1
|
Zong QJ, Wang H, Zhang Q, Cheng X, He Y, Xu Q, Fischer A, Watanabe K, Taniguchi T, Rhodes DA, Xian L, Kennes DM, Rubio A, Yu G, Wang L. Quantum melting of generalized electron crystal in twisted bilayer MoSe 2. Nat Commun 2025; 16:4058. [PMID: 40307227 PMCID: PMC12044088 DOI: 10.1038/s41467-025-59365-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 04/15/2025] [Indexed: 05/02/2025] Open
Abstract
Electrons can form an ordered solid crystal phase ascribed to the interplay between Coulomb repulsion and kinetic energy. Tuning these energy scales can drive a phase transition from electron solid to liquid, i.e., melting of Wigner crystal. Generalized Wigner crystals (GWCs) pinned to moiré superlattices have been reported by optical and scanning-probe-based methods. Using transport measurements to investigate GWCs is vital to a complete characterization, however, still poses a significant challenge due to difficulties in making reliable electrical contacts. Here, we report the electrical transport detection of GWCs at fractional fillings ν = 2/5, 1/2, 3/5, 2/3, 8/9, 10/9, and 4/3 in twisted bilayer MoSe2. We further observe that these GWCs undergo continuous quantum melting transitions to liquid phases by tuning doping density, magnetic and displacement fields, manifested by quantum critical scaling behaviors. Our findings establish twisted bilayer MoSe2 as a novel system to study strongly correlated states of matter and their quantum phase transitions.
Collapse
Affiliation(s)
- Qi Jun Zong
- National Laboratory of Solid-State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Haolin Wang
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, China.
- Guangzhou Institute of Technology, Xidian University, Guangzhou, China.
| | - Qi Zhang
- National Laboratory of Solid-State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Xinle Cheng
- Institut für Theorie der Statistischen Physik, RWTH Aachen University and JARA-Fundamentals of Future Information Technology, Aachen, Germany
| | - Yangchen He
- Department of Materials Science and Engineering, University of Wisconsin, Madison, USA
| | - Qiaoling Xu
- Songshan Lake Materials Laboratory, Dongguan, China
- College of Physics and Electronic Engineering, Center for Computational Sciences, Sichuan Normal University, Chengdu, China
| | - Ammon Fischer
- Institut für Theorie der Statistischen Physik, RWTH Aachen University and JARA-Fundamentals of Future Information Technology, Aachen, Germany
| | - Kenji Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, Tsukuba, Japan
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
| | - Daniel A Rhodes
- Department of Materials Science and Engineering, University of Wisconsin, Madison, USA
| | - Lede Xian
- Songshan Lake Materials Laboratory, Dongguan, China
| | - Dante M Kennes
- Institut für Theorie der Statistischen Physik, RWTH Aachen University and JARA-Fundamentals of Future Information Technology, Aachen, Germany
- Max Planck Institute for the Structure and Dynamics of Matter, Center for Free-Electron Laser Science (CFEL), Hamburg, Germany
| | - Angel Rubio
- Max Planck Institute for the Structure and Dynamics of Matter, Center for Free-Electron Laser Science (CFEL), Hamburg, Germany.
- Center for Computational Quantum Physics, Simons Foundation Flatiron Institute, New York, USA.
| | - Geliang Yu
- National Laboratory of Solid-State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China.
- Jiangsu Physical Science Research Center, Nanjing, China.
| | - Lei Wang
- National Laboratory of Solid-State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China.
- Jiangsu Physical Science Research Center, Nanjing, China.
| |
Collapse
|
2
|
Wei L, Li Q, Rehman MU, He Y, An D, Li S, Watanabe K, Taniguchi T, Claassen M, Novoselov KS, Kennes DM, Rubio A, Rhodes DA, Xian L, Yu G, Wang L. Valley charge-transfer insulator in twisted double bilayer WSe 2. Nat Commun 2025; 16:1185. [PMID: 39885166 PMCID: PMC11782666 DOI: 10.1038/s41467-025-56490-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 01/17/2025] [Indexed: 02/01/2025] Open
Abstract
In flat-band systems, emergent physics can be substantially modified by the presence of another nearby electronic band. For example, a Mott˘Hubbard insulator can turn into a charge transfer insulator if other electronic states enter between the upper and lower Hubbard bands. Here, we introduce twisted double bilayer (TDB) WSe2, with twist angles near 60°, as a controllable platform in which the K-valley band can be tuned to close vicinity of the Γ-valley moiré flat band. At half-filling, correlations split the Γ-valley flat band into upper and lower Hubbard bands and a charge-transfer insulator forms between the Γ-valley upper Hubbard band and K-valley band. Using gate control, we continuously move the K-valley band across the Γ-valley Hubbard bands, and observe a tunable charge-transfer insulator gap and subsequently a continuous phase transition to a metal. The tuning of Mott˘Hubbard to charge-transfer insulator establishes valley degree of freedom as a suitable knob for transitions between exotic correlated phases.
Collapse
Affiliation(s)
- LingNan Wei
- National Laboratory of Solid-State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing, China
| | - Qingxin Li
- National Laboratory of Solid-State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing, China
| | | | - Yangchen He
- Department of Materials Science and Engineering, University of Wisconsin, Madison, WI, USA
| | - Dongdong An
- National Laboratory of Solid-State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing, China
| | - Shiwei Li
- National Laboratory of Solid-State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing, China
| | - Kenji Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, Tsukuba, Japan
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
| | - Martin Claassen
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA
| | - Kostya S Novoselov
- Department of Materials Science and Engineering, National University of Singapore, Singapore, Singapore
| | - Dante M Kennes
- Institut für Theorie der Statistischen Physik, RWTH Aachen University and JARA-Fundamentals of Future Information Technology, Aachen, Germany
- Max Planck Institute for the Structure and Dynamics of Matter, Center for Free-Electron Laser Science (CFEL), Hamburg, Germany
| | - Angel Rubio
- Max Planck Institute for the Structure and Dynamics of Matter, Center for Free-Electron Laser Science (CFEL), Hamburg, Germany
- Center for Computational Quantum Physics, Simons Foundation Flatiron Institute, New York, NY, USA
| | - Daniel A Rhodes
- Department of Materials Science and Engineering, University of Wisconsin, Madison, WI, USA.
| | - Lede Xian
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, China.
- Max Planck Institute for the Structure and Dynamics of Matter, Center for Free-Electron Laser Science (CFEL), Hamburg, Germany.
- Tsientang Institute for Advanced Study, Hangzhou, Zhejiang, China.
| | - Geliang Yu
- National Laboratory of Solid-State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing, China.
- Jiangsu Physical Science Research Center, Nanjing, China.
| | - Lei Wang
- National Laboratory of Solid-State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing, China.
