1
|
Chelazzi D, Bordes R, Casini A, Mastrangelo R, Holmberg K, Baglioni P. New perspectives on green and sustainable wet cleaning systems for art conservation. SOFT MATTER 2025. [PMID: 40099692 DOI: 10.1039/d5sm00017c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
The field of cultural heritage conservation science has seen significant advancements over recent decades, particularly through the application of soft matter and colloid science. Gels, nanostructured fluids, nanoparticles, and other advanced functional materials have been developed to address challenges in cleaning, consolidation, and protection of art. More recently, the focus has shifted toward "green" materials and sustainable practices, aligning with broader trends in science and technology. This emphasis on sustainability has revealed the immense potential for cross-disciplinary exchange between conservation science and fields like drug delivery, the food industry, tissue engineering, and more. A clear example of this synergy is seen in the cleaning of artworks, where bio-derived surfactants and biomaterials are increasingly incorporated into microemulsions and gels. These innovations not only enhance cleaning efficacy but also align conservation practices with sustainable principles, drawing parallels to research in cosmetics, pharmaceuticals, and detergents. The examples and materials discussed in this contribution illustrate how advancements in art conservation science can foster mutual technological transfer with other industries. By leveraging the central role of soft matter and colloids, these collaborations produce sustainable solutions that can address critical societal, environmental, and economic challenges.
Collapse
Affiliation(s)
- David Chelazzi
- Department of Chemistry and CSGI, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, FI 50019, Italy
| | - Romain Bordes
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, Sweden
| | - Andrea Casini
- CSGI and Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, FI 50019, Italy.
| | - Rosangela Mastrangelo
- CSGI and Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, FI 50019, Italy.
| | - Krister Holmberg
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, Sweden
| | - Piero Baglioni
- CSGI and Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, FI 50019, Italy.
| |
Collapse
|
2
|
Jiang M, Yao J, Guo Q, Yan Y, Tang Y, Yang Y. Recent Advances in Paper Conservation Using Nanocellulose and Its Composites. Molecules 2025; 30:417. [PMID: 39860286 PMCID: PMC11767405 DOI: 10.3390/molecules30020417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/17/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025] Open
Abstract
Paper-based cultural relics experience aging and deterioration during their long-term preservation, which poses a serious threat to their lifetime. The development of conservation materials with high compatibility and low intervention has been expected to extend the lifetime of paper artifacts. As a new type of biological macromolecule, nanocellulose has been extensively utilized in paper conservation, attributed to its excellent paper compatibility, high optical transparency, outstanding mechanical strength, and large specific surface area with abundant hydroxyl groups. This review systematically summarizes the latest development of three kinds of nanocellulose (cellulose nanofibril, cellulose nanocrystal, and bacterial nanocellulose) and their composites used for the multifunctional conservation of paper relics. Owing to the strong hydrogen bond interactions between hydroxyls of nanocellulose and paper fibers, nanocellulose can effectively consolidate paper without adding adhesives. The composite of nanocellulose with other functional materials greatly expands its application scope, and the superior performance has been emphasized in paper deacidification, consolidation, antimicrobial effect, antioxidation, UV resistance, self-cleaning, promotion of printing property, reduction in air permeability, and flame retardancy. The application characteristics and future prospects of nanocellulose composites are highlighted in the conservation of paper-based cultural relics.
Collapse
Affiliation(s)
- Mei Jiang
- Institute for Preservation and Conservation of Chinese Ancient Books, Fudan University Library, Fudan University, 220 Handan Road, Shanghai 200433, China; (M.J.); (Q.G.); (Y.Y.)
| | - Jingjing Yao
- Shanghai Institute of Quality Inspection and Technical Research, 900 Jiang Yue Road, Shanghai 201114, China;
| | - Qiang Guo
- Institute for Preservation and Conservation of Chinese Ancient Books, Fudan University Library, Fudan University, 220 Handan Road, Shanghai 200433, China; (M.J.); (Q.G.); (Y.Y.)
| | - Yueer Yan
- Institute for Preservation and Conservation of Chinese Ancient Books, Fudan University Library, Fudan University, 220 Handan Road, Shanghai 200433, China; (M.J.); (Q.G.); (Y.Y.)
| | - Yi Tang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Yuliang Yang
- Institute for Preservation and Conservation of Chinese Ancient Books, Fudan University Library, Fudan University, 220 Handan Road, Shanghai 200433, China; (M.J.); (Q.G.); (Y.Y.)
| |
Collapse
|
3
|
Zhang M, Zhao J, Wang S, Dai Z, Qin S, Mei S, Zhang W, Guo R. Preventive conservation of paper-based relics with visible light high-transmittance ultraviolet blocking film based on carbon dots. J Colloid Interface Sci 2025; 678:593-601. [PMID: 39216387 DOI: 10.1016/j.jcis.2024.08.134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/10/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024]
Abstract
Paper-based relics is an important carrier for recording and preserving information, however, it faces irreversible UV-induced damage, including photocleavage, oxidation, acidification and discoloration, which seriously affects its value and lifespan. Carbon dots (CDs) possess excellent UV absorption and good chemical stability, making them suitable for UV protection. Herein, we propose a high-security and efficient method utilizing CDs films (CDFs) for preventive protection of paper against UV damage. The CDFs with high tunable UV absorbance and minimal absorbance in the visible light range, effectively shield paper from UV radiation while preserving its visual appeal. Moreover, the UV transmittance of the film can be fine-tuned to the content of CDs and can be easily removed from the paper without residue. Artificial accelerated UV aging experiments demonstrate the deceleration of acidification, oxidation, and photocleavage in the protected bamboo paper and Xuan paper. This research paces a new direction for the protection of paper and paper-based relics and artworks with emerging carbon materials, offering customizable protection effects tailored to specific preservation and exhibition requirements. This research pioneers a novel approach to preventive protection of paper and paper-based relics using emerging carbon dots materials, offering tailored protection for diverse preservation needs.
