de Jonge
- Plant-Microbe Interactions, Institute of Environmental Biology, Department of Biology, Science4Life, Utrecht University, Utrecht, the Netherlands
- AI Technology for Life, Department of Information and Computing Sciences, Science4Life, Utrecht University, Utrecht, the Netherlands
| | - Peter G H de Rooij
- Plant-Microbe Interactions, Institute of Environmental Biology, Department of Biology, Science4Life, Utrecht University, Utrecht, the Netherlands
| | - David Kakembo
- Plant-Microbe Interactions, Institute of Environmental Biology, Department of Biology, Science4Life, Utrecht University, Utrecht, the Netherlands
| | - Peter A H M Bakker
- Plant-Microbe Interactions, Institute of Environmental Biology, Department of Biology, Science4Life, Utrecht University, Utrecht, the Netherlands
| | - Corné M J Pieterse
- Plant-Microbe Interactions, Institute of Environmental Biology, Department of Biology, Science4Life, Utrecht University, Utrecht, the Netherlands
| | - Neil V Budko
- Numerical Analysis, Delft Institute of Applied Mathematics, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, the Netherlands
| | - Roeland L Berendsen
- Plant-Microbe Interactions, Institute of Environmental Biology, Department of Biology, Science4Life, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
4
|
Mao L, Yin B, Ye Z, Kang J, Sun R, Wu Z, Ge J, Ping W. Plant growth-promoting microorganisms drive K strategists through deterministic processes to alleviate biological stress caused by Fusarium oxysporum. Microbiol Res 2024; 289:127911. [PMID: 39303412 DOI: 10.1016/j.micres.2024.127911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/03/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
Soybean root rot, caused by soil-borne pathogens such as Fusarium oxysporum, frequently occurs in Northeast China and leads to a decline in soil health and becoming a bottleneck for soybean yield in the region. To address this issue, applying beneficial microorganisms and altering soil microbial community structure have become effective strategies. In this study, the 90-day soybean pot experiment was conducted to explore the assembly process and life strategy selection of bacterial communities in the rhizosphere of healthy (inoculated with Funneliformis mosseae, F group and treated with Pseudomonas putida, P group) and diseased (inoculated with F. oxysporum, O group) soybean plants, as well as the recovery effect of beneficial microorganisms on soil-borne diseases (combined treatments OP and OF). Results indicated that in healthy soils (P and F), microbial community assembly process in the soybean rhizosphere was entirely governed by heterogeneous selection (HeS, 100 %). However, inoculated with P. putida (OP) was primarily driven by stochastic processes (HeS 40 %, dispersal limitation (DL) 60 %), and the F. mosseae treatment (OF) predominantly followed a deterministic process (HeS 89 %, DL 11 %) in diseased soils. Inoculation of plant growth-promoting microorganisms (PGPMs) in diseased soil drove the life strategy of the rhizosphere bacterial community from r- to K-strategy, evident from the lower rRNA operon (rrn) copy numbers (O 3.7, OP 2.1, OF 2.3), higher G+ to G- ratios (O 0.47, OP 0.58, OF 0.57), and a higher abundance of oligotrophs (O 50 %, OP 53 %, OF 54 %). In healthy (P and F) and diseased (O, OP, OF) rhizosphere soils, OTU820, OTU6142, and OTU8841 under the K-strategy, and OTU6032 and OTU6917 under the r-strategy, which served as keystone species, had a significant promoting relationship with plant biomass and defense capabilities ( p <0.05). Additionally, inoculation of PGPMs improved autotoxin degradation and positively correlated with bacterial life strategies in both healthy and diseased soils (P, F, OP and OF) ( p <0.05). These findings enhance our understanding of soil-microbe interactions and offer new insights and precise control measures for soybean disease management and soil environment remediation.