- Jiangsu Physical Science Research Center, Nanjing, China.
| |
Collapse
|
3
|
Arsenault EA, Li Y, Yang B, Taniguchi T, Watanabe K, Hone JC, Dean CR, Xu X, Zhu XY. Time-domain signatures of distinct correlated insulators in a moiré superlattice. Nat Commun 2025; 16:549. [PMID: 39788973 PMCID: PMC11717924 DOI: 10.1038/s41467-024-54886-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 11/21/2024] [Indexed: 01/12/2025] Open
Abstract
Among expanding discoveries of quantum phases in moiré superlattices, correlated insulators stand out as both the most stable and most commonly observed. Despite the central importance of these states in moiré physics, little is known about their underlying nature. Here, we use pump-probe spectroscopy to show distinct time-domain signatures of correlated insulators at fillings of one (ν = -1) and two (ν = -2) holes per moiré unit cell in the angle-aligned WSe2/WS2 system. Following photo-doping, we find that the disordering time of the ν = -1 state is independent of excitation density (nex), as expected from the characteristic phonon response time associated with a polaronic state. In contrast, the disordering time of the ν = -2 state scales with 1 / n ex , in agreement with plasmonic screening from free holons and doublons. These states display disparate reordering behavior dominated either by first order (ν = -1) or second order (ν = -2) recombination, suggesting the presence of Hubbard excitons and free carrier-like holons/doublons, respectively. Our work delineates the roles of electron-phonon (e-ph) versus electron-electron (e-e) interactions in correlated insulators on the moiré landscape and establishes non-equilibrium responses as mechanistic signatures for distinguishing and discovering quantum phases.
Collapse
Affiliation(s)
| | - Yiliu Li
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Birui Yang
- Department of Physics, Columbia University, New York, NY, USA
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
| | - Kenji Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, Tsukuba, Japan
| | - James C Hone
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Cory R Dean
- Department of Physics, Columbia University, New York, NY, USA
| | - Xiaodong Xu
- Department of Physics, University of Washington, Seattle, WA, USA
| | - X-Y Zhu
- Department of Chemistry, Columbia University, New York, NY, USA.
| |
Collapse
|
4
|
Cao S, Zheng R, Wang C, Ma N, Chen M, Song Y, Feng Y, Hao T, Zhang Y, Wang Y, Gu P, Watanabe K, Taniguchi T, Liu Y, Xie XC, Ji W, Ye Y, Han Z, Chen JH. Magnetic-Electrical Synergetic Control of Non-Volatile States in Bilayer Graphene-CrOCl Heterostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2411300. [PMID: 39610203 DOI: 10.1002/adma.202411300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/15/2024] [Indexed: 11/30/2024]
Abstract
Anti-ferromagnetic insulator chromium oxychloride (CrOCl) has shown peculiar charge transfer and correlation-enhanced emerging properties when interfaced with other van der Waals conductive channels. However, the influence of its spin states to the channel material remains largely unknown. Here, this issue is addressed by directly measuring the density of states in bilayer graphene (BLG) interfaced with CrOCl via a high-precision capacitance measurement technique and a surprising hysteretic behavior in the charging states of the heterostructure is observed. Such hysteretic behavior depends only on the history of magnetization, but not on the history of electrical gating; it can also be turned off electrically, providing a synergetic control of these non-volatile states. First-principles calculations attribute this observation to magnetic field-controlled charge transfer between BLG and CrOCl during the phase transition of CrOCl from antiferromagnetic (AFM) to ferrimagnetic-like (FiM) states. This magnetic-electrical synergetic control mechanism broadens the scope of proximity effects and opens new possibilities for the design of advanced 2D heterostructures and devices.
Collapse
Affiliation(s)
- Shimin Cao
- International Center of Quantum Materials, School of Physics, Peking University, Beijing, 100871, P. R. China
- Beijing Academy of Quantum Information Sciences, Beijing, 100193, P. R. China
| | - Runjie Zheng
- International Center of Quantum Materials, School of Physics, Peking University, Beijing, 100871, P. R. China
| | - Cong Wang
- Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-Nano Devices, School of Physics, Renmin University of China, Beijing, 100872, P. R. China
- Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Renmin University of China, Beijing, 100872, P. R. China
| | - Ning Ma
- International Center of Quantum Materials, School of Physics, Peking University, Beijing, 100871, P. R. China
| | - Mantang Chen
- International Center of Quantum Materials, School of Physics, Peking University, Beijing, 100871, P. R. China
| | - Yuanjun Song
- Beijing Academy of Quantum Information Sciences, Beijing, 100193, P. R. China
| | - Ya Feng
- Beijing Academy of Quantum Information Sciences, Beijing, 100193, P. R. China
| | - Tingting Hao
- Beijing Academy of Quantum Information Sciences, Beijing, 100193, P. R. China
| | - Yu Zhang
- Beijing Academy of Quantum Information Sciences, Beijing, 100193, P. R. China
| | - Yaning Wang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, P. R. China
| | - Pingfan Gu
- School of Physics, Peking University, Beijing, 100871, P. R. China
| | - Kenji Watanabe
- National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki, 305-0044, Japan
| | - Takashi Taniguchi
- National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki, 305-0044, Japan
| | - Yang Liu
- International Center of Quantum Materials, School of Physics, Peking University, Beijing, 100871, P. R. China
| | - X C Xie
- International Center of Quantum Materials, School of Physics, Peking University, Beijing, 100871, P. R. China
- Institute for Nanoelectronic Devices and Quantum Computing, Fudan University, Shanghai, 200433, P. R. China
- Hefei National Laboratory, Hefei, 230088, P. R. China
| | - Wei Ji
- Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-Nano Devices, School of Physics, Renmin University of China, Beijing, 100872, P. R. China
- Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Renmin University of China, Beijing, 100872, P. R. China
| | - Yu Ye
- School of Physics, Peking University, Beijing, 100871, P. R. China
| | - Zheng Han
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan, 030006, P. R. China
| | - Jian-Hao Chen
- International Center of Quantum Materials, School of Physics, Peking University, Beijing, 100871, P. R. China
- Beijing Academy of Quantum Information Sciences, Beijing, 100193, P. R. China
- Hefei National Laboratory, Hefei, 230088, P. R. China
- Key Laboratory for the Physics and Chemistry of Nanodevices, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
5
|
Kang K, Qiu Y, Watanabe K, Taniguchi T, Shan J, Mak KF. Double Quantum Spin Hall Phase in Moiré WSe 2. NANO LETTERS 2024; 24:14901-14907. [PMID: 39506321 DOI: 10.1021/acs.nanolett.4c05308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Quantum spin Hall (QSH) insulators are topologically protected phases of matter in two dimensions that can support a pair of helical edge states surrounding an insulating bulk. A higher (even) number of helical edge state pairs is usually not possible in real materials because spin mixing would gap out the edge states. Here, we report experimental evidence for a QSH phase with one and two pairs of helical edge states in twisted bilayer WSe2 at Moiré hole filling factor ν = 2 and 4, respectively. We observe nearly quantized (within 10%) resistance plateaus of h ν e 2 and large nonlocal transport at ν = 2 and 4 while the bulk is insulating. The resistance is independent of the out-of-plane magnetic field and increases under an in-plane magnetic field. The results agree with quantum transport of helical edge states in a material with high spin Chern bands protected by Ising spin conservation symmetry.