Collapse
Affiliation(s)
- Mingliang Zhang
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai 200433, China
| | - Jinchan Zhao
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai 200433, China
| | - Sinong Wang
- Institute for Preservation and Conservation of Chinese Ancient Books, Fudan University Library, Fudan University, Shanghai 200433, China.
| | - Zhenyu Dai
- Institute of Future Lighting, Academy for Engineering and Technology, Fudan University, Shanghai 200433, China
| | - Shuaitao Qin
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai 200433, China
| | - Shiliang Mei
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai 200433, China
| | - Wanlu Zhang
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai 200433, China.
| | - Ruiqian Guo
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai 200433, China; Institute of Future Lighting, Academy for Engineering and Technology, Fudan University, Shanghai 200433, China.
| |
Collapse
|
4
|
Wu J, Trubyanov M, Prvački D, Lim K, Andreeva DV, Novoselov KS. Art and Science of Reinforcing Ceramics with Graphene via Ultrasonication Mixing. ACS OMEGA 2024; 9:42944-42949. [PMID: 39464443 PMCID: PMC11500364 DOI: 10.1021/acsomega.4c05748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/01/2024] [Accepted: 09/10/2024] [Indexed: 10/29/2024]
Abstract
This work presents an interdisciplinary approach combining materials science, ultrasonication, artistic expression, and curatorial practice to develop and investigate novel composites. The focus of the approach is incorporating graphene oxide (GO) into kaolin and exploring its effects on material properties. The composites were prepared with varying GO concentrations and sonication times, and their mechanical, thermal, and morphological characteristics were evaluated. The results reveal that the addition of 0.5 wt % GO, combined with a sonication time of 10 min, leads to the highest storage modulus and improved thermal stability. Ultrasonication proved to be an effective method for dispersing and distributing GO particles within the kaolin matrix, resulting in an enhanced material performance. Furthermore, the application of novel composites provided by Prvački adds a unique dimension to the study. Through the artistic interpretation, the tactile qualities and aesthetic potential of the composites are explored, shedding light on the transformative power of materials and cultural significance organized as part of an artist-in-residence commission, introduced in conjunction with the NUS Public Art Initiative. This interdisciplinary collaboration accompanied by an exhibition at the NUS Museum demonstrates the value of merging scientific research, technological advancements, and artistic exploration.
Collapse
Affiliation(s)
- Jiqiang Wu
- Department
of Materials Science and Engineering, National
University of Singapore, 117575, Singapore
| | - Maxim Trubyanov
- Department
of Materials Science and Engineering, National
University of Singapore, 117575, Singapore
- Institute
for Functional Intelligent Materials, National
University of Singapore, 117544, Singapore
| | - Delia Prvački
- Deliarts
Pte Ltd., Hiangkie Building, 757718, Singapore
| | - Karen Lim
- NUS
Museum & Secretariat, Public Art Committee, National University of Singapore, 119279, Singapore
| | - Daria V. Andreeva
- Department
of Materials Science and Engineering, National
University of Singapore, 117575, Singapore
- Institute
for Functional Intelligent Materials, National
University of Singapore, 117544, Singapore
| | - Kostya S. Novoselov
- Department
of Materials Science and Engineering, National
University of Singapore, 117575, Singapore
- Institute
for Functional Intelligent Materials, National
University of Singapore, 117544, Singapore
| |
Collapse
|
5
|
Gorgolis G, Kotsidi M, Messina E, Mazzurco Miritana V, Di Carlo G, Nhuch EL, Martins Leal Schrekker C, Cuty JA, Schrekker HS, Paterakis G, Androulidakis C, Koutroumanis N, Galiotis C. Antifungal Hybrid Graphene-Transition-Metal Dichalcogenides Aerogels with an Ionic Liquid Additive as Innovative Absorbers for Preventive Conservation of Cultural Heritage. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3174. [PMID: 38998257 PMCID: PMC11242601 DOI: 10.3390/ma17133174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024]
Abstract
The use and integration of novel materials are increasingly becoming vital tools in the field of preventive conservation of cultural heritage. Chemical factors, such as volatile organic compounds (VOCs), but also environmental factors such as high relative humidity, can lead to degradation, oxidation, yellowing, and fading of the works of art. To prevent these phenomena, highly porous materials have been developed for the absorption of VOCs and for controlling the relative humidity. In this work, graphene and transition-metal dichalcogenides (TMDs) were combined to create three-dimensional aerogels that absorb certain harmful substances. More specifically, the addition of the TMDs molybdenum disulfide and tungsten disulfide in such macrostructures led to the selective absorption of ammonia. Moreover, the addition of the ionic liquid 1-hexadecyl-3-methylimidazolium chloride promoted higher rates of VOCs absorption and anti-fungal activity against the fungus Aspergillus niger. These two-dimensional materials outperform benchmark porous absorbers in the absorption of all the examined VOCs, such as ammonia, formic acid, acetic acid, formaldehyde, and acetaldehyde. Consequently, they can be used by museums, galleries, or even storage places for the perpetual protection of works of art.
