1
|
Yang W, Zhao Y, Chen Y, Ren H, Sun J, Shi Z, Jin X, Zhang Z, Wang X. Constraining CO 2 Coverage on Copper Promotes CO 2 Electroreduction to Multi-carbon Products in Strong Acid. Angew Chem Int Ed Engl 2025; 64:e202422082. [PMID: 39723674 DOI: 10.1002/anie.202422082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/25/2024] [Accepted: 12/25/2024] [Indexed: 12/28/2024]
Abstract
Electrocatalytic CO2 reduction (CO2R) to multi-carbon (C2+) products in strong acid presents a promising approach to mitigate the CO2 loss commonly encountered in alkaline and neutral systems. However, this process often suffers from low selectivity for C2+ products due to the competing C1 (e.g., CO and HCOOH) formation and complex C-C coupling kinetics. In this work, we report a CO2 coverage constraining strategy by diluting CO2 reactant feed to modulate the intermediate distribution and C-C coupling pathways for an enhanced electrosynthesis of C2+ products in strong acid. Lowering the CO2 feed concentration reduces CO2 coverage on copper catalyst, enriching the surface coverage and optimizing the adsorption configuration of the key CO intermediate for C-C coupling. This approach efficiently suppresses the formation of undesired C1 products. By employing a 20 % CO2 feed, we achieved a significant improvement in C2+ Faradaic efficiency, reaching 68 % at 100 mA cm-2, approximately 1.7 times higher than the 41 % obtained using pure CO2. We demonstrated the direct electroreduction of a 30 % CO2 feed-representative CO2 concentration of typical industrial flue gases-in a full electrolyzer, achieving a C2+ selectivity of 78 % and an energy efficiency of 23 % at 200 mA cm-2.
Collapse
Affiliation(s)
- Wanfeng Yang
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, 999077, PR China
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore, Singapore
| | - Yong Zhao
- CSIRO Energy Centre, 10 Murray Dwyer Cc, Mayfield West, NSW 2304, Australia
| | - Yiqing Chen
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, United States
| | - Hangjuan Ren
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Jiameng Sun
- School of Materials Science and Engineering, Shandong University, 17923 Jingshi Road, Jinan, 250061, PR China
| | - Zhangsheng Shi
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, 999077, PR China
| | - Xindie Jin
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore, Singapore
| | - Zhonghua Zhang
- School of Materials Science and Engineering, Shandong University, 17923 Jingshi Road, Jinan, 250061, PR China
| | - Xin Wang
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, 999077, PR China
- Department Hong Kong Branch of National Precious Metals Material Engineering Research Center, City University of Hong Kong, Hong Kong SAR, 999077, PR China
| |
Collapse
|
2
|
Cygan A, Wójtewicz S, Jóźwiak H, Kowzan G, Stolarczyk N, Bielska K, Wcisło P, Ciuryło R, Lisak D. Dispersive heterodyne cavity ring-down spectroscopy exploiting eigenmode frequencies for high-fidelity measurements. SCIENCE ADVANCES 2025; 11:eadp8556. [PMID: 39879293 DOI: 10.1126/sciadv.adp8556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 12/27/2024] [Indexed: 01/31/2025]
Abstract
Measuring low light absorption with combined uncertainty <1 per mil (‰) is crucial for many applications. Popular cavity ring-down spectroscopy can provide ultrahigh precision, below 0.01‰, but its accuracy is often worse than 5‰ due to inaccuracies in light intensity measurements. To eliminate this problem, we exploit optical frequency information carried by the ring-down cavity electromagnetic field. Instead of measuring only the decaying light intensity, we perform heterodyne detection of ring-downs followed by Fourier analysis to provide exact frequencies of optical cavity modes and a high-fidelity dispersive spectrum of a gas sample from them. We demonstrate the sub-per-mil accuracy of our method, confirmed by the best ab initio results for CO line intensity and for HD line shape, and the long-term repeatability of our dispersion measurements at 10-4 level. We see potential for our approach in atmospheric remote sensing, isotope ratio metrology, thermometry, and establishment of primary gas standards.
Collapse
Affiliation(s)
- Agata Cygan
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, 87-100 Torun, Poland
| | - Szymon Wójtewicz
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, 87-100 Torun, Poland
| | - Hubert Jóźwiak
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, 87-100 Torun, Poland
| | - Grzegorz Kowzan
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, 87-100 Torun, Poland
| | - Nikodem Stolarczyk
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, 87-100 Torun, Poland
| | - Katarzyna Bielska
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, 87-100 Torun, Poland
| | - Piotr Wcisło
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, 87-100 Torun, Poland
| | - Roman Ciuryło
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, 87-100 Torun, Poland
| | - Daniel Lisak
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, 87-100 Torun, Poland
| |
Collapse
|
3
|
Liu YZ, Yu MY, Tan YD, Wang J, Cheng CF, Jiang W, Hu SM. Midinfrared Cavity-Enhanced Two-Photon Absorption Spectroscopy for Selective Detection of Trace Gases. Anal Chem 2025; 97:848-853. [PMID: 39752543 DOI: 10.1021/acs.analchem.4c05414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Detection of trace gases, such as radioactive carbon dioxide, clumped isotopes, and reactive radicals, is of great interest and poses significant challenges in various fields. Achieving both high selectivity and high sensitivity is essential in this context. We present a highly selective molecular spectroscopy method based on comb-locked, mid-infrared, cavity-enhanced, two-photon absorption. The Doppler-free nature of two-photon transitions considerably reduces the width of the resonance, which improves the selectivity and avoids interference due to nearby transitions from other molecules. The high-finesse optical cavity increases the laser power by thousands of times and compensates for the small cross-section of the two-photon transition. The quantitative capability of the method is demonstrated by measuring 13CO2 abundances in CO2 samples. The method is promising for the quantitative measurement of extremely trace molecules or isotopologues in gas samples.