Collapse
Affiliation(s)
- Kaifei Kang
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
| | - Yichen Qiu
- Department of Physics, Cornell University, Ithaca, New York 14853, United States
| | - Kenji Watanabe
- National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan
| | - Takashi Taniguchi
- National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan
| | - Jie Shan
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
- Department of Physics, Cornell University, Ithaca, New York 14853, United States
- Kavli Institute at Cornell for Nanoscale Science, Ithaca, New York 14853, United States
| | - Kin Fai Mak
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
- Department of Physics, Cornell University, Ithaca, New York 14853, United States
- Kavli Institute at Cornell for Nanoscale Science, Ithaca, New York 14853, United States
| |
Collapse
|
6
|
Qiu Z, Han Y, Noori K, Chen Z, Kashchenko M, Lin L, Olsen T, Li J, Fang H, Lyu P, Telychko M, Gu X, Adam S, Quek SY, Rodin A, Castro Neto AH, Novoselov KS, Lu J. Evidence for electron-hole crystals in a Mott insulator. NATURE MATERIALS 2024; 23:1055-1062. [PMID: 38831130 DOI: 10.1038/s41563-024-01910-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 04/30/2024] [Indexed: 06/05/2024]
Abstract
The coexistence of correlated electron and hole crystals enables the realization of quantum excitonic states, capable of hosting counterflow superfluidity and topological orders with long-range quantum entanglement. Here we report evidence for imbalanced electron-hole crystals in a doped Mott insulator, namely, α-RuCl3, through gate-tunable non-invasive van der Waals doping from graphene. Real-space imaging via scanning tunnelling microscopy reveals two distinct charge orderings at the lower and upper Hubbard band energies, whose origin is attributed to the correlation-driven honeycomb hole crystal composed of hole-rich Ru sites and rotational-symmetry-breaking paired electron crystal composed of electron-rich Ru-Ru bonds, respectively. Moreover, a gate-induced transition of electron-hole crystals is directly visualized, further corroborating their nature as correlation-driven charge crystals. The realization and atom-resolved visualization of imbalanced electron-hole crystals in a doped Mott insulator opens new doors in the search for correlated bosonic states within strongly correlated materials.
Collapse
Affiliation(s)
- Zhizhan Qiu
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore, Singapore
| | - Yixuan Han
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Keian Noori
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore, Singapore
- Centre for Advanced 2D Materials (CA2DM), National University of Singapore, Singapore, Singapore
| | - Zhaolong Chen
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore, Singapore
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Mikhail Kashchenko
- Programmable Functional Materials Lab, Brain and Consciousness Research Center, Moscow, Russia
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Li Lin
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore, Singapore
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Thomas Olsen
- CAMD, Department of Physics, Technical university of Denmark, Lyngby, Denmark
| | - Jing Li
- School of Chemistry, Beihang University, Beijing, China
| | - Hanyan Fang
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Pin Lyu
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Mykola Telychko
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Xingyu Gu
- Centre for Advanced 2D Materials (CA2DM), National University of Singapore, Singapore, Singapore
- Department of Physics, National University of Singapore, Singapore, Singapore
| | - Shaffique Adam
- Centre for Advanced 2D Materials (CA2DM), National University of Singapore, Singapore, Singapore
- Department of Physics, National University of Singapore, Singapore, Singapore
- Yale-NUS College, Singapore, Singapore
- Department of Materials Science & Engineering, National University of Singapore, Singapore, Singapore
| | - Su Ying Quek
- Centre for Advanced 2D Materials (CA2DM), National University of Singapore, Singapore, Singapore
- Department of Physics, National University of Singapore, Singapore, Singapore
- Department of Materials Science & Engineering, National University of Singapore, Singapore, Singapore
- NUS Graduate School, Integrative Sciences and Engineering Programme, National University of Singapore, Singapore, Singapore
| | - Aleksandr Rodin
- Centre for Advanced 2D Materials (CA2DM), National University of Singapore, Singapore, Singapore
- Yale-NUS College, Singapore, Singapore
| | - A H Castro Neto
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore, Singapore
- Centre for Advanced 2D Materials (CA2DM), National University of Singapore, Singapore, Singapore
- Department of Materials Science & Engineering, National University of Singapore, Singapore, Singapore
| | - Kostya S Novoselov
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore, Singapore.
- Department of Materials Science & Engineering, National University of Singapore, Singapore, Singapore.
| | - Jiong Lu
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore, Singapore.
- Department of Chemistry, National University of Singapore, Singapore, Singapore.
- Centre for Advanced 2D Materials (CA2DM), National University of Singapore, Singapore, Singapore.
| |
Collapse
|
7
|
Cui H, Hu Q, Zhao X, Ma L, Jin F, Zhang Q, Watanabe K, Taniguchi T, Shan J, Mak KF, Li Y, Xu Y. Interlayer Fermi Polarons of Excited Exciton States in Quantizing Magnetic Fields. NANO LETTERS 2024; 24:7077-7083. [PMID: 38828922 DOI: 10.1021/acs.nanolett.4c01658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
The study of exciton polarons has offered profound insights into the many-body interactions between bosonic excitations and their immersed Fermi sea within layered heterostructures. However, little is known about the properties of exciton polarons with interlayer interactions. Here, through magneto-optical reflectance contrast measurements, we experimentally investigate interlayer Fermi polarons for 2s excitons in WSe2/graphene heterostructures, where the excited exciton states (2s) in the WSe2 layer are dressed by free charge carriers of the adjacent graphene layer in the Landau quantization regime. First, such a system enables an optical detection of integer and fractional quantum Hall states (e.g., ν = ±1/3, ±2/3) of monolayer graphene. Furthermore, we observe that the 2s state evolves into two distinct branches, denoted as attractive and repulsive polarons, when graphene is doped out of the incompressible quantum Hall gaps. Our work paves the way for the understanding of the excited composite quasiparticles and Bose-Fermi mixtures.
Collapse
Affiliation(s)
- Huiying Cui
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianying Hu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuan Zhao
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liguo Ma
- School of Applied and Engineering Physics & Department of Physics, Cornell University, Ithaca, New York 14850, United States
| | - Feng Jin
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Qingming Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Jie Shan
- School of Applied and Engineering Physics & Department of Physics, Cornell University, Ithaca, New York 14850, United States
- Kavli Institute at Cornell for Nanoscale Science, Ithaca, New York 14850, United States
| | - Kin Fai Mak
- School of Applied and Engineering Physics & Department of Physics, Cornell University, Ithaca, New York 14850, United States
- Kavli Institute at Cornell for Nanoscale Science, Ithaca, New York 14850, United States
| | - Yongqing Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Xu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Li H, Xiang Z, Regan E, Zhao W, Sailus R, Banerjee R, Taniguchi T, Watanabe K, Tongay S, Zettl A, Crommie MF, Wang F. Mapping charge excitations in generalized Wigner crystals. NATURE NANOTECHNOLOGY 2024; 19:618-623. [PMID: 38286875 DOI: 10.1038/s41565-023-01594-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/18/2023] [Indexed: 01/31/2024]
Abstract
Transition metal dichalcogenide-based moiré superlattices exhibit strong electron-electron correlations, thus giving rise to strongly correlated quantum phenomena such as generalized Wigner crystal states. Evidence of Wigner crystals in transition metal dichalcogenide moire superlattices has been widely reported from various optical spectroscopy and electrical conductivity measurements, while their microscopic nature has been limited to the basic lattice structure. Theoretical studies predict that unusual quasiparticle excitations across the correlated gap between upper and lower Hubbard bands can arise due to long-range Coulomb interactions in generalized Wigner crystal states. However, the microscopic proof of such quasiparticle excitations is challenging because of the low excitation energy of the Wigner crystal. Here we describe a scanning single-electron charging spectroscopy technique with nanometre spatial resolution and single-electron charge resolution that enables us to directly image electron and hole wavefunctions and to determine the thermodynamic gap of generalized Wigner crystal states in twisted WS2 moiré heterostructures. High-resolution scanning single-electron charging spectroscopy combines scanning tunnelling microscopy with a monolayer graphene sensing layer, thus enabling the generation of individual electron and hole quasiparticles in generalized Wigner crystals. We show that electron and hole quasiparticles have complementary wavefunction distributions and that thermodynamic gaps of ∼50 meV exist for the 1/3 and 2/3 generalized Wigner crystal states in twisted WS2.