Collapse
Affiliation(s)
- George Gorgolis
- Institute of Chemical Engineering Sciences, Foundation of Research and Technology-Hellas (FORTH/ICE-HT), Stadiou Street, Platani, 26504 Patras, Greece
- Department of Chemical Engineering, University of Patras, 26504 Patras, Greece
| | - Maria Kotsidi
- Department of Chemical Engineering, University of Patras, 26504 Patras, Greece
| | - Elena Messina
- Institute for the Study of Nanostructured Materials (ISMN), National Research Council (CNR), SP35d, 9, 00010 Montelibretti, Italy;
| | - Valentina Mazzurco Miritana
- Department of Energy Technologies and Renewable Sources, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Via Anguillarese 301, 00123 Rome, Italy
| | - Gabriella Di Carlo
- Institute for the Study of Nanostructured Materials (ISMN), National Research Council (CNR), SP35d, 9, 00010 Montelibretti, Italy;
| | - Elsa Lesaria Nhuch
- Laboratory of Technological Processes and Catalysis, Institute of Chemistry, Federal University of Rio Grande do Sul, Av. Bento Gonçalves 9500, Porto Alegre 91.501-970, RS, Brazil
| | - Clarissa Martins Leal Schrekker
- Laboratory of Technological Processes and Catalysis, Institute of Chemistry, Federal University of Rio Grande do Sul, Av. Bento Gonçalves 9500, Porto Alegre 91.501-970, RS, Brazil
| | - Jeniffer Alves Cuty
- Laboratory of Technological Processes and Catalysis, Institute of Chemistry, Federal University of Rio Grande do Sul, Av. Bento Gonçalves 9500, Porto Alegre 91.501-970, RS, Brazil
| | - Henri Stephan Schrekker
- Laboratory of Technological Processes and Catalysis, Institute of Chemistry, Federal University of Rio Grande do Sul, Av. Bento Gonçalves 9500, Porto Alegre 91.501-970, RS, Brazil
| | - George Paterakis
- Institute of Chemical Engineering Sciences, Foundation of Research and Technology-Hellas (FORTH/ICE-HT), Stadiou Street, Platani, 26504 Patras, Greece
| | - Charalampos Androulidakis
- Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, O&N1, Herestraat 49, PB 813, 3000 Leuven, Belgium
| | - Nikos Koutroumanis
- Department of Chemical Engineering, University of Patras, 26504 Patras, Greece
| | - Costas Galiotis
- Institute of Chemical Engineering Sciences, Foundation of Research and Technology-Hellas (FORTH/ICE-HT), Stadiou Street, Platani, 26504 Patras, Greece
- Department of Chemical Engineering, University of Patras, 26504 Patras, Greece
| |
Collapse
|
6
|
Gorgolis G, Kotsidi M, Paterakis G, Koutroumanis N, Tsakonas C, Galiotis C. Graphene aerogels as efficient adsorbers of water pollutants and their effect of drying methods. Sci Rep 2024; 14:8029. [PMID: 38580774 PMCID: PMC10997784 DOI: 10.1038/s41598-024-58651-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024] Open
Abstract
Environmental accidents highlight the need for the development of efficient materials that can be employed to eliminate pollutants including crude oil and its derivatives, as well as toxic organic solvents. In recent years, a wide variety of advanced materials has been investigated to assist in the purification process of environmentally compromised regions, with the principal contestants being graphene-based structures. This study describes the synthesis of graphene aerogels with two methods and determines their efficiency as adsorbents of several water pollutants. The main difference between the two synthesis routes is the use of freeze-drying in the first case, and ambient pressure drying in the latter. Raman spectroscopy, Scanning Electron Microscopy (SEM), X-ray diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS) and contact angle measurements are employed here for the characterisation of the samples. The as-prepared aerogels have been found to act as photocatalysts of aqueous dye solutions like methylene blue and Orange G, while they were also evaluated as adsorbents of organic solvents (acetone, ethanol and methanol), and, oils like pump oil, castor oil, silicone oil, as well. The results presented here show that the freeze-drying approach provides materials with better adsorption efficiency for the most of the examined pollutants, however, the energy and cost-saving advantages of ambient-pressure-drying could offset the adsorption advantages of the former case.
Collapse
Affiliation(s)
- G Gorgolis
- Department of Chemical Engineering, University of Patras, 26504, Patras, Greece.
- Foundation for Research and Technology - Hellas (FORTH/ ICE-HT), Institute of Chemical Engineering Sciences, 26504, Patras, Greece.
| | - M Kotsidi
- Department of Chemical Engineering, University of Patras, 26504, Patras, Greece
| | - G Paterakis
- Department of Chemical Engineering, University of Patras, 26504, Patras, Greece
- Foundation for Research and Technology - Hellas (FORTH/ ICE-HT), Institute of Chemical Engineering Sciences, 26504, Patras, Greece
| | - N Koutroumanis
- Foundation for Research and Technology - Hellas (FORTH/ ICE-HT), Institute of Chemical Engineering Sciences, 26504, Patras, Greece
| | - C Tsakonas
- Foundation for Research and Technology - Hellas (FORTH/ ICE-HT), Institute of Chemical Engineering Sciences, 26504, Patras, Greece
| | - C Galiotis
- Department of Chemical Engineering, University of Patras, 26504, Patras, Greece.