Collapse
Affiliation(s)
- Yu-Zhong Liu
- School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Meng-Yi Yu
- State Key Laboratory of Molecular Reaction Dynamics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Yan-Dong Tan
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Jin Wang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Cun-Feng Cheng
- State Key Laboratory of Molecular Reaction Dynamics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Wei Jiang
- School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Shui-Ming Hu
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
4
|
Rasmussen C, Hoffman D. Fingerprinting Organofluorine Molecules via Position-Specific Isotope Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39023375 DOI: 10.1021/acs.est.4c02250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Organofluorine substances are found in a wide range of materials and solvents commonly used in industry and homes, as well as pharmaceuticals and pesticides. In the environment, organofluorine molecules are now recognized as an important class of anthropogenic pollutants. Fingerprinting organofluorine compounds via their carbon isotope ratios (13C/12C) is crucial for correlating molecules with their source. Here we apply a 19F nuclear magnetic resonance spectroscopy (NMR) technique to obtain the first position-specific carbon isotope ratios for a diverse set of organofluorine molecules. In contrast to traditional isotope ratio mass spectrometry, the 19F NMR method provides 13C/12C isotope ratios at each carbon position where a C-F bond is present, and does not require fragmentation or combustion to CO2, overcoming challenges posed by the robust C-F covalent bonds. The method was validated with 2,2,2-trifluoroethanol, and applied to analyze heptafluorobutanoic acid, 5-fluorouracil and fipronil. Results reveal distinct intramolecular carbon isotope distributions, enabling differentiation of chemically identical molecules. Notably, the NMR method accurately analyzes carbon isotopes within target molecules despite impurities. Potential applications include the detection of counterfeit products and drugs, and ultimately pollution tracking in the environment.
Collapse
Affiliation(s)
- Cornelia Rasmussen
- Institute for Geophysics, The University of Texas at Austin, J. J. Pickle Research Campus, 10601 Exploration Way, Austin, Texas 78758, United States
| | - David Hoffman
- Department of Molecular Biosciences, The University of Texas at Austin, 100 East 24th Street, Austin, Texas 78712, United States
| |
Collapse
|
5
|
Petrov DV, Tanichev AS. 13CH 4/ 12CH 4 sensing using Raman spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 315:124253. [PMID: 38603959 DOI: 10.1016/j.saa.2024.124253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/30/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024]
Abstract
The paper presents a technique for measuring the concentration of 13CH4 in natural methane using Raman spectroscopy. The peak positions and the relative scattering cross-sections of the Q-branches for the most intense vibrational bands of 13CH4 are determined. Features of the 13CH4/12CH4 ratio measurement methods using Q-branches of the ν1 and ν3 bands were considered. It was shown that the 13CH4/12CH4 ratio can be determined by simulation of the ν3 bands of these molecules without the use of experimental spectra. In our experiments the measurement error of δ13C value was 10 ‰ using the 100-s exposure spectrum at a gas pressure close to 1 atm recorded on the developed Raman spectrometer. In addition, the Raman spectra of alkanes (up to n-hexane) in the range of 2850-3050 cm-1 at a resolution of 0.4 cm-1 are presented, and their integrated intensities in the ranges of the characteristic bands of 13CH4 and 12CH4 are provided. The data obtained make it possible to expand the capabilities of Raman gas analyzers in the mud gas logging industry.
Collapse
Affiliation(s)
- Dmitry V Petrov
- Institute of Monitoring of Climatic and Ecological Systems, 634055 Tomsk, Russia; Tomsk State University, 634050 Tomsk, Russia.
| | - Aleksandr S Tanichev
- Institute of Monitoring of Climatic and Ecological Systems, 634055 Tomsk, Russia
| |
Collapse
|
6
|
Meija J. Isotopic measurements of carbon dioxide: the role of measurement science and standards. Anal Bioanal Chem 2024; 416:2013-2021. [PMID: 37978068 PMCID: PMC11481645 DOI: 10.1007/s00216-023-05000-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/10/2023] [Indexed: 11/19/2023]
Abstract
Isotopic measurements provide valuable information about the origin of greenhouse gases - as carbon dioxide levels increase, there is a corresponding shift towards lighter isotopic composition similar to that of fossil fuels. Detecting such isotopic shifts, however, requires extremely precise measurements, which must also be globally reproducible in order to make reliable policy decisions. This feature article outlines the collective search for the ideal standard for carbon isotope measurements since the 1950s. This tragicomedy of errors, if you wish, has strengthened the reliability of today's measurements and has taken us from fictional oceans, to toilet seat marbles, and complex mathematical conventions that separate data from reliable results.