Collapse
Affiliation(s)
- Liangyang Mao
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Bo Yin
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin 150010, China
| | - Zeming Ye
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Jie Kang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Rui Sun
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Zhenchao Wu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Jingping Ge
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China.
| | - Wenxiang Ping
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China.
| |
Collapse
|
5
|
Fan X, Matsumoto H, Xu H, Fang H, Pan Q, Lv T, Zhan C, Feng X, Liu X, Su D, Fan M, Ma Z, Berg G, Li S, Cernava T, Wang M. Aspergillus cvjetkovicii protects against phytopathogens through interspecies chemical signalling in the phyllosphere. Nat Microbiol 2024; 9:2862-2876. [PMID: 39103572 DOI: 10.1038/s41564-024-01781-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 07/09/2024] [Indexed: 08/07/2024]
Abstract
Resident microbiota produces small molecules that influence the chemical microenvironments on leaves, but its signalling roles in pathogen defence are not yet well understood. Here we show that Aspergillus cvjetkovicii, enriched in rice leaf microbiota, subverts Rhizoctonia solani infections via small-molecule-mediated interspecies signalling. 2,4-Di-tert-butylphenol (2,4-DTBP), identified as a key signalling molecule within the Aspergillus-enriched microbiota, effectively neutralizes reactive oxygen species-dependent pathogenicity by switching off bZIP-activated AMT1 transcription in R. solani. Exogenous application of A. cvjetkovicii and 2,4-DTBP demonstrated varying degrees of protective effects against R. solani infection in diverse crops, including cucumber, maize, soybean and tomato. In rice field experiments, they reduced the R. solani-caused disease index to 19.7-32.2%, compared with 67.2-82.6% in the control group. Moreover, 2,4-DTBP showed activity against other rice phytopathogens, such as Fusarium fujikuroi. These findings reveal a defensive strategy against phytopathogens in the phyllosphere, highlighting the potential of symbiotic microbiota-driven neutralization of pathogenicity.
Collapse
Affiliation(s)
- Xiaoyan Fan
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, China
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Haruna Matsumoto
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, China
| | - Haorong Xu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, China
| | - Hongda Fang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, China
| | - Qianqian Pan
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, China
| | - Tianxing Lv
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, China
| | - Chengfang Zhan
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, China
| | - Xiaoxiao Feng
- Agricultural Experiment Station, Zhejiang University, Hangzhou, China
| | - Xiaoyu Liu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, China
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, Western Australia, Australia
| | - Danrui Su
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, China
| | - Mengyuan Fan
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - Zhonghua Ma
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Shaojia Li
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria.
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK.
| | - Mengcen Wang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China.
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, China.
- Global Education Program for AgriScience Frontiers, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
6
|
Wang F, Zhang H, Liu H, Wu C, Wan Y, Zhu L, Yang J, Cai P, Chen J, Ge T. Combating wheat yellow mosaic virus through microbial interactions and hormone pathway modulations. MICROBIOME 2024; 12:200. [PMID: 39407339 PMCID: PMC11481568 DOI: 10.1186/s40168-024-01911-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 08/17/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND The rhizosphere microbiome is critical for promoting plant growth and mitigating soil-borne pathogens. However, its role in fighting soil-borne virus-induced diseases, such as wheat yellow mosaic virus (WYMV) transmitted by Polymyxa graminis zoospores, remains largely underexplored. In this study, we hypothesized that during viral infections, plant microbiomes engage in critical interactions with plants, with key microbes playing vital roles in maintaining plant health. Our research aimed to identify microbial taxa that not only suppress the disease but also boost wheat yield by using a blend of techniques, including field surveys, yield assessments, high-throughput sequencing of plant and soil microbiomes, microbial isolation, hydroponic experiments, and transcriptome sequencing. RESULTS We found that, compared with roots and leaves, the rhizosphere microbiome showed a better performance in predicting wheat yield and the prevalence of P. graminis and WYMV across the three WYMV-impacted regions in China. Using machine learning, we found that healthy rhizospheres were marked with potentially beneficial microorganisms, such as Sphingomonas and Allorhizobium-Neorhizobium-Parararhizobium-Rhizobium, whereas diseased rhizospheres were associated with a higher prevalence of potential pathogens, such as Bipolaris and Fusicolla. Structural equation modeling showed that these biomarkers both directly and indirectly impacted wheat yield by modulating the rhizosphere microbiome and P. graminis abundance. Upon re-introduction of two key healthy rhizosphere biomarkers, Sphingomonas azotifigens and Rhizobium deserti, into the rhizosphere, wheat growth and health were enhanced. This was attributed to the up-regulation of auxin and cytokinin signaling pathways and the regulation of jasmonic acid and salicylic acid pathways during infections. CONCLUSIONS Overall, our study revealed the critical role of the rhizosphere microbiome in combating soil-borne viral diseases, with specific rhizosphere microbes playing key roles in this process. Video Abstract.