- Foundation for Research and Technology - Hellas (FORTH/ ICE-HT), Institute of Chemical Engineering Sciences, 26504, Patras, Greece.
| |
Collapse
|
7
|
Wu N, Liu Y, Zhang S, Hou D, Yang R, Qi Y, Wang L. Modulation of transport at the interface in the microporous layer for high power density proton exchange membrane fuel cells. J Colloid Interface Sci 2024; 657:428-437. [PMID: 38056047 DOI: 10.1016/j.jcis.2023.11.089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 12/08/2023]
Abstract
The proton exchange membrane (PEM) fuel cell is a device that demonstrates a significant potential for environmental sustainability, since it efficiently converts chemical energy into electrical energy. The microporous layer (MPL) in PEM fuel cells promotes gas transport and eliminates water. Nevertheless, the power density of PEM fuel cells is restricted by ohmic losses and mass transport losses in conventional MPLs. In this study, we enhanced the power density of proton exchange membrane (PEM) fuel cells through the identification of appropriate materials and the mitigation of mass transport losses occurring at the interface between the microporous layer and the catalyst layer. The incorporation of high electron conductivity, slip behavior at the interface between graphene and water, and rapid water evaporation facilitated by nanoporous graphene effectively address transport-related challenges. We evaluated two types of graphene as potential substitutes for carbon black in the microporous layer (MPL). The enhanced power density (up to 1.1 W cm-2) under all humidity conditions and reduced mass transport resistance (a 75 % reduction compared to carbon black MPL) make them promising candidates for next-generation PEM fuel cells. Furthermore, these findings provide guidance for controlling interfacial mass transport in colloidal systems.
Collapse
Affiliation(s)
- Ningran Wu
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, School of Integrated Circuits, Peking University, Beijing, 100871, China; Beijing Advanced Innovation Center for Integrated Circuits, Beijing, 100871, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China; Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing 100095, China
| | - Ye Liu
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing 100095, China
| | - Shengping Zhang
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, School of Integrated Circuits, Peking University, Beijing, 100871, China; Beijing Advanced Innovation Center for Integrated Circuits, Beijing, 100871, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China; Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing 100095, China
| | - Dandan Hou
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing 100095, China
| | - Ruizhi Yang
- College of Energy, Soochow Institute for Energy and Materials Innovations, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, China
| | - Yue Qi
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing 100095, China
| | - Luda Wang
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, School of Integrated Circuits, Peking University, Beijing, 100871, China; Beijing Advanced Innovation Center for Integrated Circuits, Beijing, 100871, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China; Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing 100095, China.
| |
Collapse
|
8
|
Zhang M, Zhao J, Wang S, Dai Z, Qin S, Mei S, Zhang W, Guo R. Carbon Quantum Dots for Long-Term Protection against UV Degradation and Acidification in Paper-Based Relics. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5009-5018. [PMID: 38227429 DOI: 10.1021/acsami.3c17011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Paper-based cultural relics constitute a significant and invaluable part of human civilization and cultural heritage. However, they are highly vulnerable to environmental factors such as ultraviolet (UV) photodegradation and acidification degradation, posing substantial threats to their long-term preservation. Carbon quantum dots (CQDs), known for their outstanding optical properties, high water solubility, and good safety, offer a promising solution for slowing down UV damage and acidification of paper-based relics during storage and transportation. Herein, we propose a feasible strategy for the simple preparation of CQDs with high dispersion stability, excellent UV absorption, room-temperature phosphorescence, and photostability for the safety protection of paper. Accelerated aging experiments were conducted using UV and dry-heat aging methods on both CQD-protected paper and unprotected paper, respectively, to evaluate the effectiveness of CQD protection. The results demonstrate a slowdown in both the oxidation and acid degradation processes of the protected paper under both UV-aging and dry-heat aging conditions. Notably, CQDs with complex luminescence patterns of both fluorescence and room-temperature phosphorescence also endue them as enhanced optical anticounterfeiting materials for multifunctional paper protection. This research provides a new direction for the protection of paper-based relics with emerging carbon nanomaterials.