Collapse
Affiliation(s)
- Juris Meija
- National Research Council Canada, Ottawa, Canada.
| |
Collapse
|
7
|
Zhang ZT, Cao FH, Jiang S, Liu AW, Tan Y, Sun YR, Hu SM. Rovibrational Energies of 13C 16O 2 Determined with Kilohertz Accuracy. J Phys Chem A 2024. [PMID: 38489755 DOI: 10.1021/acs.jpca.4c00697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
Accurate spectroscopic data of carbon dioxide are widely used in many important applications, such as carbon monitoring missions. Here, we present comb-locked cavity ring-down saturation spectroscopy of the second most abundant isotopologue of CO2, 13C16O2. We determined the positions of 88 lines in three vibrational bands in the 1.6 μm region, 30011e/30012e/30013e-00001e, with an accuracy of a few kHz. Based on the analysis of combination differences, we obtained for the first time the ground-state rotational energies with kHz accuracy. We also provide a set of hybrid line positions for 150 13C16O2 transitions. The rotational energies (J < 50) in the 30013e vibrational state can be fitted by a set of rotational and centrifugal constants with deviations within a few kHz, indicating that the 30013e state is free of perturbations. These precise isotopic line positions will be utilized to improve the Hamiltonian model and quantitative remote sensing of carbon dioxide. Moreover, they will help to track changes in the carbon source and sink through isotopic analysis.
Collapse
Affiliation(s)
- Zi-Tan Zhang
- Hefei National Research Center for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Fang-Hui Cao
- State Key Laboratory of Molecular Reaction Dynamics, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Shan Jiang
- State Key Laboratory of Molecular Reaction Dynamics, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - An-Wen Liu
- State Key Laboratory of Molecular Reaction Dynamics, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Yan Tan
- Hefei National Research Center for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Y R Sun
- Institute of Advanced Science Facilities, Shenzhen 518107, China
| | - Shui-Ming Hu
- State Key Laboratory of Molecular Reaction Dynamics, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| |
Collapse
|
8
|
Greule M, Le PM, Meija J, Mester Z, Keppler F. Comparison of Carbon Isotope Ratio Measurement of the Vanillin Methoxy Group by GC-IRMS and 13C-qNMR. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:100-105. [PMID: 38015023 PMCID: PMC10767744 DOI: 10.1021/jasms.3c00327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/29/2023]
Abstract
Site-specific carbon isotope ratio measurements by quantitative 13C NMR (13C-qNMR), Orbitrap-MS, and GC-IRMS offer a new dimension to conventional bulk carbon isotope ratio measurements used in food provenance, forensics, and a number of other applications. While the site-specific measurements of carbon isotope ratios in vanillin by 13C-qNMR or Orbitrap-MS are powerful new tools in food analysis, there are a limited number of studies regarding the validity of these measurement results. Here we present carbon site-specific measurements of vanillin by GC-IRMS and 13C-qNMR for methoxy carbon. Carbon isotope delta (δ13C) values obtained by these different measurement approaches demonstrate remarkable agreement; in five vanillin samples whose bulk δ13C values ranged from -31‰ to -26‰, their δ13C values of the methoxy carbon ranged from -62.4‰ to -30.6‰, yet the difference between the results of the two analytical approaches was within ±0.6‰. While the GC-IRMS approach afforded up to 9-fold lower uncertainties and required 100-fold less sample compared to the 13C-qNMR, the 13C-qNMR is able to assign δ13C values to all carbon atoms in the molecule, not just the cleavable methoxy group.
Collapse
Affiliation(s)
- Markus Greule
- Institute
of Earth Sciences, Heidelberg University, Im Neuenheimer Feld 234-236, 69120 Heidelberg, Germany
| | - Phuong Mai Le
- Metrology, National
Research Council Canada, 1200 Montreal Road, Ottawa, ON K1A
0R6, Canada
| | - Juris Meija
- Metrology, National
Research Council Canada, 1200 Montreal Road, Ottawa, ON K1A
0R6, Canada
| | - Zoltán Mester
- Metrology, National
Research Council Canada, 1200 Montreal Road, Ottawa, ON K1A
0R6, Canada
| | - Frank Keppler
- Institute
of Earth Sciences, Heidelberg University, Im Neuenheimer Feld 234-236, 69120 Heidelberg, Germany
| |
Collapse
|
9
|
Schroll M, Liu L, Einzmann T, Keppler F, Grossart HP. Methane accumulation and its potential precursor compounds in the oxic surface water layer of two contrasting stratified lakes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166205. [PMID: 37567306 DOI: 10.1016/j.scitotenv.2023.166205] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/08/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Methane (CH4) supersaturation in oxygenated waters is a widespread phenomenon despite the traditional perception of strict anoxic methanogenesis. This notion has recently been challenged by successive findings of processes and mechanisms that produce CH4 in oxic environments. While some of the processes contributing to the vertical accumulation of CH4 in the oxygenated upper water layers of freshwater lakes have been identified, temporal variations as well as drivers are still poorly understood. In this study, we investigated the accumulation of CH4 in oxic water layers of two contrasting lakes in Germany: Lake Willersinnweiher (shallow, monomictic, eutrophic) and Lake Stechlin (deep, dimictic, eutrophic) from 2019 to 2020. The dynamics of isotopic values of CH4 and the role of potential precursor compounds of oxic CH4 production were explored. During the study period, persistent strong CH4 supersaturation (relative to air) was observed in the surface waters, mostly concentrated around the thermocline. The magnitude of vertical CH4 accumulation strongly varied over season and was generally more pronounced in shallow Lake Willersinnweiher. In both lakes, increases in CH4 concentrations from the surface to the thermocline mostly coincided with an enrichment in 13C-CH4 and 2H-CH4, indicating a complex interaction of multiple processes such as CH4 oxidation, CH4 transport from littoral sediments and oxic CH4 production, sustaining and controlling this CH4 supersaturation. Furthermore, incubation experiments with 13C- and 2H-labelled methylated P-, N- and C- compounds clearly showed that methylphosphonate, methylamine and methionine acted as potent precursors of accumulating CH4 and at least partly sustained CH4 supersaturation. This highlights the need to better understand the mechanisms underlying CH4 accumulation by focusing on production and transport pathways of CH4 and its precursor compounds, e.g., produced via phytoplankton. Such knowledge forms the foundation to better predict aquatic CH4 dynamics and its subsequent rates of emission to the atmosphere.