Collapse
Affiliation(s)
- Fangyan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Haoqing Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
| | - Hongwei Liu
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2753, Australia
| | - Chuanfa Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Yi Wan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Lifei Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Jian Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Peng Cai
- National Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Tida Ge
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
7
|
Spooren J, van Bentum S, Thomashow LS, Pieterse CMJ, Weller DM, Berendsen RL. Plant-Driven Assembly of Disease-Suppressive Soil Microbiomes. ANNUAL REVIEW OF PHYTOPATHOLOGY 2024; 62:1-30. [PMID: 38857541 DOI: 10.1146/annurev-phyto-021622-100127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Plants have coevolved together with the microbes that surround them and this assemblage of host and microbes functions as a discrete ecological unit called a holobiont. This review outlines plant-driven assembly of disease-suppressive microbiomes. Plants are colonized by microbes from seed, soil, and air but selectively shape the microbiome with root exudates, creating microenvironment hot spots where microbes thrive. Using plant immunity for gatekeeping and surveillance, host-plant genetic properties govern microbiome assembly and can confer adaptive advantages to the holobiont. These advantages manifest in disease-suppressive soils, where buildup of specific microbes inhibits the causal agent of disease, that typically develop after an initial disease outbreak. Based on disease-suppressive soils such as take-all decline, we developed a conceptual model of how plants in response to pathogen attack cry for help and recruit plant-protective microbes that confer increased resistance. Thereby, plants create a soilborne legacy that protects subsequent generations and forms disease-suppressive soils.
Collapse
Affiliation(s)
- Jelle Spooren
- Plant-Microbe Interactions, Institute of Environmental Biology, Department of Biology, Science4Life, Utrecht University, Utrecht, The Netherlands
| | - Sietske van Bentum
- Plant-Microbe Interactions, Institute of Environmental Biology, Department of Biology, Science4Life, Utrecht University, Utrecht, The Netherlands
| | - Linda S Thomashow
- Wheat Health, Genetics and Quality Research Unit, US Department of Agriculture, Agricultural Research Service, Pullman, Washington, USA;
| | - Corné M J Pieterse
- Plant-Microbe Interactions, Institute of Environmental Biology, Department of Biology, Science4Life, Utrecht University, Utrecht, The Netherlands
| | - David M Weller
- Wheat Health, Genetics and Quality Research Unit, US Department of Agriculture, Agricultural Research Service, Pullman, Washington, USA;
| | - Roeland L Berendsen
- Plant-Microbe Interactions, Institute of Environmental Biology, Department of Biology, Science4Life, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
8
|
Jin X, Jia H, Ran L, Wu F, Liu J, Schlaeppi K, Dini-Andreote F, Wei Z, Zhou X. Fusaric acid mediates the assembly of disease-suppressive rhizosphere microbiota via induced shifts in plant root exudates. Nat Commun 2024; 15:5125. [PMID: 38879580 PMCID: PMC11180119 DOI: 10.1038/s41467-024-49218-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/27/2024] [Indexed: 06/19/2024] Open
Abstract
The plant health status is determined by the interplay of plant-pathogen-microbiota in the rhizosphere. Here, we investigate this tripartite system focusing on the pathogen Fusarium oxysporum f. sp. lycopersici (FOL) and tomato plants as a model system. First, we explore differences in tomato genotype resistance to FOL potentially associated with the differential recruitment of plant-protective rhizosphere taxa. Second, we show the production of fusaric acid by FOL to trigger systemic changes in the rhizosphere microbiota. Specifically, we show this molecule to have opposite effects on the recruitment of rhizosphere disease-suppressive taxa in the resistant and susceptible genotypes. Last, we elucidate that FOL and fusaric acid induce changes in the tomato root exudation with direct effects on the recruitment of specific disease-suppressive taxa. Our study unravels a mechanism mediating plant rhizosphere assembly and disease suppression by integrating plant physiological responses to microbial-mediated mechanisms in the rhizosphere.