Collapse
Affiliation(s)
- Hongyuan Li
- Department of Physics, University of California at Berkeley, Berkeley, CA, USA
- Graduate Group in Applied Science and Technology, University of California at Berkeley, Berkeley, CA, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ziyu Xiang
- Department of Physics, University of California at Berkeley, Berkeley, CA, USA
- Graduate Group in Applied Science and Technology, University of California at Berkeley, Berkeley, CA, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Emma Regan
- Department of Physics, University of California at Berkeley, Berkeley, CA, USA
- Graduate Group in Applied Science and Technology, University of California at Berkeley, Berkeley, CA, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Wenyu Zhao
- Department of Physics, University of California at Berkeley, Berkeley, CA, USA
| | - Renee Sailus
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA
| | - Rounak Banerjee
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Japan
| | - Sefaattin Tongay
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA
| | - Alex Zettl
- Department of Physics, University of California at Berkeley, Berkeley, CA, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Kavli Energy NanoScience Institute at the University of California at Berkeley and the Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Michael F Crommie
- Department of Physics, University of California at Berkeley, Berkeley, CA, USA.
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Kavli Energy NanoScience Institute at the University of California at Berkeley and the Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Feng Wang
- Department of Physics, University of California at Berkeley, Berkeley, CA, USA.
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Kavli Energy NanoScience Institute at the University of California at Berkeley and the Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
9
|
Foutty BA, Kometter CR, Devakul T, Reddy AP, Watanabe K, Taniguchi T, Fu L, Feldman BE. Mapping twist-tuned multiband topology in bilayer WSe 2. Science 2024; 384:343-347. [PMID: 38669569 DOI: 10.1126/science.adi4728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 03/19/2024] [Indexed: 04/28/2024]
Abstract
Semiconductor moiré superlattices have been shown to host a wide array of interaction-driven ground states. However, twisted homobilayers have been difficult to study in the limit of large moiré wavelengths, where interactions are most dominant. In this study, we conducted local electronic compressibility measurements of twisted bilayer WSe2 (tWSe2) at small twist angles. We demonstrated multiple topological bands that host a series of Chern insulators at zero magnetic field near a "magic angle" around 1.23°. Using a locally applied electric field, we induced a topological quantum-phase transition at one hole per moiré unit cell. Our work establishes the topological phase diagram of a generalized Kane-Mele-Hubbard model in tWSe2, demonstrating a tunable platform for strongly correlated topological phases.
Collapse
Affiliation(s)
- Benjamin A Foutty
- Geballe Laboratory for Advanced Materials, Stanford, CA 94305, USA
- Department of Physics, Stanford University, Stanford, CA 94305, USA
| | - Carlos R Kometter
- Geballe Laboratory for Advanced Materials, Stanford, CA 94305, USA
- Department of Physics, Stanford University, Stanford, CA 94305, USA
| | - Trithep Devakul
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Aidan P Reddy
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kenji Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Liang Fu
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Benjamin E Feldman
- Geballe Laboratory for Advanced Materials, Stanford, CA 94305, USA
- Department of Physics, Stanford University, Stanford, CA 94305, USA
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| |
Collapse
|
10
|
Zhou H, Liang K, Bi L, Shi Y, Wang Z, Li S. Spotlight: Visualization of Moiré Quantum Phenomena in Transition Metal Dichalcogenide with Scanning Tunneling Microscopy. ACS APPLIED ELECTRONIC MATERIALS 2024; 6:1530-1541. [PMID: 38558951 PMCID: PMC10976882 DOI: 10.1021/acsaelm.3c01328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 04/04/2024]
Abstract
Transition metal dichalcogenide (TMD) moiré superlattices have emerged as a significant area of study in condensed matter physics. Thanks to their superior optical properties, tunable electronic band structure, strong Coulomb interactions, and quenched electron kinetic energy, they offer exciting avenues to explore correlated quantum phenomena, topological properties, and light-matter interactions. In recent years, scanning tunneling microscopy (STM) has made significant impacts on the study of these fields by enabling intrinsic surface visualization and spectroscopic measurements with unprecedented atomic scale detail. Here, we spotlight the key findings and innovative developments in imaging and characterization of TMD heterostructures via STM, from its initial implementation on the in situ grown sample to the latest photocurrent tunneling microscopy. The evolution in sample design, progressing from a conductive to an insulating substrate, has not only expanded our control over TMD moiré superlattices but also promoted an understanding of their structures and strongly correlated properties, such as the structural reconstruction and formation of generalized two-dimensional Wigner crystal states. In addition to highlighting recent advancements, we outline upcoming challenges, suggest the direction of future research, and advocate for the versatile use of STM to further comprehend and manipulate the quantum dynamics in TMD moiré superlattices.
Collapse
Affiliation(s)
- Hao Zhou
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093-0309, United States
- Program
in Materials Science and Engineering, University
of California, San Diego, La Jolla, California 92093-0418, United States
| | - Kangkai Liang
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093-0309, United States
- Program
in Materials Science and Engineering, University
of California, San Diego, La Jolla, California 92093-0418, United States
| | - Liya Bi
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093-0309, United States
- Program
in Materials Science and Engineering, University
of California, San Diego, La Jolla, California 92093-0418, United States
| | - Yueqing Shi
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093-0309, United States
| | - Zihao Wang
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093-0309, United States
- School
of Physics, Nankai University, Tianjin 300071, China
| | - Shaowei Li
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093-0309, United States
- Program
in Materials Science and Engineering, University
of California, San Diego, La Jolla, California 92093-0418, United States
| |
Collapse
|
11
|
Polovnikov B, Scherzer J, Misra S, Huang X, Mohl C, Li Z, Göser J, Förste J, Bilgin I, Watanabe K, Taniguchi T, Högele A, Baimuratov AS. Field-Induced Hybridization of Moiré Excitons in MoSe_{2}/WS_{2} Heterobilayers. PHYSICAL REVIEW LETTERS 2024; 132:076902. [PMID: 38427888 DOI: 10.1103/physrevlett.132.076902] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 01/19/2024] [Indexed: 03/03/2024]
Abstract
We study experimentally and theoretically the hybridization among intralayer and interlayer moiré excitons in a MoSe_{2}/WS_{2} heterostructure with antiparallel alignment. Using a dual-gate device and cryogenic white light reflectance and narrow-band laser modulation spectroscopy, we subject the moiré excitons in the MoSe_{2}/WS_{2} heterostack to a perpendicular electric field, monitor the field-induced dispersion and hybridization of intralayer and interlayer moiré exciton states, and induce a crossover from type I to type II band alignment. Moreover, we employ perpendicular magnetic fields to map out the dependence of the corresponding exciton Landé g factors on the electric field. Finally, we develop an effective theoretical model combining resonant and nonresonant contributions to moiré potentials to explain the observed phenomenology, and highlight the relevance of interlayer coupling for structures with close energetic band alignment as in MoSe_{2}/WS_{2}.