Collapse
Affiliation(s)
- Moritz Schroll
- Laboratory of Plateau Geographical Processes and Environmental Changes, Faculty of Geography, Yunnan Normal University, 650500 Kunming, China; Institute of Earth Sciences, Heidelberg University, 69120 Heidelberg, Germany.
| | - Liu Liu
- Laboratory of Plateau Geographical Processes and Environmental Changes, Faculty of Geography, Yunnan Normal University, 650500 Kunming, China; Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, 16775 Stechlin, Germany.
| | - Teresa Einzmann
- Institute of Earth Sciences, Heidelberg University, 69120 Heidelberg, Germany; Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Frank Keppler
- Institute of Earth Sciences, Heidelberg University, 69120 Heidelberg, Germany; Heidelberg Center for the Environment (HCE), Heidelberg University, 69120 Heidelberg, Germany
| | - Hans-Peter Grossart
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, 16775 Stechlin, Germany; Institute of Biochemistry and Biology, Potsdam University, 14476 Potsdam, Germany
| |
Collapse
|
10
|
Hua Z, Xie Q, Li Y, He M, Wang Y, Wu H, Zhang Z. Effects of 13C isotope-labeled allelochemicals on the growth of the invasive plant Alternanthera philoxeroides. Sci Rep 2023; 13:13756. [PMID: 37612314 PMCID: PMC10447425 DOI: 10.1038/s41598-023-39889-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 08/01/2023] [Indexed: 08/25/2023] Open
Abstract
The secondary metabolites of indigenous plants have significant allelopathic inhibitory effects on the growth and development of invasive alien plants. Methyl palmitate (MP) and methyl linolenate (ML) were used as exogenous allelopathic substances. The research investigated the differences of inhibitory effects of MP and ML on the growth of seedlings of Alternanthera philoxeroides, and calculated their morphological characteristics, biomass, physiological indicators and the response index (RI). The synthetical allelopathic index (SE) of 1 mmol/L MP was the smallest (- 0.26) and the allelopathic inhibition was the strongest; therefore, it was selected as a 13C-labeled allelochemical. The distribution of 1 mmol/L MP in different parts of A. philoxeroides and the correlation between the biomass ratios of roots, stems and leaves and the 13C content were studied by 13C stable isotope tracing experiments. Atom percent excess (APE) between roots, stems and leaves of A. philoxeroides treated with 1 mmol/L MP were significantly different in terms of magnitude, with leaves (0.17%) > roots (0.12%) > stems (0.07%). The root, stem and leaf biomass ratios of invasive weeds had great significant positive correlation with 13C content (p < 0.01, R2 between 0.96 and 0.99). This current research provides a new idea and method for the control of A. philoxeroides, but large-scale popularization remains to be studied.
Collapse
Affiliation(s)
- Zexun Hua
- College of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Qingsong Xie
- College of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Yue Li
- College of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Mengying He
- College of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Yan Wang
- College of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Hongmiao Wu
- College of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Zhen Zhang
- College of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
11
|
Bermúdez-Montaña M, Rodríguez-Arcos M, Carvajal M, Ostertag-Henning C, Lemus R. A Spectroscopic Description of Asymmetric Isotopologues of CO 2. J Phys Chem A 2023; 127:6357-6376. [PMID: 37499120 DOI: 10.1021/acs.jpca.3c00890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
A polyad-conserving algebraic model applied to vibrational excitations of asymmetric isotopologues of CO2 is presented. First, the problem of vibrational excitations is studied by taking into account only the minimum subspace of states to characterize the Fermi interaction. This analysis allows an estimation of the force constants as well as the feasibility of describing the system in a local mode scheme, in terms of SU(2) operators associated with Morse ladder operators for the stretches. This description together with the algebraic U(3) for the bends establishes the dynamical group SU1(2) × U(3) × SU2(2) for a series of isotopologues. Six isotopologues are considered, namely, 16O12C18O, 16O12C17O, 16O13C18O, 16O13C17O, 17O13C18O, and 17O12C18O in their electronic ground states. For isotopologues 16O12C18O, 16O12C17O, 17O12C18O, and 16O13C18O, the vibrational description was carried out using a Hamiltonian involving 14 parameters. For this series of isotopologues with a number of energy terms 90, 57, 42, and 40, the deviations obtained were rms = 0.15, 0.10, 0.06, and 0.07 cm-1, respectively. For 16O13C17O, with 28 experimental energies and involving 13 parameters, the deviation was rms = 0.05 cm-1, while for 17O13C18O, a different strategy was proposed since only 12 experimental energy levels. In all cases, the polyad scheme P212 = 2(ν1 + ν3) + ν2 was considered. In addition, a new criterion of locality/normality degree is proposed, embracing the case of molecules with normal mode behavior, in particular, the isotopologues of CO2.