Collapse
Affiliation(s)
- Xue Jin
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Department of Horticulture, Northeast Agricultural University, 150030, Harbin, China
| | - Huiting Jia
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Department of Horticulture, Northeast Agricultural University, 150030, Harbin, China
| | - Lingyi Ran
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Department of Horticulture, Northeast Agricultural University, 150030, Harbin, China
| | - Fengzhi Wu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Department of Horticulture, Northeast Agricultural University, 150030, Harbin, China
| | - Junjie Liu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 150081, Harbin, China
| | - Klaus Schlaeppi
- Department of Environmental Sciences, University of Basel, 4056, Basel, Switzerland
| | - Francisco Dini-Andreote
- Department of Plant Science & Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
- The One Health Microbiome Center, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Zhong Wei
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, 210095, Nanjing, China.
| | - Xingang Zhou
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Department of Horticulture, Northeast Agricultural University, 150030, Harbin, China.
| |
Collapse
|
9
|
Zhang F, Zhang Z, Wei Z, Liu H. Microbiome-conferred herbicides resistance. THE NEW PHYTOLOGIST 2024; 242:327-330. [PMID: 38320978 DOI: 10.1111/nph.19574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
This article is a Commentary on Hu et al. (2023), 242: 333–343.
Collapse
Affiliation(s)
- Fengge Zhang
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zheng Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhong Wei
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hongwei Liu
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2753, Australia
| |
Collapse
|
10
|
Zhan C, Wang M. Disease resistance through M genes. NATURE PLANTS 2024; 10:352-353. [PMID: 38409293 DOI: 10.1038/s41477-024-01644-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Affiliation(s)
- Chengfang Zhan
- Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, China
- State Key Laboratory of Rice Biology & Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Mengcen Wang
- Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, China.
- State Key Laboratory of Rice Biology & Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.
- Global Education Program for AgriScience Frontiers, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
11
|
Wei C, Liang J, Wang R, Chi L, Wang W, Tan J, Shi H, Song X, Cui Z, Xie Q, Cheng D, Wang X. Response of bacterial community metabolites to bacterial wilt caused by Ralstonia solanacearum: a multi-omics analysis. FRONTIERS IN PLANT SCIENCE 2024; 14:1339478. [PMID: 38317834 PMCID: PMC10839043 DOI: 10.3389/fpls.2023.1339478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 12/28/2023] [Indexed: 02/07/2024]
Abstract
The soil microbial community plays a critical role in promoting robust plant growth and serves as an effective defence mechanism against root pathogens. Current research has focused on unravelling the compositions and functions of diverse microbial taxa in plant rhizospheres invaded by Ralstonia solanacearum, however, the specific mechanisms by which key microbial groups with distinct functions exert their effects remain unclear. In this study, we employed a combination of amplicon sequencing and metabolomics analysis to investigate the principal metabolic mechanisms of key microbial taxa in plant rhizosphere soil. Compared to the healthy tobacco rhizosphere samples, the bacterial diversity and co-occurrence network of the diseased tobacco rhizosphere soil were significantly reduced. Notably, certain genera, including Gaiella, Rhodoplanes, and MND1 (Nitrosomonadaceae), were found to be significantly more abundant in the rhizosphere of healthy plants than in that of diseased plants. Eight environmental factors, including exchangeable magnesium, available phosphorus, and pH, were found to be crucial factors influencing the composition of the microbial community. Ralstonia displayed negative correlations with pH, exchangeable magnesium, and cation exchange flux, but showed a positive correlation with available iron. Furthermore, metabolomic analysis revealed that the metabolic pathways related to the synthesis of various antibacterial compounds were significantly enriched in the healthy group. The correlation analysis results indicate that the bacterial genera Polycyclovorans, Lysobacter, Pseudomonas, and Nitrosospira may participate in the synthesis of antibacterial compounds. Collectively, our findings contribute to a more in-depth understanding of disease resistance mechanisms within healthy microbial communities and provide a theoretical foundation for the development of targeted strategies using beneficial microorganisms to suppress disease occurrence.