Collapse
Affiliation(s)
- Borislav Polovnikov
- Fakultät für Physik, Munich Quantum Center, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539 München, Germany
- Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching bei München, Germany
| | - Johannes Scherzer
- Fakultät für Physik, Munich Quantum Center, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539 München, Germany
| | - Subhradeep Misra
- Fakultät für Physik, Munich Quantum Center, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539 München, Germany
| | - Xin Huang
- Fakultät für Physik, Munich Quantum Center, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539 München, Germany
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Physical Sciences, CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Christian Mohl
- Fakultät für Physik, Munich Quantum Center, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539 München, Germany
| | - Zhijie Li
- Fakultät für Physik, Munich Quantum Center, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539 München, Germany
| | - Jonas Göser
- Fakultät für Physik, Munich Quantum Center, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539 München, Germany
| | - Jonathan Förste
- Fakultät für Physik, Munich Quantum Center, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539 München, Germany
| | - Ismail Bilgin
- Fakultät für Physik, Munich Quantum Center, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539 München, Germany
| | - Kenji Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Alexander Högele
- Fakultät für Physik, Munich Quantum Center, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539 München, Germany
- Munich Center for Quantum Science and Technology (MCQST), Schellingstraße 4, 80799 München, Germany
| | - Anvar S Baimuratov
- Fakultät für Physik, Munich Quantum Center, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539 München, Germany
| |
Collapse
|
12
|
Gu J, Zhu J, Knuppel P, Watanabe K, Taniguchi T, Shan J, Mak KF. Remote imprinting of moiré lattices. NATURE MATERIALS 2024; 23:219-223. [PMID: 38177378 DOI: 10.1038/s41563-023-01709-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 10/02/2023] [Indexed: 01/06/2024]
Abstract
Two-dimensional moiré materials are formed by overlaying two layered crystals with small differences in orientation or/and lattice constant, where their direct coupling generates moiré potentials. Moiré materials have emerged as a platform for the discovery of new physics and device concepts, but while moiré materials are highly tunable, once formed, moiré lattices cannot be easily altered. Here we demonstrate the electrostatic imprinting of moiré lattices onto a target monolayer semiconductor. The moiré potential-created by a lattice of electrons that is supported by a Mott insulator state in a remote MoSe2/WS2 moiré bilayer-imprints a moiré potential that generates flat bands and correlated insulating states in the target monolayer and can be turned on/off by gate tuning the doping density of the moiré bilayer. Additionally, we studied the interplay between the electrostatic and structural relaxation contributions to moiré imprinting. Our results demonstrate a pathway towards gate control of moiré lattices.
Collapse
Affiliation(s)
- Jie Gu
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA
- State Key Laboratory of Surface Physics, Department of Physics, Fudan University, Shanghai, China
| | - Jiacheng Zhu
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA
| | - Patrick Knuppel
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA
| | - Kenji Watanabe
- National Institute for Materials Science, Tsukuba, Japan
| | | | - Jie Shan
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA.
- Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY, USA.
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, USA.
| | - Kin Fai Mak
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA.
- Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY, USA.
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
13
|
Wu F, Xu Q, Wang Q, Chu Y, Li L, Tang J, Liu J, Tian J, Ji Y, Liu L, Yuan Y, Huang Z, Zhao J, Zan X, Watanabe K, Taniguchi T, Shi D, Gu G, Xu Y, Xian L, Yang W, Du L, Zhang G. Giant Correlated Gap and Possible Room-Temperature Correlated States in Twisted Bilayer MoS_{2}. PHYSICAL REVIEW LETTERS 2023; 131:256201. [PMID: 38181343 DOI: 10.1103/physrevlett.131.256201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 08/21/2023] [Accepted: 11/21/2023] [Indexed: 01/07/2024]
Abstract
Moiré superlattices have emerged as an exciting condensed-matter quantum simulator for exploring the exotic physics of strong electronic correlations. Notable progress has been witnessed, but such correlated states are achievable usually at low temperatures. Here, we report evidence of possible room-temperature correlated electronic states and layer-hybridized SU(4) model simulator in AB-stacked MoS_{2} homobilayer moiré superlattices. Correlated insulating states at moiré band filling factors v=1, 2, 3 are unambiguously established in twisted bilayer MoS_{2}. Remarkably, the correlated electronic state at v=1 shows a giant correlated gap of ∼126 meV and may persist up to a record-high critical temperature over 285 K. The realization of a possible room-temperature correlated state with a large correlated gap in twisted bilayer MoS_{2} can be understood as the cooperation effects of the stacking-specific atomic reconstruction and the resonantly enhanced interlayer hybridization, which largely amplify the moiré superlattice effects on electronic correlations. Furthermore, extreme large nonlinear Hall responses up to room temperature are uncovered near correlated electronic states, demonstrating the quantum geometry of moiré flat conduction band.
Collapse
Affiliation(s)
- Fanfan Wu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiaoling Xu
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
- College of Physics and Electronic Engineering, Center for Computational Sciences, Sichuan Normal University, Chengdu 610068, China
| | - Qinqin Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanbang Chu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lu Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Tang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jieying Liu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinpeng Tian
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiru Ji
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Le Liu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yalong Yuan
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiheng Huang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaojiao Zhao
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaozhou Zan
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Dongxia Shi
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Gangxu Gu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Xu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lede Xian
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Wei Yang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Luojun Du
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangyu Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| |
Collapse
|
14
|
Reddy AP, Devakul T, Fu L. Artificial Atoms, Wigner Molecules, and an Emergent Kagome Lattice in Semiconductor Moiré Superlattices. PHYSICAL REVIEW LETTERS 2023; 131:246501. [PMID: 38181155 DOI: 10.1103/physrevlett.131.246501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 11/18/2023] [Indexed: 01/07/2024]
Abstract
Semiconductor moiré superlattices comprise an array of artificial atoms and provide a highly tunable platform for exploring novel electronic phases. We introduce a theoretical framework for studying moiré quantum matter that treats intra-moiré-atom interactions exactly and is controlled in the limit of large moiré period. We reveal an abundance of new physics arising from strong electron interactions when there are multiple electrons within a moiré unit cell. In particular, at filling factor n=3, the Coulomb interaction within each three-electron moiré atom leads to a three-lobed "Wigner molecule." When their size is comparable to the moiré period, the Wigner molecules form an emergent Kagome lattice. Our Letter identifies two universal length scales characterizing the kinetic and interaction energies in moiré materials and demonstrates a rich phase diagram due to their interplay.