Collapse
Affiliation(s)
- Mingliang Zhang
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai 200433, China
| | - Jinchan Zhao
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai 200433, China
| | - Sinong Wang
- Institute for Preservation and Conservation of Chinese Ancient Books, Fudan University Library, Fudan University, Shanghai 200433, China
| | - Zhenyu Dai
- Institute of Future Lighting, Academy for Engineering and Technology, Fudan University, Shanghai 200433, China
| | - Shuaitao Qin
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai 200433, China
| | - Shiliang Mei
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai 200433, China
| | - Wanlu Zhang
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai 200433, China
| | - Ruiqian Guo
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai 200433, China
- Institute of Future Lighting, Academy for Engineering and Technology, Fudan University, Shanghai 200433, China
| |
Collapse
|
9
|
Chelazzi D, Baglioni P. From Nanoparticles to Gels: A Breakthrough in Art Conservation Science. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:10744-10755. [PMID: 37487238 PMCID: PMC10413966 DOI: 10.1021/acs.langmuir.3c01324] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/04/2023] [Indexed: 07/26/2023]
Abstract
Cultural heritage is a crucial resource to increase our society's resilience. However, degradation processes, enhanced by environmental and anthropic risks, inevitably affect works of art, hindering their accessibility and socioeconomic value. In response, interfacial and colloidal chemistry has proposed valuable solutions over the past decades, overcoming the limitations of traditional restoration materials and granting cost- and time-effective remedial conservation of the endangered artifacts. Ranging from inorganic nanoparticles to hybrid composites and soft condensed matter (gels, microemulsions), a wide palette of colloidal systems has been made available to conservators worldwide, targeting the consolidation, cleaning, and protection of works of art. The effectiveness and versatility of the proposed solutions allow the safe and effective treatment of masterpieces belonging to different cultural and artistic productions, spanning from classic ages to the Renaissance and modern/contemporary art. Despite these advancements, the formulation of materials for the preservation of cultural heritage is still an open, exciting field, where recent requirements include coping with the imperatives of the Green Deal to foster the production of sustainable, low-toxicity, and environmentally friendly systems. This review gives a critical overview starting from pioneering works up to the latest advancements in colloidal systems for art conservation, a challenging topic where effective solutions can be transversal to multiple sectors even beyond cultural heritage preservation, from the pharmaceutical and food industry, to cosmetics, tissue engineering, and detergency.
Collapse
Affiliation(s)
- David Chelazzi
- Department
of Chemistry “Ugo Schiff” and CSGI, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Piero Baglioni
- CSGI, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
10
|
Zhu J, Ding J, Li Y, Wang Q, Yang F, Jia C, Zhang Y, Zhao X, Dong W, Wang J, Lu Z, Li X. Realizing Nanolime Aqueous Dispersion via Ionic Liquid Surface Modification to Consolidate Stone Relics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37422798 DOI: 10.1021/acs.langmuir.3c01147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
After decades of research in the conservation of cultural heritage, nanolime (NL) has emerged as a potential alternative inorganic material to the frequently used organic materials. However, its poor kinetic stability in water has been a major challenge that restricted its penetration depth through cultural relics and resulted in unsatisfactory conservation outcomes. Here, for the first time, we realize NL water dispersion by modification of ionic liquid (1-butyl-3-methylimidazolium tetrafluoroborate) via a sample aqueous solution deposit method. Our findings indicate that the cation of the ionic liquid (IL) binds strongly to the surface of NL particles (IL-NL) by forming hydrogen bonds with Ca(OH)2 facets. The absorption of IL causes an unexpected significant alteration in the morphology of NL particles and results in a drastic reduction in NL's size. More importantly, this absorption endows NL excellent kinetic stability dispersed into water and implements NL water dispersion, which makes a breakthrough in terms of extreme poor kinetic stability of as-synthesized NL and commercial NL in water. The mechanism driving IL-NL water dispersion is explained by Stern theory. In the context of consolidating weathered stone, the presence of IL may delay carbonation of NL but the penetration depth of IL-NL through stone samples is three times deeper than that of as-synthesized and commercial NLs. Additionally, the consolidation strength of IL-NL is similar to that of as-synthesized NL and commercial NL. Moreover, IL-NL has no significant impact on the permeability, pore size, and microstructure of consolidated stone relics. Our research contributes to the field of NL-related materials and will enhance the dissemination and utilization of NL-based materials in the preservation of water-insensitive cultural heritage.
Collapse
Affiliation(s)
- Jinmeng Zhu
- NPU Institute of Culture and Heritage, Key Laboratory of Archaeological Exploration and Cultural Heritage Conservation Technology (NPU), Ministry of Education, Northwestern Polytechnical University, Xi'an 710072, China
- Key Scientific Research Base of Conservation & Restoration for Mural as Collection and Materials Science in State Administration of Cultural Heritage, Xi'an 710061, China
| | - Jinghan Ding
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Lab of Graphene (NPU), Xi'an 710072, China
| | - Yuke Li
- Department of Chemistry and Centre for Scientific Modeling and Computation, Chinese University of Hong Kong, Shatin, Hong Kong 999077, China
| | - Qi Wang
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Lab of Graphene (NPU), Xi'an 710072, China