Collapse
Affiliation(s)
- Chengjian Wei
- College of Agriculture, Guangxi University, Nanning, China
- Key Laboratory of Tobacco Pest Monitoring & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Jinchang Liang
- Key Laboratory of Tobacco Pest Monitoring & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Rui Wang
- Enshi Tobacco Science and Technology Center, Enshi, China
| | - Luping Chi
- Key Laboratory of Tobacco Pest Monitoring & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Wenjing Wang
- Key Laboratory of Tobacco Pest Monitoring & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Jun Tan
- Enshi Tobacco Science and Technology Center, Enshi, China
| | - Heli Shi
- Enshi Tobacco Science and Technology Center, Enshi, China
| | - Xueru Song
- Engineering Center for Biological Control of Diseases and Pests in Tobacco Industry, Yuxi, China
| | - Zhenzhen Cui
- Key Laboratory of Tobacco Pest Monitoring & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Qiang Xie
- Sichuan Tobacco Science and Technology Center, Chengdu, China
| | - Dejie Cheng
- College of Agriculture, Guangxi University, Nanning, China
| | - Xiaoqiang Wang
- Key Laboratory of Tobacco Pest Monitoring & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| |
Collapse
|
12
|
Pfeilmeier S, Werz A, Ote M, Bortfeld-Miller M, Kirner P, Keppler A, Hemmerle L, Gäbelein CG, Petti GC, Wolf S, Pestalozzi CM, Vorholt JA. Leaf microbiome dysbiosis triggered by T2SS-dependent enzyme secretion from opportunistic Xanthomonas pathogens. Nat Microbiol 2024; 9:136-149. [PMID: 38172620 PMCID: PMC10769872 DOI: 10.1038/s41564-023-01555-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 11/13/2023] [Indexed: 01/05/2024]
Abstract
In healthy plants, the innate immune system contributes to maintenance of microbiota homoeostasis, while disease can be associated with microbiome perturbation or dysbiosis, and enrichment of opportunistic plant pathogens like Xanthomonas. It is currently unclear whether the microbiota change occurs independently of the opportunistic pathogens or is caused by the latter. Here we tested if protein export through the type-2 secretion system (T2SS) by Xanthomonas causes microbiome dysbiosis in Arabidopsis thaliana in immunocompromised plants. We found that Xanthomonas strains secrete a cocktail of plant cell wall-degrading enzymes that promote Xanthomonas growth during infection. Disease severity and leaf tissue degradation were increased in A. thaliana mutants lacking the NADPH oxidase RBOHD. Experiments with gnotobiotic plants, synthetic bacterial communities and wild-type or T2SS-mutant Xanthomonas revealed that virulence and leaf microbiome composition are controlled by the T2SS. Overall, a compromised immune system in plants can enrich opportunistic pathogens, which damage leaf tissues and ultimately cause microbiome dysbiosis by facilitating growth of specific commensal bacteria.
Collapse
Affiliation(s)
- Sebastian Pfeilmeier
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland.
- Molecular Plant Pathology, Swammerdam Institute of Life Sciences, University of Amsterdam, Amsterdam, the Netherlands.
| | - Anja Werz
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Marine Ote
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | | | - Pascal Kirner
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | | | - Lucas Hemmerle
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | | | | | - Sarah Wolf
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | | | | |
Collapse
|