Collapse
Affiliation(s)
- Aidan P Reddy
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Trithep Devakul
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Liang Fu
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
15
|
Foutty BA, Yu J, Devakul T, Kometter CR, Zhang Y, Watanabe K, Taniguchi T, Fu L, Feldman BE. Tunable spin and valley excitations of correlated insulators in Γ-valley moiré bands. NATURE MATERIALS 2023; 22:731-736. [PMID: 37069292 DOI: 10.1038/s41563-023-01534-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 03/16/2023] [Indexed: 06/03/2023]
Abstract
Moiré superlattices formed from transition metal dichalcogenides support a variety of quantum electronic phases that are highly tunable using applied electromagnetic fields. While the valley degree of freedom affects optoelectronic properties in the constituent transition metal dichalcogenides, it has yet to be fully explored in moiré systems. Here we establish twisted double-bilayer WSe2 as an experimental platform to study electronic correlations within Γ-valley moiré bands. Through local and global electronic compressibility measurements, we identify charge-ordered phases at multiple integer and fractional moiré fillings. By measuring the magnetic field dependence of their energy gaps and the chemical potential upon doping, we reveal spin-polarized ground states with spin-polaron quasiparticle excitations. In addition, an applied displacement field induces a metal-insulator transition driven by tuning between Γ- and K-valley moiré bands. Our results demonstrate control over the spin and valley character of the correlated ground and excited states in this system.
Collapse
Affiliation(s)
- Benjamin A Foutty
- Geballe Laboratory for Advanced Materials, Stanford, CA, USA
- Department of Physics, Stanford University, Stanford, CA, USA
| | - Jiachen Yu
- Geballe Laboratory for Advanced Materials, Stanford, CA, USA
- Department of Applied Physics, Stanford University, Stanford, CA, USA
| | - Trithep Devakul
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Carlos R Kometter
- Geballe Laboratory for Advanced Materials, Stanford, CA, USA
- Department of Physics, Stanford University, Stanford, CA, USA
| | - Yang Zhang
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Physics and Astronomy, University of Tennessee, Knoxville, TN, USA
- Min H. Kao Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN, USA
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Material Science, Tsukuba, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Material Science, Tsukuba, Japan
| | - Liang Fu
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Benjamin E Feldman
- Geballe Laboratory for Advanced Materials, Stanford, CA, USA.
- Department of Physics, Stanford University, Stanford, CA, USA.
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA, USA.
| |
Collapse
|
16
|
Tan Q, Rasmita A, Zhang Z, Cai H, Cai X, Dai X, Watanabe K, Taniguchi T, MacDonald AH, Gao W. Layer-dependent correlated phases in WSe 2/MoS 2 moiré superlattice. NATURE MATERIALS 2023; 22:605-611. [PMID: 37069294 DOI: 10.1038/s41563-023-01521-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 02/28/2023] [Indexed: 05/05/2023]
Abstract
Electron correlation plays an essential role in the macroscopic quantum phenomena in the moiré heterostructure, such as antiferromagnetism and correlated insulating phases. Unlike the phenomena where the interaction involves only electrons in one layer, the interaction of distinct phases in two or more layers represents a new horizon forward, such as the one in the Kondo lattice model. Here, using interlayer excitons as a probe, we show that the interlayer interactions in heterobilayers of tungsten diselenide and molybdenum disulfide (WSe2/MoS2) can be electrically switched on and off, resulting in a layer-dependent correlated phase diagram, including single-layer, layer-selective, excitonic-insulator and layer-hybridized regions. We demonstrate that these correlated phases affect the interlayer exciton non-radiative decay pathways. These results reveal the role of strong correlation on interlayer exciton dynamics and pave the way for studying the layer-resolved strong correlation behaviour in moiré heterostructures.
Collapse
Affiliation(s)
- Qinghai Tan
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
- The Photonics Institute and Centre for Disruptive Photonic Technologies, Nanyang Technological University, Singapore, Singapore
| | - Abdullah Rasmita
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
| | - Zhaowei Zhang
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
| | - Hongbing Cai
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
- The Photonics Institute and Centre for Disruptive Photonic Technologies, Nanyang Technological University, Singapore, Singapore
| | - Xiangbin Cai
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
| | - Xuran Dai
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
| | - Allan H MacDonald
- Department of Physics, The University of Texas at Austin, Austin, TX, USA.
| | - Weibo Gao
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore.
- The Photonics Institute and Centre for Disruptive Photonic Technologies, Nanyang Technological University, Singapore, Singapore.
- Centre for Quantum Technologies, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
17
|
Tang Y, Su K, Li L, Xu Y, Liu S, Watanabe K, Taniguchi T, Hone J, Jian CM, Xu C, Mak KF, Shan J. Evidence of frustrated magnetic interactions in a Wigner-Mott insulator. NATURE NANOTECHNOLOGY 2023; 18:233-237. [PMID: 36646827 DOI: 10.1038/s41565-022-01309-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Electrons in two-dimensional semiconductor moiré materials are more delocalized around the lattice sites than those in conventional solids1,2. The non-local contributions to the magnetic interactions can therefore be as important as the Anderson superexchange3, which makes the materials a unique platform to study the effects of competing magnetic interactions3,4. Here we report evidence of strongly frustrated magnetic interactions in a Wigner-Mott insulator at a two-thirds (2/3) filling of the moiré lattice in angle-aligned WSe2/WS2 bilayers. Magneto-optical measurements show that the net exchange interaction is antiferromagnetic for filling factors below 1 with a strong suppression at a 2/3 filling. The suppression is lifted on screening of the long-range Coulomb interactions and melting of the Wigner-Mott insulators by a nearby metallic gate. The results can be qualitatively captured by a honeycomb-lattice spin model with an antiferromagnetic nearest-neighbour coupling and a ferromagnetic second-neighbour coupling. Our study establishes semiconductor moiré materials as a model system for lattice-spin physics and frustrated magnetism5.
Collapse
Affiliation(s)
- Yanhao Tang
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA
- Interdisciplinary Center for Quantum Information, Zhejiang Province Key Laboratory of Quantum Technology, and Department of Physics, Zhejiang University, Hangzhou, China
| | - Kaixiang Su
- Department of Physics, University of California, Santa Barbara, CA, USA
| | - Lizhong Li
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA
| | - Yang Xu
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA
| | - Song Liu
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Kenji Watanabe
- National Institute for Materials Science, Tsukuba, Japan
| | | | - James Hone
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Chao-Ming Jian
- Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY, USA
| | - Cenke Xu
- Department of Physics, University of California, Santa Barbara, CA, USA
| | - Kin Fai Mak
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA.
- Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY, USA.
- Kavli Institute at Cornell for Nanoscale Science, Ithaca, NY, USA.
| | - Jie Shan
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA.
- Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY, USA.