| | - Fan Yang
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Lab of Graphene (NPU), Xi'an 710072, China
| | - Cong Jia
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, P. R. China
| | - Yaxu Zhang
- Shaanxi Provincial Institute of Archaeology, Xi'an 710054, China
| | - Xichen Zhao
- Shaanxi Provincial Institute of Archaeology, Xi'an 710054, China
| | - Wenqiang Dong
- NPU Institute of Culture and Heritage, Key Laboratory of Archaeological Exploration and Cultural Heritage Conservation Technology (NPU), Ministry of Education, Northwestern Polytechnical University, Xi'an 710072, China
| | - Jia Wang
- Center for Wall Painting Protection, Shaanxi History Museum, Xi'an 710061, China
| | - Zhiyong Lu
- Center for Wall Painting Protection, Shaanxi History Museum, Xi'an 710061, China
| | - Xuanhua Li
- NPU Institute of Culture and Heritage, Key Laboratory of Archaeological Exploration and Cultural Heritage Conservation Technology (NPU), Ministry of Education, Northwestern Polytechnical University, Xi'an 710072, China
- Gansu Provincial Research Center for Conservation of Dunhuang Cultural Heritage, Dunhuang 736200, China
| |
Collapse
|
11
|
Iscen A, Forero-Martinez NC, Valsson O, Kremer K. Molecular Simulation Strategies for Understanding the Degradation Mechanisms of Acrylic Polymers. Macromolecules 2023; 56:3272-3285. [PMID: 37181244 PMCID: PMC10174159 DOI: 10.1021/acs.macromol.2c02442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 04/04/2023] [Indexed: 05/16/2023]
Abstract
Acrylic polymers, commonly used in paints, can degrade over time by several different chemical and physical mechanisms, depending on structure and exposure conditions. While exposure to UV light and temperature results in irreversible chemical damage, acrylic paint surfaces in museums can also accumulate pollutants, such as volatile organic compounds (VOCs) and moisture, that affect their material properties and stability. In this work, we studied the effects of different degradation mechanisms and agents on properties of acrylic polymers found in artists' acrylic paints for the first time using atomistic molecular dynamics simulations. Through the use of enhanced sampling methods, we investigated how pollutants are absorbed into thin acrylic polymer films from the environment around the glass transition temperature. Our simulations suggest that the absorption of VOCs is favorable (-4 to -7 kJ/mol depending on VOCs), and the pollutants can easily diffuse and be emitted back into the environment slightly above glass transition temperature when the polymer is soft. However, typical environmental fluctuations in temperature (<16 °C) can lead for these acrylic polymers to transition to glassy state, in which case the trapped pollutants act as plasticizers and cause a loss of mechanical stability in the material. This type of degradation results in disruption of polymer morphology, which we investigate through calculation of structural and mechanical properties. In addition, we also investigate the effects of chemical damage, such as backbone bond scission and side-chain cross-linking reactions on polymer properties.
Collapse
Affiliation(s)
- Aysenur Iscen
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | | | - Omar Valsson
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Department
of Chemistry, University of North Texas, Denton, Texas 76203, United States
| | - Kurt Kremer
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
12
|
Gorgolis G, Ziemann S, Kotsidi M, Paterakis G, Koutroumanis N, Tsakonas C, Anders M, Galiotis C. Novel Graphene-Based Materials as a Tool for Improving Long-Term Storage of Cultural Heritage. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16093528. [PMID: 37176409 PMCID: PMC10180220 DOI: 10.3390/ma16093528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/23/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023]
Abstract
The very serious problem of temperature and humidity regulation, especially for small and medium-sized museums, galleries, and private collections, can be mitigated by the introduction of novel materials that are easily applicable and of low cost. Within this study, archive boxes with innovative technology are proposed as "smart" boxes that can be used for storage and transportation, in combination with a nanocomposite material consisting of polyvinyl alcohol (PVA) and graphene oxide (GO). The synthesis and characterization of the PVA/GO structure with SEM, Raman, AFM, XRD, Optical Microscopy, and profilometry are fully discussed. It is shown that the composite material can be integrated into the archive box either as a stand-alone film or attached onto fitting carriers, for example, those made of corrugated board. By applying the PVA/GO membrane this way, even with strong daily temperature fluctuations of ΔT = ±24.1 °C, strong external humidity fluctuations can be reduced by -87% inside the box. Furthermore, these humidity regulators were examined as Volatile Organic Compounds (VOCs) adsorbers since gas pollutants like formic acid, formaldehyde, acetic acid, and acetaldehyde are known to exist in museums and induce damages in the displayed or stored items. High rates of VOC adsorption have been measured, with the highest ones corresponding to formic acid (521% weight increase) and formaldehyde (223% weight increase).
Collapse
Affiliation(s)
- George Gorgolis
- Institute of Chemical Engineering Sciences, Foundation of Research and Technology-Hellas (FORTH/ICE-HT), Stadiou Street, Platani, 26504 Patras, Greece
- Department of Chemical Engineering, University of Patras, 26504 Patras, Greece
| | - Steffen Ziemann
- Zentrum für Bucherhaltung GmbH (ZFB), Bücherstraße 1, 04347 Leipzig, Germany
| | - Maria Kotsidi
- Institute of Chemical Engineering Sciences, Foundation of Research and Technology-Hellas (FORTH/ICE-HT), Stadiou Street, Platani, 26504 Patras, Greece
| | - George Paterakis
- Institute of Chemical Engineering Sciences, Foundation of Research and Technology-Hellas (FORTH/ICE-HT), Stadiou Street, Platani, 26504 Patras, Greece