Collapse
Affiliation(s)
- M Bermúdez-Montaña
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Carr. al Lago de Guadalupe Km. 3.5, Atizapán de Zaragoza 52926, Estado de Mexico, Mexico
| | - M Rodríguez-Arcos
- School of Engeneering and Science, Tecnológico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Nuevo León, Mexico
| | - M Carvajal
- Dpto. Ciencias Integradas, Centro de Estudios Avanzados en Física, Matemáticas y Computación, Unidad Asociada GIFMAN, CSIC-UHU, Universidad de Huelva, 21071 Huelva, Spain
- Instituto Universitario "Carlos I" de Física Teórica y Computacional, Universidad de Granada, 18071 Granada, Spain
| | - C Ostertag-Henning
- Federal Institute for Geosciences and Natural Resources, 30655 Hannover, Germany
| | - R Lemus
- Instituto de Ciencias Nucleares, UNAM. A.P.70-543, Circuito Exterior, C.U., 04510 Mexico City, Mexico
| |
Collapse
|
12
|
Reed ZD, Tran H, Ngo HN, Hartmann JM, Hodges JT. Effect of Non-Markovian Collisions on Measured Integrated Line Shapes of CO. PHYSICAL REVIEW LETTERS 2023; 130:143001. [PMID: 37084433 DOI: 10.1103/physrevlett.130.143001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/25/2023] [Accepted: 03/10/2023] [Indexed: 05/03/2023]
Abstract
Using cavity ring-down spectroscopy to probe R-branch transitions of CO in N_{2}, we show that the spectral core of the line shapes associated with the first few rotational quantum numbers, J, can be accurately modeled using a sophisticated line profile, provided that a pressure-dependent line area is introduced. This correction vanishes as J increases and is always negligible in CO-He mixtures. The results are supported by molecular dynamics simulations attributing the effect to non-Markovian behavior of collisions at short times. This work has large implications because corrections must be considered for accurate determinations of integrated line intensities, and for spectroscopic databases and radiative transfer codes used for climate predictions and remote sensing.
Collapse
Affiliation(s)
- Zachary D Reed
- Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Ha Tran
- Laboratoire de Météorologie Dynamique/IPSL, CNRS, Sorbonne Université, Ecole Polytechnique, Institut polytechnique de Paris, Ecole Normale Supérieure, PSL Research University, 4 place Jussieu, 75252, Paris, France
| | - Hoa N Ngo
- Faculty of Physics, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi, Vietnam
| | - Jean-Michel Hartmann
- Laboratoire de Météorologie Dynamique/IPSL, CNRS, Sorbonne Université, Ecole Polytechnique, Institut polytechnique de Paris, Ecole Normale Supérieure, PSL Research University, 4 place Jussieu, 75252, Paris, France
| | - Joseph T Hodges
- Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| |
Collapse
|
13
|
Huang H, Liu S, Du Y, Tang J, Hu L, Chen X. Carbon allocation mediated by arbuscular mycorrhizal fungi alters the soil microbial community under various phosphorus levels. FUNGAL ECOL 2023. [DOI: 10.1016/j.funeco.2023.101227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
14
|
Cao Y, Liu K, Wang R, Gao X, Kang R, Fang Y, Chen W. NO 2 Sensor Based on Faraday Rotation Spectroscopy Using Ring Array Permanent Magnets. Anal Chem 2023; 95:1680-1685. [PMID: 36602469 DOI: 10.1021/acs.analchem.2c04821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Faraday rotation spectroscopy (FRS) exploits the magneto-optical effect to achieve highly selective and sensitive detection of paramagnetic molecules. Usually, a solenoid coil is used to provide a longitudinal magnetic field to produce the magneto-optical effect. However, such a method has the disadvantages of excessive power consumption and susceptibility to electromagnetic interference. In the present work, a novel FRS approach based on a combination of a neodymium iron boron permanent magnet ring array and a Herriott multipass absorption cell is proposed. A longitudinal magnetic field was generated by using 14 identical neodymium iron boron permanent magnet rings combined in a non-equidistant form according to their magnetic field's spatial distribution characteristics. The average magnetic field strength within a length of 380 mm was 346 gauss. A quantum cascade laser was used to target the optimum 441 ← 440 Q-branch nitrogen dioxide transition at 1613.25 cm-1 (6.2 μm) with an optical power of 40 mW. Coupling to a Herriott multipass absorption cell, a minimum detection limit of 0.4 ppb was achieved with an integration time of 70 s. The low-power FRS nitrogen dioxide sensor proposed in this work is expected to be developed into a robust field-deployable environment monitoring system.