- Kavli Institute at Cornell for Nanoscale Science, Ithaca, NY, USA.
| |
Collapse
|
18
|
Xiao Y, Xiong C, Chen MM, Wang S, Fu L, Zhang X. Structure modulation of two-dimensional transition metal chalcogenides: recent advances in methodology, mechanism and applications. Chem Soc Rev 2023; 52:1215-1272. [PMID: 36601686 DOI: 10.1039/d1cs01016f] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Together with the development of two-dimensional (2D) materials, transition metal dichalcogenides (TMDs) have become one of the most popular series of model materials for fundamental sciences and practical applications. Due to the ever-growing requirements of customization and multi-function, dozens of modulated structures have been introduced in TMDs. In this review, we present a systematic and comprehensive overview of the structure modulation of TMDs, including point, linear and out-of-plane structures, following and updating the conventional classification for silicon and related bulk semiconductors. In particular, we focus on the structural characteristics of modulated TMD structures and analyse the corresponding root causes. We also summarize the recent progress in modulating methods, mechanisms, properties and applications based on modulated TMD structures. Finally, we demonstrate challenges and prospects in the structure modulation of TMDs and forecast potential directions about what and how breakthroughs can be achieved.
Collapse
Affiliation(s)
- Yao Xiao
- Collaborative Innovation Centre for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China.
| | - Chengyi Xiong
- Collaborative Innovation Centre for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China.
| | - Miao-Miao Chen
- Collaborative Innovation Centre for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China.
| | - Shengfu Wang
- Collaborative Innovation Centre for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China.
| | - Lei Fu
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, P. R. China. .,College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China.
| | - Xiuhua Zhang
- Collaborative Innovation Centre for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China.
| |
Collapse
|
19
|
Xu Y, Kang K, Watanabe K, Taniguchi T, Mak KF, Shan J. A tunable bilayer Hubbard model in twisted WSe 2. NATURE NANOTECHNOLOGY 2022; 17:934-939. [PMID: 35915334 DOI: 10.1038/s41565-022-01180-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Moiré materials with flat electronic bands provide a highly controllable quantum system for studies of strong-correlation physics and topology. In particular, angle-aligned heterobilayers of semiconducting transition metal dichalcogenides with large band offset realize the single-band Hubbard model. Introduction of a new layer degree of freedom is expected to foster richer interactions, enabling Hund's physics, interlayer exciton condensation and new superconducting pairing mechanisms to name a few. Here we report competing electronic states in twisted AB-homobilayer WSe2, which realizes a bilayer Hubbard model in the weak interlayer hopping limit for holes. By layer-polarizing holes via a perpendicular electric field, we observe a crossover from an excitonic insulator to a charge-transfer insulator at a hole density of ν = 1 (in units of moiré density), a transition from a paramagnetic to an antiferromagnetic charge-transfer insulator at ν = 2 and evidence for a layer-selective Mott insulator at 1 < ν < 2. The unique coupling of charge and spin to external electric and magnetic fields also manifests a giant magnetoelectric response. Our results establish a new solid-state simulator for the bilayer Hubbard model Hamiltonian.
Collapse
Affiliation(s)
- Yang Xu
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA.
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China.
| | - Kaifei Kang
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
| | - Kin Fai Mak
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA.
- Department of Physics, Cornell University, Ithaca, NY, USA.
- Kavli Institute at Cornell for Nanoscale Science, Ithaca, NY, USA.
| | - Jie Shan
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA.
- Department of Physics, Cornell University, Ithaca, NY, USA.
- Kavli Institute at Cornell for Nanoscale Science, Ithaca, NY, USA.
| |
Collapse
|
20
|
Mak KF, Shan J. Semiconductor moiré materials. NATURE NANOTECHNOLOGY 2022; 17:686-695. [PMID: 35836003 DOI: 10.1038/s41565-022-01165-6] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Moiré materials have emerged as a platform for exploring the physics of strong electronic correlations and non-trivial band topology. Here we review the recent progress in semiconductor moiré materials, with a particular focus on transition metal dichalcogenides. Following a brief overview of the general features in this class of materials, we discuss recent theoretical and experimental studies on Hubbard physics, Kane-Mele-Hubbard physics and equilibrium moiré excitons. We also comment on the future opportunities and challenges in the studies of transition metal dichalcogenide and other semiconductor moiré materials.
Collapse
Affiliation(s)
- Kin Fai Mak
- Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY, USA.
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA.
- Kavli Institute at Cornell for Nanoscale Science, Ithaca, NY, USA.
| | - Jie Shan
- Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY, USA.
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA.
- Kavli Institute at Cornell for Nanoscale Science, Ithaca, NY, USA.
| |
Collapse
|
21
|
Huang D, Choi J, Shih CK, Li X. Excitons in semiconductor moiré superlattices. NATURE NANOTECHNOLOGY 2022; 17:227-238. [PMID: 35288673 DOI: 10.1038/s41565-021-01068-y] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Semiconductor moiré superlattices represent a rapidly developing area of engineered photonic materials and a new platform to explore correlated electron states and quantum simulation. In this Review, we briefly introduce early experiments that identified new exciton resonances in transition metal dichalcogenide heterobilayers and discuss several topics including two types of transition metal dichalcogenide moiré superlattice, new optical selection rules, early evidence of moiré excitons, and how the resonant energy, dynamics and diffusion properties of moiré excitons can be controlled via the twist angle. To interpret optical spectra, it is important to measure the energy modulation within a moiré supercell. In this context, we describe a few scanning tunnelling microscopy experiments that measure the moiré potential landscape directly. Finally, we review a few recent experiments that applied excitonic optical spectroscopy to probe correlated electron phenomena in transition metal dichalcogenide moiré superlattices.
Collapse
Affiliation(s)
- Di Huang
- Physics Department and Center for Complex Quantum Systems, The University of Texas-Austin, Austin, TX, USA.
| | - Junho Choi
- Physics Department and Center for Complex Quantum Systems, The University of Texas-Austin, Austin, TX, USA
- Texas Materials Institute and Center for Dynamics and Control of Materials, The University of Texas-Austin, Austin, TX, USA
| | - Chih-Kang Shih
- Physics Department and Center for Complex Quantum Systems, The University of Texas-Austin, Austin, TX, USA
- Texas Materials Institute and Center for Dynamics and Control of Materials, The University of Texas-Austin, Austin, TX, USA
| | - Xiaoqin Li
- Physics Department and Center for Complex Quantum Systems, The University of Texas-Austin, Austin, TX, USA.