- Department of Chemical Engineering, University of Patras, 26504 Patras, Greece
| | - Nikos Koutroumanis
- Institute of Chemical Engineering Sciences, Foundation of Research and Technology-Hellas (FORTH/ICE-HT), Stadiou Street, Platani, 26504 Patras, Greece
| | - Christos Tsakonas
- Institute of Chemical Engineering Sciences, Foundation of Research and Technology-Hellas (FORTH/ICE-HT), Stadiou Street, Platani, 26504 Patras, Greece
| | - Manfred Anders
- Zentrum für Bucherhaltung GmbH (ZFB), Bücherstraße 1, 04347 Leipzig, Germany
| | - Costas Galiotis
- Institute of Chemical Engineering Sciences, Foundation of Research and Technology-Hellas (FORTH/ICE-HT), Stadiou Street, Platani, 26504 Patras, Greece
- Department of Chemical Engineering, University of Patras, 26504 Patras, Greece
| |
Collapse
|
13
|
Gomez-Villalba LS, Salcines C, Fort R. Application of Inorganic Nanomaterials in Cultural Heritage Conservation, Risk of Toxicity, and Preventive Measures. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1454. [PMID: 37176999 PMCID: PMC10180185 DOI: 10.3390/nano13091454] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 05/15/2023]
Abstract
Nanotechnology has allowed for significant progress in architectural, artistic, archaeological, or museum heritage conservation for repairing and preventing damages produced by deterioration agents (weathering, contaminants, or biological actions). This review analyzes the current treatments using nanomaterials, including consolidants, biocides, hydrophobic protectives, mechanical resistance improvers, flame-retardants, and multifunctional nanocomposites. Unfortunately, nanomaterials can affect human and animal health, altering the environment. Right now, it is a priority to stop to analyze its advantages and disadvantages. Therefore, the aims are to raise awareness about the nanotoxicity risks during handling and the subsequent environmental exposure to all those directly or indirectly involved in conservation processes. It reports the human-body interaction mechanisms and provides guidelines for preventing or controlling its toxicity, mentioning the current toxicity research of main compounds and emphasizing the need to provide more information about morphological, structural, and specific features that ultimately contribute to understanding their toxicity. It provides information about the current documents of international organizations (European Commission, NIOSH, OECD, Countries Normative) about worker protection, isolation, laboratory ventilation control, and debris management. Furthermore, it reports the qualitative risk assessment methods, management strategies, dose control, and focus/receptor relationship, besides the latest trends of using nanomaterials in masks and gas emissions control devices, discussing their risk of toxicity.
Collapse
Affiliation(s)
- Luz Stella Gomez-Villalba
- Institute of Geosciences, Spanish National Research Council, Complutense University of Madrid (CSIC, UCM), Calle Dr. Severo Ochoa 7, Planta 4, 28040 Madrid, Spain
| | - Ciro Salcines
- Infrastructures Service, Health and Safety Unit, University of Cantabria, Pabellón de Gobierno, Avenida de los Castros 54, 39005 Santander, Spain
| | - Rafael Fort
- Institute of Geosciences, Spanish National Research Council, Complutense University of Madrid (CSIC, UCM), Calle Dr. Severo Ochoa 7, Planta 4, 28040 Madrid, Spain
| |
Collapse
|
14
|
Kotsidi M, Gorgolis G, Pastore Carbone MG, Paterakis G, Anagnostopoulos G, Trakakis G, Manikas AC, Pavlou C, Koutroumanis N, Galiotis C. Graphene nanoplatelets and other 2D-materials as protective means against the fading of coloured inks, dyes and paints. NANOSCALE 2023; 15:5414-5428. [PMID: 36826806 PMCID: PMC10019573 DOI: 10.1039/d2nr05795f] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
The present work demonstrates the ability of graphene nanoplatelets (GNPs) and other two-dimensional materials (2DMs) like tungsten disulfide (WS2), molybdenum disulfide (MoS2) and hexagonal boron nitride (hBN) to act as protective barriers against the fading of architectural paints and also inks/paints used in art. The results present a new approach for improving the lightfastness of colours of artworks and painted indoor/outdoor wall surfaces taking advantage of the remarkable properties of 2DMs. As shown herein, commercial inks and architectural paints of different colours doped with graphene nanoplatelets (GNPs), graphene oxide (GO), reduced graphene oxide (rGO) and other 2DMs, exhibit a superior resistance to fading under ultraviolet radiation or even under exposure to visible light. A spectroscopic study on these inks and dyes reveals that the peaks which are characteristic of the colour pigments are less affected from aging/fading when the GNPs and the other 2DMs are present. The protection mechanism for the GNPs and the other 2DMs differs. For GNPs, mainly their high surface area which leads to free radicals scavenging (especially hydroxyl radicals), and secondarily their UV absorption, are responsible for their protection effects, while for GO, a transition to rGO structures and consequently to 'smart' paints can be observed after the performed aging routes. In this way, the paint gets improved by time preventing or slowing its own fading and decolorization. For the other 2DMs, the transition-metal dichalcogenides performed better than hBN, even though they all absorb in the UV region. This can be ascribed to the facts that the formers also absorb in the visible, while hBN does not, while most importantly, they can trap reactive oxygen species (ROS) and corrosive gases in their structure as opposed to hBN. By conducting colorimetric measurements, we have discovered that the lifetime of the as-developed 2DM-doped inks and paints can be extended by up to ∼40%.
Collapse
Affiliation(s)
- M Kotsidi
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology - Hellas (FORTH/ICE-HT), Patras 265 04, Greece.
- Department of Chemical Engineering, University of Patras, Patras 26504, Greece
| | - G Gorgolis
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology - Hellas (FORTH/ICE-HT), Patras 265 04, Greece.