Collapse
Affiliation(s)
- Yuan Cao
- HFIPS, Chinese Academy of Sciences, Anhui Institute of Optics and Fine Mechanics, Hefei230031, China.,Advanced Laser Technology Laboratory of Anhui Province, Hefei230037, China
| | - Kun Liu
- HFIPS, Chinese Academy of Sciences, Anhui Institute of Optics and Fine Mechanics, Hefei230031, China
| | - Ruifeng Wang
- University of Science and Technology of China, Hefei230031, China
| | - Xiaoming Gao
- HFIPS, Chinese Academy of Sciences, Anhui Institute of Optics and Fine Mechanics, Hefei230031, China
| | - Ronghua Kang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang110016, China
| | - Yunting Fang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang110016, China
| | - Weidong Chen
- Laboratoire de Physicochimie de l'Atmosphère, Université du Littoral Côte d'Opale, 189A, Av. Maurice Schumann, Dunkerque59140, France
| |
Collapse
|
15
|
Operando proton-transfer-reaction time-of-flight mass spectrometry of carbon dioxide reduction electrocatalysis. Nat Catal 2022. [DOI: 10.1038/s41929-022-00891-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
16
|
Le PM, Martineau E, Akoka S, Remaud G, Chartrand MMG, Meija J, Mester Z. Site-specific carbon isotope measurements of vanillin reference materials by nuclear magnetic resonance spectrometry. Anal Bioanal Chem 2022; 414:7153-7165. [PMID: 36097194 PMCID: PMC9482901 DOI: 10.1007/s00216-022-04292-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/08/2022] [Accepted: 08/16/2022] [Indexed: 11/29/2022]
Abstract
Vanillin, one of the world's most popular flavor used in food and pharmaceutical industries, is extracted from vanilla beans or obtained (bio)-synthetically. The price of natural vanillin is considerably higher than that of its synthetic alternative which leads increasingly to counterfeit vanillin. Here, we describe the workflow of combining carbon isotope ratio combustion mass spectrometry with quantitative carbon nuclear magnetic resonance spectrometry (13C-qNMR) to obtain carbon isotope measurements traceable to the Vienna Peedee Belemnite (VPDB) with 0.7‰ combined standard uncertainty (or expanded uncertainty of 1.4‰ at 95% confidence level). We perform these measurements on qualified Bruker 400 MHz instruments to certify site-specific carbon isotope delta values in two vanillin materials, VANA-1 and VANB-1, believed to be the first intramolecular isotopic certified reference material (CRMs).
Collapse
Affiliation(s)
- Phuong Mai Le
- Metrology, National Research Council Canada, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada.
| | - Estelle Martineau
- Nantes Université, CNRS, CEISAM, UMR6230, F-44000, Nantes, France
- CAPACITÉS SAS, Nantes, France
| | - Serge Akoka
- Nantes Université, CNRS, CEISAM, UMR6230, F-44000, Nantes, France
| | - Gerald Remaud
- Nantes Université, CNRS, CEISAM, UMR6230, F-44000, Nantes, France
| | - Michelle M G Chartrand
- Metrology, National Research Council Canada, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Juris Meija
- Metrology, National Research Council Canada, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada.
| | - Zoltán Mester
- Metrology, National Research Council Canada, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| |
Collapse
|
17
|
Matsumoto N, Itoh N, Yamasaki K. Absolute Quantification of Pure Free Radical Reagents by Combination of the Effective Magnetic Moment Method and Quantitative Electron Paramagnetic Resonance Method. Anal Chem 2022; 94:12595-12603. [PMID: 36063091 DOI: 10.1021/acs.analchem.2c01005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An absolute quantitative analysis of free radicals by combining the effective magnetic moment method and the quantitative electron paramagnetic resonance [qEPR] method is proposed. This combined method utilizes the advantages of both the analytical methods and compensates for their disadvantages. In the effective magnetic moment method, the magnetic moment under a constant magnetic field is measured accurately using a superconducting quantum interference device. The qEPR method compares a "primary standard sample" and "secondary standard sample". The effective magnetic moment method was used to determine the purity of the primary standard sample. The qEPR method realizes a simple purity analysis of free-radical reagents with traceability to the International System of Units (SI). The purity of the free radicals by the qEPR method for pure 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl benzoate [4HTB], 1-oxyl-2,2,6,6-tetramethyl-4-hydroxypiperidine [TEMPOL], and di(phenyl)-(2,4,6-trinitrophenyl)iminoazanium [DPPH] reagents was obtained with a relative expanded uncertainty of 0.7% for 4HTB to 1.5% for the DPPH. These small uncertainties were almost equal to those of the purity of the primary standard samples and were achieved by adopting in-plane positioning of the measured sample perpendicular to the cylindrical axis of the sample space of the superconducting quantum interference device. Some purity values of the free radicals for these reagents differed from those stated by the manufacturers. This combined method enables short-time quality control of pure radical reagents, instead of quality control by separation analytical methods or titrations.