- Texas Materials Institute and Center for Dynamics and Control of Materials, The University of Texas-Austin, Austin, TX, USA.
| |
Collapse
|
22
|
Zhu J, Li T, Young AF, Shan J, Mak KF. Quantum Oscillations in Two-Dimensional Insulators Induced by Graphite Gates. PHYSICAL REVIEW LETTERS 2021; 127:247702. [PMID: 34951797 DOI: 10.1103/physrevlett.127.247702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/04/2021] [Indexed: 06/14/2023]
Abstract
We demonstrate a mechanism for magnetoresistance oscillations in insulating states of two-dimensional (2D) materials arising from the interaction of the 2D layer and proximal graphite gates. We study a series of devices based on different 2D systems, including mono- and bilayer T_{d}-WTe_{2}, MoTe_{2}/WSe_{2} moiré heterobilayers, and Bernal-stacked bilayer graphene, which all share a similar graphite-gated geometry. We find that the 2D systems, when tuned near an insulating state, generically exhibit magnetoresistance oscillations corresponding to a high-density Fermi surface, in contravention of naïve band theory. Simultaneous measurement of the resistivity of the graphite gates shows that the oscillations of the sample layer are precisely correlated with those of the graphite gates. Further supporting this connection, the oscillations are quenched when the graphite gate is replaced by a low-mobility metal, TaSe_{2}. The observed phenomenon arises from the oscillatory behavior of graphite density of states, which modulates the device capacitance and, as a consequence, the carrier density in the sample layer even when a constant electrochemical potential is maintained between the sample and the gate electrode. Oscillations are most pronounced near insulating states where the resistivity is strongly density dependent. Our study suggests a unified mechanism for quantum oscillations in graphite-gated 2D insulators based on electrostatic sample-gate coupling.
Collapse
Affiliation(s)
- Jiacheng Zhu
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, USA
| | - Tingxin Li
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, USA
| | - Andrea F Young
- Department of Physics, University of California, Santa Barbara, California 93106, USA
| | - Jie Shan
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, USA
- Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Ithaca, New York 14853, USA
| | - Kin Fai Mak
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, USA
- Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Ithaca, New York 14853, USA
| |
Collapse
|
23
|
Li T, Jiang S, Shen B, Zhang Y, Li L, Tao Z, Devakul T, Watanabe K, Taniguchi T, Fu L, Shan J, Mak KF. Quantum anomalous Hall effect from intertwined moiré bands. Nature 2021; 600:641-646. [PMID: 34937897 DOI: 10.1038/s41586-021-04171-1] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/20/2021] [Indexed: 11/09/2022]
Abstract
Electron correlation and topology are two central threads of modern condensed matter physics. Semiconductor moiré materials provide a highly tuneable platform for studies of electron correlation1-12. Correlation-driven phenomena, including the Mott insulator2-5, generalized Wigner crystals2,6,9, stripe phases10 and continuous Mott transition11,12, have been demonstrated. However, non-trivial band topology has remained unclear. Here we report the observation of a quantum anomalous Hall effect in AB-stacked MoTe2 /WSe2 moiré heterobilayers. Unlike in the AA-stacked heterobilayers11, an out-of-plane electric field not only controls the bandwidth but also the band topology by intertwining moiré bands centred at different layers. At half band filling, corresponding to one particle per moiré unit cell, we observe quantized Hall resistance, h/e2 (with h and e denoting the Planck's constant and electron charge, respectively), and vanishing longitudinal resistance at zero magnetic field. The electric-field-induced topological phase transition from a Mott insulator to a quantum anomalous Hall insulator precedes an insulator-to-metal transition. Contrary to most known topological phase transitions13, it is not accompanied by a bulk charge gap closure. Our study paves the way for discovery of emergent phenomena arising from the combined influence of strong correlation and topology in semiconductor moiré materials.
Collapse
Affiliation(s)
- Tingxin Li
- School of Applied and Engineering Physics and Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY, USA.,Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China
| | - Shengwei Jiang
- School of Applied and Engineering Physics and Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY, USA.,Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China
| | - Bowen Shen
- School of Applied and Engineering Physics and Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY, USA
| | - Yang Zhang
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Lizhong Li
- School of Applied and Engineering Physics and Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY, USA
| | - Zui Tao
- School of Applied and Engineering Physics and Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY, USA
| | - Trithep Devakul
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kenji Watanabe
- National Institute for Materials Science, Tsukuba, Japan
| | | | - Liang Fu
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jie Shan
- School of Applied and Engineering Physics and Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY, USA. .,Kavli Institute at Cornell for Nanoscale Science, Ithaca, NY, USA.
| | - Kin Fai Mak
- School of Applied and Engineering Physics and Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY, USA. .,Kavli Institute at Cornell for Nanoscale Science, Ithaca, NY, USA.
| |
Collapse
|
24
|
Imaging two-dimensional generalized Wigner crystals. Nature 2021; 597:650-654. [PMID: 34588665 DOI: 10.1038/s41586-021-03874-9] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 08/04/2021] [Indexed: 11/08/2022]
Abstract
The Wigner crystal1 has fascinated condensed matter physicists for nearly 90 years2-14. Signatures of two-dimensional (2D) Wigner crystals were first observed in 2D electron gases under high magnetic field2-4, and recently reported in transition metal dichalcogenide moiré superlattices6-9. Direct observation of the 2D Wigner crystal lattice in real space, however, has remained an outstanding challenge. Conventional scanning tunnelling microscopy (STM) has sufficient spatial resolution but induces perturbations that can potentially alter this fragile state. Here we demonstrate real-space imaging of 2D Wigner crystals in WSe2/WS2 moiré heterostructures using a specially designed non-invasive STM spectroscopy technique. This employs a graphene sensing layer held close to the WSe2/WS2 moiré superlattice. Local STM tunnel current into the graphene layer is modulated by the underlying Wigner crystal electron lattice in the WSe2/WS2 heterostructure. Different Wigner crystal lattice configurations at fractional electron fillings of n = 1/3, 1/2 and 2/3, where n is the electron number per site, are directly visualized. The n = 1/3 and n = 2/3 Wigner crystals exhibit triangular and honeycomb lattices, respectively, to minimize nearest-neighbour occupations. The n = 1/2 state spontaneously breaks the original C3 symmetry and forms a stripe phase. Our study lays a solid foundation for understanding Wigner crystal states in WSe2/WS2 moiré heterostructures and provides an approach that is generally applicable for imaging novel correlated electron lattices in other systems.
Collapse
|
25
|
Continuous Mott transition in semiconductor moiré superlattices. Nature 2021; 597:350-354. [PMID: 34526709 DOI: 10.1038/s41586-021-03853-0] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 07/22/2021] [Indexed: 11/08/2022]
Abstract
The evolution of a Landau Fermi liquid into a non-magnetic Mott insulator with increasing electronic interactions is one of the most puzzling quantum phase transitions in physics1-6. The vicinity of the transition is believed to host exotic states of matter such as quantum spin liquids4-7, exciton condensates8 and unconventional superconductivity1. Semiconductor moiré materials realize a highly controllable Hubbard model simulator on a triangular lattice9-22, providing a unique opportunity to drive a metal-insulator transition (MIT) via continuous tuning of the electronic interactions. Here, by electrically tuning the effective interaction strength in MoTe2/WSe2 moiré superlattices, we observe a continuous MIT at a fixed filling of one electron per unit cell. The existence of quantum criticality is supported by the scaling collapse of the resistance, a continuously vanishing charge gap as the critical point is approached from the insulating side, and a diverging quasiparticle effective mass from the metallic side. We also observe a smooth evolution of the magnetic susceptibility across the MIT and no evidence of long-range magnetic order down to ~5% of the Curie-Weiss temperature. This signals an abundance of low-energy spinful excitations on the insulating side that is further corroborated by the Pomeranchuk effect observed on the metallic side. Our results are consistent with the universal critical theory of a continuous Mott transition in two dimensions4,23.
Collapse
|