- Department of Chemical Engineering, University of Patras, Patras 26504, Greece
| | - M G Pastore Carbone
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology - Hellas (FORTH/ICE-HT), Patras 265 04, Greece.
| | - G Paterakis
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology - Hellas (FORTH/ICE-HT), Patras 265 04, Greece.
| | - G Anagnostopoulos
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology - Hellas (FORTH/ICE-HT), Patras 265 04, Greece.
| | - G Trakakis
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology - Hellas (FORTH/ICE-HT), Patras 265 04, Greece.
| | - A C Manikas
- Department of Chemical Engineering, University of Patras, Patras 26504, Greece
| | - C Pavlou
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology - Hellas (FORTH/ICE-HT), Patras 265 04, Greece.
| | - N Koutroumanis
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology - Hellas (FORTH/ICE-HT), Patras 265 04, Greece.
| | - C Galiotis
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology - Hellas (FORTH/ICE-HT), Patras 265 04, Greece.
- Department of Chemical Engineering, University of Patras, Patras 26504, Greece
| |
Collapse
|
15
|
Zhang X, Yan Y, Yao J, Jin S, Tang Y. Chemistry directs the conservation of paper cultural relics. Polym Degrad Stab 2023. [DOI: 10.1016/j.polymdegradstab.2022.110228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Dimitropoulos M, Trakakis G, Androulidakis C, Kotsidi M, Galiotis C. Wrinkle-mediated CVD synthesis of wafer scale Graphene/h-BN heterostructures. NANOTECHNOLOGY 2022; 34:025601. [PMID: 36215949 DOI: 10.1088/1361-6528/ac98d0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
The combination of two-dimensional materials (2D) into heterostructures enables their integration in tunable ultrathin devices. For applications in electronics and optoelectronics, direct growth of wafer-scale and vertically stacked graphene/hexagonal boron nitride (h-BN) heterostructures is vital. The fundamental problem, however, is the catalytically inert nature of h-BN substrates, which typically provide a low rate of carbon precursor breakdown and consequently a poor rate of graphene synthesis. Furthermore, out-of-plane deformations such as wrinkles are commonly seen in 2D materials grown by chemical vapor deposition (CVD). Herein, a wrinkle-facilitated route is developed for the fast growth of graphene/h-BN vertical heterostructures on Cu foils. The key advantage of this synthetic pathway is the exploitation of the increased reactivity from inevitable line defects arising from the CVD process, which can act as active sites for graphene nucleation. The resulted heterostructures are found to exhibit superlubric properties with increased bending stiffness, as well as directional electronic properties, as revealed from atomic force microscopy measurements. This work offers a brand-new route for the fast growth of Gr/h-BN heterostructures with practical scalability, thus propelling applications in electronics and nanomechanical systems.
Collapse
Affiliation(s)
- Marinos Dimitropoulos
- Department of Chemical Engineering, University of Patras, GR-26500 Patras, Greece
- Institute of Chemical Engineering Sciences (ICE-HT), Foundation of Research and Technology Hellas, PO Box 1414, GR-26504 Patras, Greece
| | - George Trakakis
- Institute of Chemical Engineering Sciences (ICE-HT), Foundation of Research and Technology Hellas, PO Box 1414, GR-26504 Patras, Greece
| | - Charalampos Androulidakis
- Institute of Chemical Engineering Sciences (ICE-HT), Foundation of Research and Technology Hellas, PO Box 1414, GR-26504 Patras, Greece
| | - Maria Kotsidi
- Department of Chemical Engineering, University of Patras, GR-26500 Patras, Greece
- Institute of Chemical Engineering Sciences (ICE-HT), Foundation of Research and Technology Hellas, PO Box 1414, GR-26504 Patras, Greece
| | - Costas Galiotis
- Department of Chemical Engineering, University of Patras, GR-26500 Patras, Greece
- Institute of Chemical Engineering Sciences (ICE-HT), Foundation of Research and Technology Hellas, PO Box 1414, GR-26504 Patras, Greece
| |
Collapse
|
17
|
Integrated wafer-scale ultra-flat graphene by gradient surface energy modulation. Nat Commun 2022; 13:5410. [PMID: 36109519 PMCID: PMC9477858 DOI: 10.1038/s41467-022-33135-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 09/02/2022] [Indexed: 11/11/2022] Open
Abstract
The integration of large-scale two-dimensional (2D) materials onto semiconductor wafers is highly desirable for advanced electronic devices, but challenges such as transfer-related crack, contamination, wrinkle and doping remain. Here, we developed a generic method by gradient surface energy modulation, leading to a reliable adhesion and release of graphene onto target wafers. The as-obtained wafer-scale graphene exhibited a damage-free, clean, and ultra-flat surface with negligible doping, resulting in uniform sheet resistance with only ~6% deviation. The as-transferred graphene on SiO2/Si exhibited high carrier mobility reaching up ~10,000 cm2 V−1 s−1, with quantum Hall effect (QHE) observed at room temperature. Fractional quantum Hall effect (FQHE) appeared at 1.7 K after encapsulation by h-BN, yielding ultra-high mobility of ~280,000 cm2 V−1 s−1. Integrated wafer-scale graphene thermal emitters exhibited significant broadband emission in near-infrared (NIR) spectrum. Overall, the proposed methodology is promising for future integration of wafer-scale 2D materials in advanced electronics and optoelectronics. Defect-free integration of 2D materials onto semiconductor wafers is desired to implement heterogeneous electronic devices. Here, the authors report a method to transfer high-quality graphene on target wafers via gradient surface energy modulation, leading to improved structural and electronic properties.
Collapse
|