Collapse
Affiliation(s)
- Nobuhiro Matsumoto
- National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST), AIST Central-3, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8563, Japan
| | - Nobuyasu Itoh
- National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST), AIST Central-3, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8563, Japan
| | - Kazuhiko Yamasaki
- Biomedical Research Institute (BMRI), National Institute of Advanced Industrial Science and Technology (AIST), AIST Central-6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| |
Collapse
|
18
|
Huang X, Schwenke DW, Freedman RS, Lee TJ. Ames-2021 CO 2 Dipole Moment Surface and IR Line Lists: Toward 0.1% Uncertainty for CO 2 IR Intensities. J Phys Chem A 2022; 126:5940-5964. [PMID: 36007245 DOI: 10.1021/acs.jpca.2c01291] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A highly accurate CO2 ab initio dipole moment surface (DMS), Ames-2021, is reported along with 12C16O2 infrared (IR) intensity comparisons approaching a 1-4‰ level of agreement and uncertainty. The Ames-2021 DMS was accurately fitted from CCSD(T) finite-field dipoles computed with the aug-cc-pVXZ (X = T, Q, 5) basis for C atom and the d-aug-cc-pVXZ (X = T, Q, 5) basis for O atoms, and extrapolated to the one particle basis set limit. Fitting σrms is 3.8 × 10-7 au for 4443 geometries below 15 000 cm-1. The corresponding IR intensity, SAmes-2021, are computed using the Ames-2 potential energy surface (PES), which is the best PES available for CO2. Compared to high accuracy IR studies for 2001i-00001 and 3001i-00001 bands, SAmes-2021 matches NIST experiment-based intensities [SNIST-HIT16 or SHIT20] to -1.0 ± 1.3‰, or matches DLR experiment-based intensities [SDLR-HIT16/UCL/Ames] to 1.9 ± 3.7‰. This indicates the systematic deviations and uncertainties have been significantly reduced in SAmes-2021. The SUCL2015 (or SHITRAN2016) have larger deviations (vs SDLR) and uncertainties (vs SDLR, SNIST) which are attributed to the less accurate Ames-1 PES adopted in UCL-296 line list calculation. The SAmes-2021 intensity of 12C16O2 and 13C16O2 is utilized to derive new absolute 13C/12C ratios for Vienna PeeDee Belemnite (VPDB) with uncertainty reduced by 1/3 or 2/3. Further evaluation of SAmes-2021 intensities are carried out on those CO2 bands discussed in the HITRAN2020 update paper. Consistent improvements and better accuracies are found in band-by-band analysis, except for those bands strongly affected by Coriolis couplings, or very weak bands measured with relatively larger experimental uncertainties. The Ames-2021 296 K IR line lists are generated for 13 CO2 isotopologues, with 18 000 cm-1 and S296 K > 1 × 10-31 cm/molecule cutoff and then combined with CDSD line positions (except 14C16O2). The Ames-2021 DMS and 296 K IR line lists represent a major improvement over previous CO2 theoretical IR intensity studies, including Ames-2016, UCL-296, and recent UCL DMS 2021 update. A real 1 permille level of agreement and uncertainty will definitely require both more accurate PES and more accurate DMS.
Collapse
Affiliation(s)
- Xinchuan Huang
- MS 245-6, Astrophysics Branch, Space Science and Astrobiology Division, NASA Ames Research Center, Moffett Field, California 94035, United States.,SETI Institute, 339 Bernardo Avenue, Suite 200, Mountain View, California 94043, United States
| | - David W Schwenke
- MS 258-2, NAS Facility, NASA Ames Research Center, Moffett Field, California 94035, United States
| | - Richard S Freedman
- SETI Institute, 339 Bernardo Avenue, Suite 200, Mountain View, California 94043, United States.,MS 245-3, Planetary Systems Branch, Space Science and Astrobiology Division, NASA Ames Research Center, Moffett Field, California 94035, United States
| | - Timothy J Lee
- MS 245-3, Planetary Systems Branch, Space Science and Astrobiology Division, NASA Ames Research Center, Moffett Field, California 94035, United States
| |
Collapse
|
19
|
Bielska K, Kyuberis AA, Reed ZD, Li G, Cygan A, Ciuryło R, Adkins EM, Lodi L, Zobov NF, Ebert V, Lisak D, Hodges JT, Tennyson J, Polyansky OL. Subpromille Measurements and Calculations of CO (3-0) Overtone Line Intensities. PHYSICAL REVIEW LETTERS 2022; 129:043002. [PMID: 35939021 DOI: 10.1103/physrevlett.129.043002] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Intensities of lines in the near-infrared second overtone band (3-0) of ^{12}C^{16}O are measured and calculated to an unprecedented degree of precision and accuracy. Agreement between theory and experiment to better than 1‰ is demonstrated by results from two laboratories involving two independent absorption- and dispersion-based cavity-enhanced techniques. Similarly, independent Fourier transform spectroscopy measurements of stronger lines in this band yield mutual agreement and consistency with theory at the 1‰ level. This set of highly accurate intensities can provide an intrinsic reference for reducing biases in future measurements of spectroscopic peak areas.
Collapse
Affiliation(s)
- Katarzyna Bielska
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, 87-100 Torun, Poland
| | - Aleksandra A Kyuberis
- Van Swinderen Institute for Particle Physics and Gravity, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| | - Zachary D Reed
- Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Gang Li
- PTB (Physikalisch-Technische Bundesanstalt), Bundesallee 100, 38116 Braunschweig, Germany
| | - Agata Cygan
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, 87-100 Torun, Poland
| | - Roman Ciuryło
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, 87-100 Torun, Poland
| | - Erin M Adkins
- Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Lorenzo Lodi
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Nikolay F Zobov
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Volker Ebert
- PTB (Physikalisch-Technische Bundesanstalt), Bundesallee 100, 38116 Braunschweig, Germany
| | - Daniel Lisak
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, 87-100 Torun, Poland
| | - Joseph T Hodges
- Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Jonathan Tennyson
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Oleg L Polyansky
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom
| |
Collapse
|
20
|
Hoffman DW, Rasmussen C. Absolute Carbon Stable Isotope Ratio in the Vienna Peedee Belemnite Isotope Reference Determined by 1H NMR Spectroscopy. Anal Chem 2022; 94:5240-5247. [PMID: 35312289 DOI: 10.1021/acs.analchem.1c04565] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Vienna Peedee Belemnite (VPDB) isotope reference defines the zero point of the carbon stable isotope scale that is used to describe the relative abundance of 13C and 12C. An accurate and precise characterization of this isotope reference is valuable for interlaboratory comparisons and conducting robust carbon stable isotope analyses in a vast array of fields, such as chemical forensics, (bio)geochemistry, ecology, or (astro)biology. Here, we report an absolute 13C/12C ratio for VPDB that has been obtained, for the first time, using proton nuclear magnetic resonance spectroscopy (1H NMR). Four different NMR instruments were used to determine 13C/12C ratios in a set of glycine reference materials from the US Geological Survey (USGS64, USGS65, and USGS66) and a set of formate samples that were characterized by isotope ratios mass spectrometry (IRMS). Intercalibration of the NMR-derived 13C/12C ratios with relative abundance (δ13CVPDB) measurements from IRMS yields a value of 0.011100 for the absolute 13C/12C ratio in VPDB, with an expanded uncertainty of ±0.000026 (2σ, n = 114). This is significantly different from the value of 0.011180 that is commonly used but falls within the range of values recently revised using IRMS and infrared absorption measurements. 1H NMR was found to be an effective method for measuring absolute 13C/12C ratios due to its ability to simultaneously detect signals associated with 12C and 13C. Results provide a new and independent measure of the carbon isotope composition of VPDB, improving our understanding of this important isotope reference.
Collapse
Affiliation(s)
- David W Hoffman
- Department of Molecular Biosciences, College of Natural Science, University of Texas at Austin, 100 East 24th St., Austin, Texas 78712, United States
| | - Cornelia Rasmussen
- University of Texas Institute for Geophysics, Jackson School of Geosciences, University of Texas at Austin, 10601 Exploration Way, Austin, Texas 78758, United States
| |
Collapse
|
21
|
Hélie JF, Adamowicz-Walczak A, Middlestead P, Chartrand MMG, Mester Z, Meija J. Discontinuity in the Realization of the Vienna Peedee Belemnite Carbon Isotope Ratio Scale. Anal Chem 2021; 93:10740-10743. [PMID: 34314161 DOI: 10.1021/acs.analchem.1c02458] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
By convention, carbon isotope ratios are expressed relative to VPDB defined by the calcite standard NBS19 in the 1980s. [See T. Coplen, Pure Appl. Chem. 1994, 66, 273-276.] To improve the realization of the VPDB scale, a second fixed point (lithium carbonate, LSVEC) was introduced in 2006 [T. Coplen et al. Anal. Chem. 2006, 78, 2439-2441], which is now known to be isotopically unstable. [Assonov, S. Rapid Commun. Mass Spectrom., 2018, 32, 827-830.] With the high-quality reference materials made available in 2020, it is now possible to realize the VPDB scale with high confidence. [Assonov, S. et al. Rapid Commun. Mass Spectrom., 2020, 34, e8867; Assonov, S. Rapid Commun. Mass Spectrom. 2021, 35, e9014; Qi, H. et al. Rapid Commun. Mass Spectrosc. 2021, 35, e9006.] Here, we report the analysis of 25 reference materials using isotope ratio combustion mass spectrometry, show the discontinuity between the values measured against the new IAEA reference materials and the values currently assigned to these reference materials on the VPDB2006, and provide a link bringing these materials onto the new VPDB2020.
Collapse
Affiliation(s)
- Jean-François Hélie
- Département des sciences de la Terre et de l'atmosphère, Université du Québec à Montréal, Montréal, QC H3C 3P8 Canada.,Geotop Research Centre on the Dynamics of the Earth System, Montréal, QC H3C 3P8 Canada
| | | | - Paul Middlestead
- University of Ottawa, Earth and Environmental Sciences Department, Ottawa, ON K1N 6N5 Canada
| | | | - Zoltán Mester
- National Research Council Canada, Metrology, Ottawa, ON K1A 0R6 Canada
| | - Juris Meija
- National Research Council Canada, Metrology, Ottawa, ON K1A 0R6 Canada
| |
Collapse
|